EVERY CRUMPLED n-CUBE IS A CLOSED
n-CELL-COMPLEMENT

Robert J. Daverman

Often it is a convenient simplification, in studying the wildness of (n - 1)-
spheres topologically embedded in the n-sphere S™, to suppose that the wildness is
confined to one complementary domain, in that the closure of the other complemen-
tary domain is an n-cell. The principal result here, Theorem 6.1, shows that for
n > 5 this simplification has validity in a stronger setting: for each crumpled n-
cube C in S™ and € > 0 there exists an €-homeomorphism h of C into S™ such
that the closure of S™ - h(C) is an n-cell. For n = 3 the same result has been
established by Hosay [16] and Lininger [17].

A crumpled n-cube C is a space homeomorphic to the union of an (n - 1)-
sphere in S™ and one of its complementary domains; the subset of C consisting of
those points at which C is an n-manifold (without boundary) is called the infervior of
C, written Int C, and the subset C - Int C, which corresponds to the given (n - 1)-
sphere, is called the boundary of C, written Bd C. A crumpled n-cube C is a
closed n-cell-complement if there exists an embedding h of C in S" such that
S™ - h(Int C) (equivalently, the closure of S™ - h(C)) is an n-cell. Translated into
this terminology, the principal result implies that for n > 5 each crumpled n-cube
is a closed n-cell-complement (Corollary 6.4).

Besides validating this simplification, the paper supports the opposite process
permitting the construction of complexities. To describe the construction, we look
first at a standard situation: any (n - 1)-sphere Z in S™ bounds two crumpled n-
cubes Co and C;, and fastening Cgo and C) (abstractly conceived) back together
along their boundaries in an appropriate way reproduces S™, with both Bd Cy and
Bd C; identified as Z. Generally, such an attaching is called a sewing; specifically,
a sewing of two crumpled n-cubes Cy and C; is a homeomorphism between their
boundaries, and associated with a sewing h is the sewing space, denoted as
Cy Uy Cy, which is the quotient space obtained from the disjoint union of Cj and C,
under identification of each point x in Bd C with its image h(x) in Bd C;. To
construct (n - 1)-spheres in S™ with wildness in both complementary domains, one
first can select crumpled n-cubes Cg and C;, together with a sewing h, and then
can hope to prove that C, Uy, C, is homeomorphic to S™. The ultimate problem,
determining whether a given sewing space Cy Uy C; is topologically equivalent to
S™, can be an intricate and complex puzzle, about which [14] supplies much informa-
tion. In any event, the results here (see Corollary 6.7) imply that the sewing space
Cy Uy, C; is homeomorphic to a decomposition space associated with a decomposi-
tion of S™ into points and flat arcs, thereby reducing the sewing problem to a de-
composition problem.

Instrumental for the approach used here is Ancel and Cannon’s recent solution
[1] of the Locally Flat Approximation Theorem, which states that each embedding of
an (n - 1)-manifold in an n-manifold (n > 5) can be approximated arbitrarily closely
by locally flat embeddings. Earlier Bryant, Edwards and Seebeck [5] had devised a
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significant attack on this theorem, based on techniques of Stan’ko [23], and Stan’ko
himself produced a comparable attack [24], both of which essentially manipulated one
side at a time and in effect attempted to reembed crumpled n-cubes as closed
n-cell-complements. In both cases the argument is satisfactory for reembedding a
large class of crumpled n-cubes (see [14, Section 6] for further discussion of the
Bryant-Edwards-Seebeck results) but is incomplete. The work of Ancel and Cannon
proceeds with similar techniques, but rather than reembedding crumpled cubes, they
cleverly embed decompositions of which the crumpled cubes form the decomposition
spaces.

Organizing this discussion around crumpled n-cubes and embeddings of (n - 1)-
spheres serves as an advantageous shorthand for us. Nevertheless, because the
arguments are characteristically local, they can be adapted to a wider setting con-
cerning embeddings of (n - 1)-manifolds in n-manifolds, illustrated by the following
analogue to the main theorem:

THEOREM 6.1'. Suppose that N is an n-manifold (without boundary), n > 5, C
is a closed subset of N such that the boundary of C (velative to N) is an (n - 1)-
manifold, and €: C — (0, 1) is continuous. Then there exists an embedding h of C
in N such that p(c, hic)) < e(c) for each point ¢ in C and h(Bd C) is collared from
N - h(C); that is, theve is an embedding H of Bd C X [0, 1] in €4(N - h(C)) such

that H({ b, 0)) = h(b) for each b € Bd C.

A word about the structure of this paper: the main theorem depends heavily
upon a weak version of itself that applies to a restricted class of crumpled n-cubes.
The various types of crumpled cubes are discussed in Section 2. A criterion for de-
tecting the restricted type, which is similar to criteria in [13] but with the dimension
restrictions improved, and which may serve functions outside this paper, is given in
Section 3. Technical results providing controls that force approximations to (n - 1)-
spheres to bound crumpled n-cubes of this type are given in Section 4. Another
highly technical result, describing controls allowable in the shrinking of certain arcs
and leading to a decomposition theorem pertaining to a countable collection of de-
compositions for which the underlying point sets of the nondegenerate elements form
a null sequence of pairwise disjoint sets, is stated in Section 5. Finally, building on
all of these, the proof of the main theorem is given in Section 6.

A reasonable method for studying this paper is to read Section 2, the statements
of Corollary 3.4 and Lemma 4.3, and Section 5 and then to concentrate on Section 6,
putting aside the technical details of Sections 3 and 4.

1. DEFINITIONS AND NOTATION

The symbol p is used throughout to denote a fixed metric on S". For maps f
and g of a space X into S™, p(f, g) denotes the least upper bound of

{pli(x), gx)): x € X}.

