UNIQUENESS FOR SETS OF FUNCTIONS
GENERATED BY MATRICES
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1. INTRODUCTION

In this paper we define admissible matrices. Using these matrices we define
sets of admissible functions. That each of these sets of admissible functions is
a complete orthonormal system for L'[[0, 1), C] and that any admissible Fourier
series of these functions (hereafter called Fourier series) converges almost every-
where are almost immediate from the definitions. The major result of this paper
supplies sufficient conditions for uniqueness of admissible series. Some results
on Walsh-like series found in [1], [3], [4], [5], and [8], among others, are similiar
to our results.

The authors would like to thank the referee for his helpful comments and
suggestions.

2. BASIC DEFINITIONS AND PROPERTIES

_ Definition 1. Let A = (a;) be an n X n matrix with complex entries and let
A = (a;), where a; is the complex conjugate of a;;. The nonsingular matrix A
will be called an admissible matrix if AA" is a diagonal matrix and a,; =1 for
l1=j=n.

Note that a matrix composed of the characters of the cyclic group of order
n arranged properly satisfies this condition.

Definition 2. Let A = (a;) be an n X n admissible matrix normalized so that
AAT=nl.Forl=i<nandx € [0, 1) ,let g,(x) = a;, ,where (k — 1) /n=x<k/n
and 1 = k = n. The functions (g;);., defined in this way will be called the admissible
functions derived from the matrix A. (In the future we will just refer to these
functions as admissible functions.)

The family of complex-valued functions (g;);_, defined on [0, 1) can be extended
periodically to any interval (a,b). Note that AA™ = nI implies that the g, are
orthonormal.

Definition 3. Let A = (a;;) be an n X n complex matrix, and let B = (b;;) be
an m X m complex matrix. A* B will be used to denote the product of A by B,

which is defined as follows. Let B, be the ith row of B, and let ® be the Kronecker
product of two matrices; then
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A ®B,

A ®B,
Although similar to the tensor product, the * product of admissible matrices
does not alter the order of the admissible functions as would the tensor product.

. Since the * product is not associative, we shall assume, unless otherwise noted,
that A * B * C means (A =« B) ~ C.

Note that if A is n X n and B is m X m, then A * B is nm X nm . Further,
if both matrices have nonzero determinant, it follows from the similar property
of the tensor product that

|det(A = B)| = |det(B * A)| = | [det(A)] ™ [det(B)}]"] #0.
It is easy to see that if A and B are admissible matrices, then A * B is also

an admissible matrix.

Definition 4. Let H = (H,);_, be a sequence of admissible matrices, let
K,=H,+H,~..~H_,

and let s(n) be the dimension of K, . Let (g,);., be the sequence of admissible
functions derived from (K_)7_, . Now let F_ be the set of end-points of the intervals
of constancy of (g;);") (the functions derived from K ). We define the F-set of

H to beF=U F,.
n=1

Note that F, C F, C F; C ..., and that F is a countable set.

The definition of an F-set may be extended in a natural way to any interval
(a, b) which contains [0, 1). We define F(a, b), the F-set of (a, b), by saying that
x € F(a, b) if and only if x (mod 1) € F. Since the context of future results makes
it clear whether we are on [0, 1) or (a, b), we will use F to denote F(a, b).

k+1
Let a,(x) = and B,(x) = , where k is an integer and
s(n s(n
k k+1
=x<
s(n) s(n)

Then we observe that Definition 2 gives us

st)  ifa,(t) = a,(x)

s(n)

E g(t) g(x) =

i=1

0 otherwise.
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i=1 0

s(n) 1
Hence 2 S f(t) g;(t) g(x)dt— f(x) almost everywhere and thus the g; form a

1 1
complete orthonormal system. Observe that if H; = [ . 1] for all i, one gets
the Walsh functions as discussed by Paley in [6].

MAIN RESULT

This section of the paper deals with uniqueness of admissible series, hereafter
called series. For any x € (a, b), define o/ (x) by o/ (x) = a,(x) if x € F and

ol (x) = a, (x) — 1/s(n) ifxeF.