The symbol 1 is often employed to denote, somewhat ambiguously but usually rather
clearly in context, the identity map and, for A CX, 1 ] A is used to denote the in-
clusion of A in X. Thus, for A C S™ and € > 0, an embedding h of A in S™ is an
g -homeomorphism if and only if p(h, 1]|4) <.

The symbol AK denotes a canonical k-simplex and aAK its boundary. Let
X CY C Z, where Z is a metric space, and k > 0 an integer. Then X is locally
k-connected in Y at a point y € 4 Y (“% £’ denotes closure), written X is k - LC
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in Y at y, if for each € > 0 there exists 6 > 0 such that any map of aAKL jnto

X N Ng(y) can be extended to a map of AKXl into Y N Ng(y); and X és uniformly

k- connected in Y, written X is k-ULC in Y, if a 6 > 0 exists that is independent of
the choice of y € #¢ Y. Generally, one abbreviatés the phrase “Y is k-ULC in Y~
to “Y is k-ULC.” For our purposes the standard choices of k occur for k =0 or
k =1, and the triple (X, Y, Z) occurs with Z representing a crumpled n-cube, X
representing its interior, and Y representing simply some set for which X CY CZ,
in which case Y is 1-ULC if and only if X is 1-ULC in Y [7, Theorem 2C.5].
Section 2 of Cannon’s paper [7] is a comprehensive source of related information
about the LC properties.

2. DEMENSION THEORY AND THE TYPES OF CRUMPLED CUBES

As a crude measure of the (one-sided) wildness of the boundary sphere, it is
beneficial to distinguish, as in [14], certain types of crumpled n-cubes C by enum-
erating properties that allow increasing complexity of that wildness, as follows:

Type 1. There exists a O-dimensional Fy; set F in Bd C such that F is a
countable union of Cantor sets that are tame relative to Bd C and F U Int C is
1-ULC. The only subtype of any consequence for this paper, its simplicity has
afforded previous solutions to the main problem for crumpled cubes of this type.

Type 2. There exists a 0-dimensional Fy set F in Bd C suchthat F UInt C
is 1-ULC.

Type 3. There exists a 1-dimensional Fg set F in Bd C such that F UInt C
is 1-ULC.

Bing [3] has shown that each crumpled 3-cube is of Type 1 (in case n = 3,
Types 1 and 2 are indistinguishable). Daverman [10] has shown that each crumpled
n-cube is of Type 3 in case n > 5 and Ancel and McMillan [2] have proved the same
result in case n = 4. It is suspected that examples of Type 3 crumpled n-cubes
exist, although none has been discovered; examples of Type 2 are known (see 12,
Theorem 5.4] and [14, Section 13}).

The theory of demension, or embedding dimension, as developed by Stan’ko [21,
22] for compacta and extended by Edwards [15] to o-compacta, supplies functional
terminology for describing and distinguishing the types of crumpled cubes. We shall
review the significant features of the theory to be employed in this paper.

Suppose G is an open subset of a PL g-manifold Q and € > 0. Suppose there
is a compact k-dimensional subpolyhedron P of Q contained in G, there is a com-
pact metric space Y, and there is a continuous proper surjection s: Y X [0, 1) — G
such that s-1(P) =Y x {0}, S|Y x (0, 1) is injective, and diam s(y X [0, 1)) <¢ for
each y in Y. In this situation we say that G is an open e-mapping cylinder neigh-
borhood of P in Q and that P is a k-spine of G. When Q is compact and boundary-
less, open €-mapping cylinder neighborhoods naturally arise as the complements of
(g - k - 1)-skeletons in triangulations of Q having mesh less than €.

Suppose now that X is a nonempty compact subset of the interior of Q. For an
integer k > 0 we say that the embedding dimension of X in Q is at most k, abbre-
viated as dempX <k, if for each € > 0, X is contained in an open €-mapping cylin-
der neighborhood with a k-spine, and we say that the embedding dimension (or the
demension) of X in Q is k, abbreviated as demnX =k, if demX < k but not
dem X <k - 1. (For technical reasons set demn¢ = -,) For a nonempty ¢-com-
pact subset F of Q we define the embedding dimension of F in Q, written demF,
as max {demQX: X is a compact subset of F}
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In case X is a Cantor set in the interior of Q, then X is tame in the usual
sense if and only if dempX =0 if and only if demgX < q - 3 (see [21, 15]; in par-
ticular, this holds even when q = 4 [15, p. 206]). Accordingly, a crumpled n-cube
C is of Type 1 if and only if there exists a o-compact set F in Bd C such that
dempycF =0 and F Ulnt C is 1-ULC. Here it is frequently helpful to know that
if X, , X,, --- are compacta in Bd C for which dempg cX; <k then

dedeC U Xi S 0

[15, Prop. 1.1].

It is shown in [14] that the crumpled n-cubes C (n > 5) of Type 2 can be sepa-
rated into two classes, those for which C Urg C = S" (where Id denotes the identity
sewing) and those for which C Uy C # S™. For definiteness, we say that the
crumpled n-cubes in the first class are of Type 2A and those in the second class are
of Type 2B. Suppose now that the crumpled n-cube C is embedded in S™ so that
S”™ - Int C is an n-cell. It follows from Theorem 10.1 [14] that C is of Type 2A if
and only if Bd C contains a 0-dimensional Fy set F such that demSnF =0 and

F UInt C is 1-ULC. Thus, the distinction between crumpled cubes of Type 2B and
Type 3 are found in dimension theory but not in demension theory (because in either
case, if F C Bd C satisfies F y Int C is 1-ULC, then demggqcF > n - 3 and
demSnF > n - 2), while the distinctions among Types 1, 2A and 2B are found in

demension theory but not (entirely) in dimension theory. Such limitations on the
applicability of demension theory to this context appear intrinsically connected with
the difficulties encountered in seeking Type 3 crumpled n-cubes.