Then by substituting s(n) for 2" in the theorem of [5], one gets the following.

LEMMA 1. LetG be areal-valued function defined on (a, b) N F which satisfies
the following conditions:

(i) liminf [G(x) — G(a. (x))] =0, x € F;

n—w

(ii) lixg inf [G(B,.(x)) — G(a,(x))] =0, X € (a, b);

(iii) there exists a countable set E such that

lim inf [G(B,(x)) — G(a,(x))] -s(n) =0, x E(a,b)~—

n—o

Then G is monotone decreasing on F.

The following notation and observations will be needed. Let (g;);"-, be a sequence
of admissible functions, and let s(n) be as defined in Definition 4. Define

h; (x) = S g; (t) dt.

]

Thus h;(k/s(n)) = 0 for alli > s(n). Let R(x) = 2 a, g;(x) be a series, and define

i=1
s(n) s(n)

R(s(n), x) = 2 a,; g;(x). Define L (R, x) = lim 2 a;h;(x). We shall write L(x) in

i=1
place of L(R, x) when R is fixed. We now state a lemma which we will need
for our theorem.

LEMMA 2. IfR(x) = 2 a;g; (x) is a series that has the property that

i=1

s(n)}

(1/s@) D |ag®|—0
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uniformly in t as n — o, then for each x and every n > 0, both L(a, (x)) andL(B,(x))
exist and are finite.

Further:

(@) L(B.(x) — L(e,(x)) = (1/s(n))R(s(n), x) ;

(b) L(B.(x)) — L(a,(x)) = O uniformly in x asn — o .
Also, if L(x,) exists, then:

(© La, (x,)) = L(x) ;

(@) L(B.(x0)) = L(x,) .

The proof of the above lemma is the same as for Lemmas 1 and 2 in [2,
page 552 and 553], with 2" replaced by s(n).

THEOREM. Let (g,)5, be a sequence of real-valued admissible functions. Let

Rix) = 2 a;g;(x) be a series, and let E be a countable subset of [0, 1]. Suppose
i=1
that

s(n)

(1) (1/s(n)) E | a;8;(t) | = O uniformly in t as n — «, and

i=1

(2) if x € [0, 1] — E, then

lim inf R (s(n), x) = q(x) = lim sup R(s(n), x),

n—oc n

where q is some function in L' [0, 1].

Then R is the Fourier series of q.

X

Proof. Define q(x) = 0 for all x € E and let Q(x) = S q(t) dt.

4]

Let (a, b) be an interval which contains [0, 1]. Extend q and (g;);_, (and
consequently R(x), R(s(n), x), and L(x)) periodically to (a, b). Next, using the
Vitali-Carathéodory theorem as in [2, page 557] and Lemma 2, it is easily seen
that L(x) = Q(x) for x € F.

oo

Now let b, g;(x) be the Fourier series of q(x), so that (by Lemma 2)

i=1

s(n) Bj(x)
2 b; gi(a;(x)) = s(n) S q(t) dt = s(n) [Q(B;(x)) — Q(ey(x))]

o,(x)
s(n)

s() [L(B;x) — Ley(x)] = D a,g(e(x)) .

i=1

Thus, by completeness, we have a, = b, for 1 =i = s(n). This argument is valid
for all n, so that a, = b, for all i. Therefore, R is the Fourier series of q, and
the proof is complete. )
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COMMENTS

1) The conditions on the theorem can apparently be weakened to correspond

to those in [2] by considering the underlying groups, but the authors felt that
this would tend to confuse the notation even more.

2) It is possible to alter the definition of the matrix product in such a way
as to get Haar-like functions.

3) We have no idea whether complete systems of continuous functions can
be created in this way, although the trigonometric functions apparently can be
generated in a manner reminiscent of how the Walsh functions are generated
by the Rademacher functions.

It is possible th;t a result similar to Lemma 1 can be proved if the F-set
is replaced by any countable dense subset of (a, b) .
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