3. IDENTIFICATION OF CRUMPLED CUBES OF TYPE 1

As suggested in the introduction, the information from this section vital for
later applications is set forth in Corollary 3.4, a reproduction of a result due to
Ancel and McMillan [2, Theorem 2], slightly reformulated and given with a de-
creased dimension restriction. Their result depends on the criteria of [13] for
identifying Type 1 crumpled n-cubes (n > 6) and Theorem 3.3 here improves a por-
tion of those criteria by lowering the dimension restriction to n > 5.

The fundamental technical result, comparable to Lemma 1 of [13], is given by
Lemma 3.1 below. It should be emphasized that a PL triangulation of a sphere Z in
S"™ endows Z with a structure in no way presumed to be consistent with preassigned
structures on S™ or Z. It should also be admitted that we abuse notation somewhat
by allowing R(2) to stand for the underlying point set of the 2-skeleton of a triangu-
lation R.

LEMMA 3.1. Suppose Z is an (n - 1)-spheve in S™ (n>5), W is a component of
S® - T such that theve exist PL tviangulations R of Z of arbitvavily small mesh for
which #4 W - R(2) is 1-ULC, f: A2 — &0 W is a map such that £(3/A%) C W, and
€ > 0. Then theve exists a map £': A% — €L W and theve exists a PL triangulation
T of Z such that

(i) £']an2 = flan2,
i) p(t, £) <s,
(iii) mesh T < ¢,
(iv) £ N TR = @ and
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(v) the diameter of each component of f'(A2) N T is less than €.

Prvoof. By [1, Corollary 2C.2.1] we can assume that f-}(f(A2) N ) is 0-dimen-
sional.

Step 1. Determine 6 > 0 such that any 8-subset of £ is contained in an open
(n - 1)-cell of diameter less than £/10. Cover f () by a finite collection of pair-
wise disjoint open 2-cells Y, +--, Yy in Int A2 so small that diam £f(Y;) < 6. We

shall obtain an approximation to f coinciding with f off UYi such that the images
of the Y;’s are pairwise disjoint. To begin, approximate f by a map s: A2 — 8"
such that

(1) s|az - Uy, = 122 - Uy;,

(2) p(s, £) < g/10,

(3) diam s(Y;) < 6,

(4) s(Yy) ns(Y;) = @, for i#j.

Now to employ the operative hypothesis, choose @ > 0 such that

(5) a < (p(s(Y1) N Z, s(Y;) N 2))/3, i#]j,
and then name a triangulation T of Z such that

(6) mesh T < min {«a, £/10},

(1) €2 w - T(2) is 1-ULC.

Step 2. Let X denote the component of A2 - s-1(Z) containing 9A2. Apply the
Tietze Extension Theorem to cut s(Y;) off on an (¢/10)-cell in T, obtaining a map
t: A2 - €4 W such that

(8) t|X = s|X (implying t|AZ - Uy, - f|AZ - UYi),

(9) diam t(Y; < 2¢/10,

(10) p(t, £) < 3¢e/10,
(11) t-I(z) = A% - X.

To improve the situation as much as possible, we can assume that t A% - @0 X
is locally piecewise linear as a map into 2 and in general position with respect to T
so that (A% - w2 X) Nt~1(T(2)) is a locally finite subset of A% - @ ¢ X.

Step3. For i=1, ---, k let R; = Uj¢i St(s(Y;) N Z, T) and let
Q; = St(s(Yp n Z, T).

Restrictions on @ and T were structured so that
(12) QiNR; =@ and Qi NQ;=¢@, fori#j.
For i =1, ---, k there exists a compact 2-manifold (with boundary) H; such that
(13) Y; N FrX C Int H; C H; C Y;,
(14) teHyY n T(2) = @,
(15) t(H;) N = C Int Q;.
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Approximate t by a map u: A2 - ®L W to send LJH-1 into the compliment of
T(2), Specifically, u satisfies

(16) p(u, f) < 4e/10,

(17) diam u(Y,) < 4¢/10,

(18) u|aZ - UHi = t|A? - UHi,
(19) wW(H) N = C Int Q; - T(2),

Now define B; as Y; - (H; UX). In the first derived subdivision T' of T, let
T* denote the subcomplex dual to T(2), thatis, T*={0 € T': 0 N T(2)} = @. After

another slight general position adjustment to u| U B; such that u(B;) N T* = @, we
deform u(B;) N R; across the join structure of T' into T (2) UBd R;, defining a
map v: A2 5 %IZW such that

(20) v[AZ - UBi = ulAZ - UBi,

(21) (UB ) c z,

(22) p(v, u) < mesh T < ¢/10 (implying p(v, f) < 5¢/10),
(23) diam v(Y;) < 6¢/10,

(24) v(By) N Int R; c T},

Step 4. Conditions (24), (19) and (20) 1mp1y that v(€¢ B;) N v(H ) =@, i+ j, and
conditions (12), (19) and (20) imply that v(H;) N v(H;) = @, i + j. Consequently, the
remaining concern is to make the images of the B;’ s be disjoint.

Without changing v off U B;, we can assume again that v[ U B; is locally
piecewise linear as a map into Z and is in general position. Since dim >4 and
since v(Bd B;) N v(&L B;) = @ for i <j, v(Bl) N v(B;) is a finite set, which we
enumerate as v(B;) N v(B ) = {lek k=1, -+, m(, ]f i <j}. Furthermore, there
exists a mutually excluswe family {Nljk} (indices ranging over all possible i, j, k) of

compact, PL neighborhoods of P1 k» respectively, intersecting Umv(B ) only in
v(B;) U v(Bj), for which there ex1st homeomorphisms of Njji into (n - 1)-space
carrying N ik N v(B;) and Njj; N v(B;) into 2-dimensional hyperplanes. Since we

can require that v \ A2 - U B; ) N © separates no open set in Z (either routinely

forcing v (AZ - U B; ) to be 2-dimensional or using [10] to make

1
v (AZ -U Bi> nz
be 1-dimensional), there exists a homeomorphism ® of T onto itself such that

(25) @IEOV(AZ—UBi) = 1|Eﬂv<A2-UBi),
(26) p(@®, 1|Z) < mesh T < &/10,
(27) @50 N T = (N, N v(By)).

Now we define a map w of A2 into €4 W as

wiaz-Us, =v|a2-Us, anda w|UBs,=wv|UBs,.
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Clearly,
(28) p(w, v) < €/10 (implying p(w, f) < 6£/10),
(29) diam w(Y;) < 8¢/10.
Since 4 W - T(2} is 1-ULC, there exists a map g of AZ into ¥4 W such that

(30) g|AZ - UBi = w|AZ - UBi
(31) p(g, w) < £/10 (implying p(g, f) < €),
(32) diam g(Y,) < ¢,

(33) g|B; - w-! ( U{Nijk: i <j}) = w|Bj - w-! ( U{Nijk: i <j}> ,
(34) g(B; N w-1(Ny5)) € (N1 - ),  i<j.

The relevance of this rearrangement scheme is displayed by conditions (27), (33)
and (34), which imply, for i < j, that

(35) g(B; N wl(Ny5)) € O(N;j) - w(By) € Z - g(By)
and which combine with condition (25) and the definition of w to yield
(36) g(B)) ng(Hy) = gB) nv(Hy) =B, i#j.

It follows then that the sets g(Y;) N Z are pairwise disjoint sets of diameter less
than €.

Finally, again because €4 W - T2} is 1-ULC, there exists a map
£': A2 — w2 w - T2

approximating g so closely that, as required,
(37) pg, £) < ¢,

38) )22 - Uy, = t]a2- Uy,
(39) £(Y) N (Y N2z =9, 1i=#]j,
(40) diam £'(Y;) < €.

LEMMA 3.2. Under the hypotheses of Lemma 3.1, theve exists a map g of A2
into €L W such that plg, f) < £ and demsg(A?) N Z < 0.

Proof. The map g results as the limit of a sequence of maps g;, obtained from
Lemma 3.1, subject to controls that force g(A2) N = to be 0-dimensional and such
that for each positive integer i there exist triangulations R; of 2 of mesh less than
1/i whose 2-skeleta do not intersect g(A2). Thus, demy g(A%) N Z <n - 4, imply-
ing that demsy g(A2) N £ < 0 [15,21]. Further details of this and of the next theorem
are given in [13]. The proof of the next theorem in case n =4 is left for the reader
to establish directly.

THEOREM 3.3. Suppose Z is an (n - 1)-spherve in S™ (n> 4) and W is a
component of S™ - . Then theve exist PL triangulations R of Z of avbitvarily
small mesh for which 4 W - R(2) is 1-ULC if and only if theve exists a subset F
of Z such that demx F =0 and F UW is 1-ULC.

In contrast with [13, Theorem 4], unresolved is the question whether the condi-
tions stated in Theorem 3.3 are equivalent to the existence of PL triangulations R
of ~ having arbitrarily small mesh whose 2-skeleta are tame in S™.
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COROLLARY 3.4. Suppose C is a crumpled n-cube (n>5) with Bd C = Z,
and F is a 0-compactum in Z such that demyF <n-4 and F U Int C is 1-ULC.
Then C is of Type 1; that is, theve exists a o -compactum F' in T such that
demy F' < 0 and F' U Int C is 1-ULC.

Proof. It suffices to obtain triangulations R of T of arbitrarily small mesh for
which Int C is 1-ULC in C - R(z), and since Int C is 1-ULC in F U Int C, it suf-
fices to obtain triangulations R of Z of arbitrary small mesh such that

RENF = ¢@.

Fix € > 0, and let T denote a triangulation of = of mesh less than &/3; according
to [15, Prop. 2.2], there exists an (¢/3)-homeomorphism H of = onto itself such
that H(T(2)) n F = @ and H(T) = {H(0): ¢ € T} is a triangulation of % of mesh less
than &€ whose 2-skeleton avoids F, as desired.

4. APPROXIMATIONS BOUNDING CRUMPLED CUBES OF TYPE 1

The results of this section culminate in Lemma 4.3, which for the proof of the
main lemma here permits reduction of the original problem to a simpler case, by
showing that any (n - 1)-sphere Z in S™ contains Sierpifiski curves X such that
every (n - 1)-sphere Z' containing X that is locally flat modulo X and that is a
sufficiently close approximation to Z bounds crumpled n-cubes of Type 1. The
examples in [12] of crumpled n-cubes not of Type 1, bounded by spheres that are
locally flat modulo Cantor sets, show why the Sierpifiski curves X must be so care-
fully constructed.

LEMMA 4.1. Let F be a k-dimensional Fy setin S, where k <q-3and
q > 4. Then S9 contains a countable collection {C,} of Cantor sets such that

dem . UCi =0 and each compactum K in F - U C; satisfies dem q K<k
S S
Proof. Choose a sequence of triangulations {Tm} of S9 such that T+ isa

subdivision of T, and the mesh of T, is less than 1/m. Since q > 4, the 1-skeleta
of all the T, ’s can be isotopically adjusted so as to miss F, making the intersection

of F with each Tg) be O-dimensional. There exists a family {Ci} of tame Cantor
sets in 59 such that U C; contains U n T(2)).

Any compactum K in F - UCi then is contained in S9 - TSIZI) for m=1, 2, -,
implying that demsql K < q - 3. Hence, dequK <dim K <k.

LEMMA 4.2. Let T denote an (n - 1)-spheve in S™, F a subset of T such that
each component U of S™ - Z §s 1-ULC in U UF, and X a compact subset of Z.
Then theve exists a continuous function 6: = — [0, 1), with X = 6-1(0), such that for
any embedding e of X in SM satisfying

(i) p(z, e(z)) < 8(z)  for each z € Z,
(ii) e(Z) is locally flat modulo e(X) = X,
each component U* of S - e(Z) is 1-ULC in U* U (F N X).

Proof. Let Uy and U, denote the components of S™ - Z. Choose points
po € Up and p; € U; and define W as S™ - (X U {py, p; })- The map 6: = — [0, 1)
will be obtained so that any embedding e satisfying condition (i) will have
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e(Z) € Z U W, among other properties. For any such embedding e, we shall let U;‘

denote the component of S™ - e(Z) containing U;-W, j= 0, 1. It will suffice to de-
scribe how to limit the mapping 6 so that U} is 1-ULC in UJ U (F N X).

There exists a neighborhood V of Z - X, with V C W, such that one can con-
struct a deformation d;: T UV — £ UW such that dg = 1|Z UV, d4,|Z = 1|3,
d,(V) CW, and d; is a retraction of V to Z - X. Let g; represent the deformation
of 24Uy, UV in #¢ U, UW defined by

g |€L Uy = 1|€0U, and g|V-Uy=d]|V-TU,.

Fix a map 0: = — [0, 1), with X = 6-1(0), such that, whenever e is an embedding of
% in S™ satisfying condition (i), then e(X) € £ U V and the “straight line” homotopy

Y, (z) = (1-t)z +te(z)/[|(1 - )z + te(z)

between the inclusion and e yields ¥,(Z - X) c V. (Here S™ is regarded as a sub-
set of Entl),

Now suppose that e is an embedding satisfying conditions (i) and (ii). We shall
prove that U} is 1-ULC in U§ U (F N X). To that end, since e(Z) is locally flat
at each point of e(Z - X), it will suffice to show that U} is 1-LC in Uj U (F N X) at
each point of e(X) = X.

By variations to Borsuk’s Homotopy Extension Theorem, similar to those of [20,
pp- 31-32], there exists a deformation D;: ZU V — = U W such that Dy = 1|Z uv,
Dtle(Z) = 1|e(7_)), Di(V) € W and D; is a retraction of Z U V =e(Z)y V onto e(Z).
As before, define a deformation G, of #£ U§ U V into €2 Uf U W as

Gi|€eU8 = 1|%LUy and G|V - U = D |V - U§.

Consider any neighborhood N of a point x in X (it is most convenient for the
rest of the argument to employ neighborhoods of x in £ Uy UV = &{ UE)" U V).
There exists a neighborhood N' of x such that G, (N') C N, there exists a neighbor-
hood N" CN' of x such that any loop in N" N U, is contractible in N' N (UO UupF),
and there exists another neighborhood N™ C N" of x such that g (N") C N" for
t € [0, 1]. Consider an arbitrary loop f: A2 — N" N U§. Then g, provides a
homotopy in N" - X between f and a loop f' in (N" - X) N &4 Up, and f' is homo-
topic in N" - X to a loop in (N" - X) N Uy, which in turn is contractible in
N'0 (Ug U F). These homotopies can be spliced to form a map m: A2 — N', ex-
tending f, such that m(A2) N X C F. Thus, G} m(A2) C N N &LU§, G m(A2)NXCF,
and Gy m IBAZ = f. Since e(Z) is locally flat modulo X, we can adjust the map G; m
in a collar on e(Z - X) so that G} m(A%) € N N (U, U (F N X)) to complete the proof.

A (q - 1)-dimensional Sievpifiski curve is a compact space X that can be em-
bedded in S?, say by an embedding h, such that the components of S? - h(X) form a
null sequence U,, U,, --- satisfying

(1) 8¢ - U;

(i) #LU; N ©LU;= @, i+j, and

(iii) the union of the U; is dense in 89.

is a g-cell for each i,

Cannon has shown [6] that any two (q - 1)-dimensional Sierpifiski curves are homeo-
morphic {q # 4). We say that an embedding h of a {q - 1)-dimensional Sierpifiski
curve X in S9 is standard if the closure of each component of S? - h(X) is a
q-cell.
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LEMMA 4.3. Let X denote an (n - 1)-spheve in S® n > 5, and let € > 0.
Theve exists an (n - 2)-dimensional Sievpifiski curve X in T such that X is stand-
avdly embedded in T and each component of ~ - X has diamelev less than €, and
therve exists a continuous function &: T — [0, 1), with X = 6-1(0), such that for any
embedding e of Z in SU satisfying

(i) p(z, e(z)) < 6(z) for each z € Z,
(ii) e(Z) is locally flat modulo e(X) =X,
the spheve e(Z) bounds two crumpled n-cubes of Type 1.

Proof. By [10, Theorem 2] Z contains a 1-dimensional Fs set F such that
each component U of S® - £ is 1-ULC in U U F. By Lemma 4.1 £ contains a

countable collection {C.} of Cantor sets such that demy U C; =0 and each com-
pactum K in F - UC satisfies demyK < 1. Because any (n - 2)-dimensional

Sierpifski curve in = can be isotopically (relative to Z) pushed off U C;, Z con-
tains an (n - 2)-dimensional curve X such that X is standardly embedded in Z,

each component of 2 - X has diameter less than €, and X N ( U C;/ = @. One ap-
plies Lemma 4.2 to obtain the required map 6: Z — [0, €), with X = 5- 1(0), which
satisfies the conclusions of Lemma 4.2.

Consider then an embedding e of Z in S® such that p(z, e(z)) < 8(z) for each z
in £ and e(Z) is locally flat modulo e(X) = X. The restrictions of Lemma 4.2 insure
that each component U* of S™ - e(Z) is 1-ULC in U* U (F N X), where FN X is a

0 -compactum contained in F - UCi, yielding dem, (v F NX=demy FNX < 1.
According to Corollary 3.4, e(Z) bounds two crumpled cubes of Type 1.

5. A SHRINKING THAT RESPECTS NULL SEQUENCES

The first result in this section discloses a technical control useful for regu-
lating the squeezing of some arc fibers in n-dimensional annuli. The proof, which
will not be given here, retraces the rather lengthy argument for Theorem 5.1 of [14];
the reader who understands that argument should be able to fill in the supplementary
details required.

Before stating the Shrinking Lemma we should explain the terminology that
arises; a sewing h of crumpled n-cubes Cy and C; has the Mismaich Property if
and only if there exist sets FJ in Bd Cj such that F; U Int C; is 1-ULC, j=0, 1,
and h(Fy N F; = ¢. Pertinent 1niormat10n is given by Theorem 9.1 of [14] assert-
ing that, in case C( and C, are of Type 1 and n>5, Cg U, C; =S™ if and only if h
has the Mismatch Property.

LEMMA 5.1 (Controlled Shrinking Lemma) Suppose w: SP-1x1 —8n (n>5)
is an embedding; X is a compact subset of St-1 (without loss of genevality,
w(sn-t x {0, 1}) is locally flat modulo w(X x {0, 1})); C; is the closed n-cell-
complement in S™ - w(SP-1xX 1/2) bounded by w(Sn-1 x ]) j =0, 1; the natural ho-

meomorphism w( <s, 0>) — w( (s, 1>)f'rom Bd C; fo Bd C; has the Mismalch
Property; and {Z,}5, is a null sequence of compact subsets of S - w(X X I).

Then for each € > 0 and each open set U containing w(X X I) there exists a
homeomorphism @O of ST to itself such that

(i) ®|s*-U =1|s"-U
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(ii) diam®w(x X I) <& for each x € X,

(iii) for each point p € S® such that ©(p) # p, therve exists Xy, € X such that
{8(p), pj C Nglwlx,x 1)), and

(iv) either ©®|Z; = 1| Z; or diam ©(Z;) <& for i=1, 2,

The Controlled Shrinking Lemma has direct application to a decomposition
theorem.

THEOREM 5.2. Suppose that for each i =1, 2, *** theve exist an embedding
wi: Sl x1 -8 (n > 5) and a compact set X, in 8"- L satisfying the hypotheses of
Lemma 5.1and such that {w (X; x I)}1 1 forms a null sequence of pairwise disjoint

sets. Let G denote the upper semzcontmuous decomposition of S™ whose set of non-
degenevate elements is {w (xxI:xe€ X.,1i=1,2, - }. Then the decomposition
space S*/G is homeomovphic to S™.

Proof. Fix a positive number €. There exists a large positive integer K such
that k > K implies diameter wk(Xk X I) < £. Choose pairwise disjoint open sets U;
contalnlng w; (X xI), j=1, ---, K. Apply the Controlled Shrinking Lemma for

ji=1, -, K, with {2 = wgy; % 1)}1 1, to shrink the arcs of w;(X;x 1) to size less

than €/2 via a homeomorphism ® that is the identity outside U Uj . Then for each
g € G, diam O (g) < ¢, and, in addition, it is easily verified that there exists g' (de-
pending on g) such that g U ®(g) C Ng(g'). This establishes a variation to what is
often called Bing’s Shrinking Criterion, introduced by R. H. Bing and studied in re-
lated form by many others, and implies that S®/G is homeomorphic to S™ (cf. the
discussions of [19, pp. 287-288] and [8, p. 92]).

6. REEMBEDDINGS OF CRUMPLED n-CUBES

THEOREM 6.1 (Reembedding Theorem). Lef C denote a crumpled n-cube in
S™ (n > 5). Fov each & > 0 theve exists an embedding h of C in S™ such that
p(h, 1]C) <¢ge and S"™ - h(Int C) is an n-cell,

Imitating the proof for the 3-dimensional case, we derive this result through
the Main Lemma, stated below.

6.2. MAIN LEMMA. Let C denote a cvumpled n-cube in S™ (nZ 5) with
2 =Bd C, and let € denote a positive number. Then theve exists an embedding f of
Z in S® such that p(t, 1|Z) < & and theve exists an embedding h of C in S such
that p(h, 1|C) <& and h(C) N £(Z) = &.

For a detailed argument establishing Theorem 6.1 as a consequence of the Main
Lemma, see Theorem 2 of [17]. The idea can be simply expressed: embed C as the
limit h of a sequence {h } of embeddings prov1ded by the lemma; simultaneously
obtam a sequence {f;} of embedings of £ = Bd C homeomorphmally w1th1n 1/i of

h; _;(Bd C); design epsﬂomc controls to yield not only that h(C) N £;(Z) = @ for all i
but also that p(f;, h|Bd C) < 2/i. It will then follow that S - h(C) is 1—ULC, im-
plying that the closure of S® - h(C) is an n-cell ([1] or [18, Theorem 5]).

A fundamental step in the proof of the Main Lemma involves an application of
the following weak form of the Main Theorem:

6.3. WEAK FORM OF REEMBEDDING THEOREM 6.1. Suppose the (n - 1)-
spheve Z in S (n >5) bounds two crumpled n-cubes K, and K, of Type 1. Then
for each € > 0 theve exists an embedding h of Ky in S™ such that p(h, 1|K0) <eg
and S™ - h(Int Xg) is an n-cell.
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Bryant, Edwards, and Seebeck [5] and Stan’ko [24] essentially have proved Theo-
rem 6.3, with arguments that would establish much more general versions than the
weak form stated here. For completeness we provide, in an appendix, still another
proof of 6.3, closely aligned in spirit with the proof given in this section, but avoid-
ing most of its complexities.

Proof of the Main Lemma. The crux of the argument depends upon a somewhat
elaborate construction of a very special cellular decomposition G of S™. It is built
up in two stages, the first based upon Ancel and Cannon’s locally flat approximation
theorem and upon Price and Seebeck’s result that sufficiently close locally flat ap-
proximations are ambient isotropic, and the second based upon Theorem 6.3.

A preliminary decomposition. Set €'=¢/12. Then there exists a Sierpifiski
curve X in Z such that X is standardly embedded in £ and the components of
Z - X have diameter less than €', and there exists a continuous function
6: = — [0, €') with the property stated in Lemma 4.3. Let V denote an open subset
of S™ suchthat VN Z =2 - X. By the locally flat approximation theorem of [1],
there exists an embedding e of £ in Z U V such that e|X = 1, p(z, e(z)) < 6(z) for
each point z of Z, and e(Z) is locally flat modulo e(X) = X. In addition, it follows
from Theorem 3 of [18] that e can be chosen so close to the inclusion that there
exists a pseudoisotopy ®; of S™ onto itself such that ®, = identity,

0,.s"-v=1[s"-V,

p®y,®,) <e' and ®; e = 1|Z; furthermore, by brute force or by [19, Theorem A]
one can require that every nondegenerate inverse set ®I1(p) intersects e(Z - X).
Define a decomposition G' of S" as G' = {@il(p): p € S*}, and note that

diam g' < 2¢' for each g' € G'.

The decomposition G. According to Lemma 4.3, e(Z) bounds crumpled n-cubes
C4 and C¥ of Type 1, with the notation arranged so that ®,(Cg) = C. By Theorem
6.3, there exists an £'-homeomorphism v, of C{ in S such that S" - v,(Int CJ) is
an n-cell. Similarly, there exists an embedding v; of C} in S™ - v(C{) such that
S™ - (vo(Int C§) U v;(Int C})) is homeomorphic to T X I; in particular, one can de-

onto
scribe a homeomorphism w: & X I ——> S™ - (vo(Int C§) U v, (Int C}) such that

the composition

© (VJ-Ie(Z‘))'1
T —————> I xj——> 0(Zxj) = v;(Bd C}) ———> e(2)

coincides with e' for j =0, 1. A significant feature here is that, although v, can be
obtained close to the inclusion, one cannot expect a priori to obtain simultaneously
v, close enough to the inclusion so as to have the fibers of w be very small.

Define C; = Vj(Ca-k) for j =0, 1. Define a map m of S" onto S" in the obvious
manner to squeeze out the arc fibers of the annulus w(Z X I); that is, m C; = vj'l for
j=0,1 and mw(z XI) = e(z) for z € =. Now define the decomposition G of S? as
G = {(@:1 m)-1(p): p € SP}. The nondegenerate elements of G consist of arcs
w(x X I) where x € X and other sets of the form

w(z XI) U volg' N CH U vy (g' N Ci"),
where g' N e(Z) = e(z) for some z € T - X and g' € G'. Recalling that vy moves

points of Cﬁ less than ¢', one sees that diam vgy(g' N Cg) < 4¢' for each g' € G and
that, as a result, diam (g N Cy) < 4¢' for each g € G.
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The embedding f. Since m|Cy = vg! |VO(C8) is an ¢'-embedding, there exists
r € (0, 1) such that the composition

m |Bd C, o-1
WEX1) ————> 0(ZX0) ——> e(Z) ——— > =

is a 3 €'-homeomorphism. The required embedding f of Z in S™ is simply the
inverse.

The modified decomposition G*. Enumerate the closures of the components of
Z -X as Dy, Dz, *-. Inthe n-cell B =8" - Int C, thicken the cells w(D; X 0)
slightly to produce a null sequence of {Bi} of n-cells satisfying

B, c w(Z x [0, r)) c S” - £(2),

B; N BdCy = B; N w(Zx0) =w(D;x0),
B; N B; =@, i#ij,

diam B, < 5¢',

(B, B;) is homeomorphic to (B", B}).

This final condition, which carries the usual connotation that some homeomorphism
of B to B" takes B; onto B}, resolves the insistence woven into Section 4 that X
be standardly embedded in Z; by way of application, one can construct manually
homeomorphisms ¢; of S™ onto itself such that for i =1, 2, -, q'>i|CO = 1|CO and
¢;(g N Int B) C Int B; for each g € G such that g N Bd Cy C w(D; X 0).

Let G* denote the upper semicontinuous decomposition of S™ having for its

nondegenerate elements the set Ui {¢i(g): g is a nondegenerate element of G and
gN Bd Cy € w(D; x 0)}.

The equivalence of S™ and S™/G*. Consider the decomposition G** of S®

whose set of nondegenerate elements if Ui {qbi w(zXI:z € Di}- According to the

application (Theorem 5.2) of the Controlled Shrinking Lemma, the decomposition
space S"/G** is homeomorphic to S®. Let F: S — S™ denote a map realizing this
equivalence and let F(G*) denote the decomposition F(G*) = {F(g*): g* € G*}.
Here it is important to recognize that each nondegenerate element of G** is con-
tained in an element of G*. Clearly then S”/F(G*) and S"/G* are equivalent.
Furthermore, S" /F(G*) is related to our preliminary decomposition space S"/G',
as follows: for i =1, 2, --- there exists an open set V] in V, containing all of the
nondegenerate elements of G' that meet e(D;), such that V{ and VJf are disjoint,

i#j,and ¢;m 1(V;) C Co U Int B;. Each F¢; m-1|V] is an embedding of V| in S®,

all of which generate a composite embedding F¢m -1 |V' of V'= UVI' in S™ that in-
duces a bijective correspondence between the nondegenerate elements of F(G*) and
that extends to an embedding of e(Z) U V' into S™. Thus, F(G*) restricts to a cel-
lular decomposition of F¢m-1(V') that yields a manifold, and, because the non-
degenerate elements get small near the frontier of Fém-1(V'), Theorem A of [19]
(see also [8, Theorem 62]) implies that S®*/F(G*) is homeomorphic to S®. There-
fore, S®/G* and S™ are equivalent.

The embedding h. Observe that for each nondegenerate element g* of G* there
exists an integer i such that g* C (g* N Cp) U B; C Nj5.+(g* N Bd Cy), implying that
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diam g* < 10¢', and recall that restrictions on B; imply g* N £(Z) = P. By State-

ment 1 of [19, p. 287] or, alternatively, Theorem 62 of [8], there exists a 10€'-map
7 of S® onto itself such that 7 |£(Z) = identity and G* = {7-1(p): p € SP}. The re-
quired embedding h of C in S" is defined as h = 71(6; m|Cy)~1 Then

p(h’ 1C) < 128" = ¢,

completing the proof.

COROLLARY 6.4. For n>5 each crumpled n-cube is a closed n-cell-
complement.

COROLLARY 6.5. For n > 5 the n-cell B" is a universal cvumpled n-cube;
that is, for any crumpled n-cube C and any sewing s of C and B™, C U B" is
homeomorphic to S™.

COROLLARY 6.6. Suppose that B is an n-cell in S™ (nZ 5) and G is an
upper semicontinuous decomposition of S™ such that S*/G is homeomorphic to S™
and each g € G intevsects Bd B in at most one point. Then for the decomposition

G of S™ having as its nondegenevrate elements the set
{g N (8™ - Int B): g is a nondegenerate element of G},
the decomposition space Sn/é is homeomorphic to S™.

At present, whether Corollary 6.6 holds when B is a crumpled n-cube rather
than an n-cell is an unresolved problem.

COROLLARY 6.7. Suppose that C is a cvumpled n-cube and n > 5. Then
there exists an uppev semicontinuous decomposition G of the n-cell B"™ such that
each nondegenevrate element g of G is a lame avc intevsecting sn-1 = Bd B® in an
endpoint of g and such that B*/G is homeomovphic to C.

Proof. Assume that C is embedded in S™ so that S™ - Int C is an n-cell. Then
there exists an embedding w of Bd C X [0, 1] in S™ - Int C such that w(Bd C x 0) is
Bd C. Thus, C U w(Bd C X [0, 1/2]) is homeomorphic to B™ and the nondegenerate
elements of G correspond to the arcs w(z X [0, 1/2]) for z € Bd C.

COROLLARY 6.8. Suppose C is a crumpled n-cube in E" (n > 5). Then
E™/C X El i{s homeomorphic to En*l,

Proof. By Theorem 6.1 there exists an n-cell B in E™ such that E*/B is
equivalent to E*/C. The corollary then follows from work of Bryant [4].

APPENDIX

The weak form of the Reembedding Theorem (6.3) follows immediately, as be-
fore, from a weak version of the Main Lemma.

LEMMA. Let Z denote an (n - 1)-spheve in S™ (n > 5) that bounds two
crumpled n-cubes Kqy and K| of Type 1, and let € denote a positive number, Then
theve exists an embedding f of T in S™ such that p({, IIE) < € and theve exists an
embedding h of Kgin S® such that p(h, 1|Ky) <€, h(Kg) 0 () = @, and
S™ - h(Int Kq) is of Type 1.

Proof. Choose a triangulation T of £ of mesh less than €' = ¢/6. By hypoth-
esis 2 contains an Fy set F such that demy, F =0 and F U Int K; is 1-ULC,

j =0, 1. Then after a small adjustment of T in ~ one can assume that

T(H—Z) N F = QS.
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Let 6: £ — [0, £') be a continuous function for which T(n-2) = 6-1(0), satisfying
the conclusions of Lemma 4.2, and let V denote an open subset of S™ for which
VNZ=3%-7TM-2) There exists an embedding e of £ in S™ such that

p(z, e(z)) < 6(z) for each z in =

and (%) is locally flat modulo e(T(?-2)) = T(n-2) [1] and by [18, Theorem 3] e can
be chosen sufficiently close to the inclusion that there exists a pseudoisotopy ®; of
S™ onto itself such that ®; =1, ®, [S™ - W=1|S" - W, p(@),8;) <&', ® e=1]|Z
and @1‘1 (p) is nondegenerate only if ®l‘1(p) intersects e(Z - T(n-2)), Define a de-
composition G of S™ as {@Il(p): p € S™}. Note that diam g < 2¢' for each g € G.

The sphere e(Z) is embedded such that S® - e(Z) is 1-ULC (Lemma 4.2), and
thus e(Z) bounds n-cells B' and B [9, 11, 18], where ©,(B') =K, and 8, (b) =K; .
The required locally flat embedding f of Z in S™ is just e followed by an &'-homeo-
morphism of e(Z) = Bd B onto a flat sphere in Int B.

Enumerate the closures of the components of Z - TM-2) g Dy, *-+, Dy, and
note that diam e(D;) < 3¢'. Determine n-cells By, ---, By in B such that
B; C B - £(2),

B; N Bd B = e(Dj),

B; N B; = e(D; 1 Dj), i#7j,

diam B; < 3¢,

(B, B;) is homeomorphic to (B", B}).

As before, for i =1, ---, k there exists a homeomorphism ¢; of S to itself such
that ¢;|B' =1|B' and

¢;(g) NInt B C Int B; for each g € G such that g N e(2) C e(Dy) .

Let G* denote the decomposition of S™ having as its nondegenerate elements

k
the set lJi:1 {¢.1(g): g is a nondegenerate element of G and g N e(Z) C e(Di)}.

Note that for each nondegenerate g* € G*, diam g* <5¢' and g* C S™ - f(£). Again
S™/G* is homeomorphic to S™ ([19, Theorem A] or [8, Theorem 62]); moreover,
there exists a 5¢'-map 7 of S™ to itself such that 7r|f(Z) = 1|f(’2) and

G* = {‘n"l(p): p € Sn} .

The required embedding of K, in S™ is defined as h = 7(®; |B")"L.

The proof that the crumpled n-cube S™ - h(Int KO) is of Type 1 is left to the
reader; the key to showing this is that h as defined extends over a neighborhood of

Ko - T(n-2) jp sn,
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