EXTRINSIC SPHERES IN KAHLER MANIFOLDS, II
Bang-yen Chen

1. INTRODUCTION

An n-dimensional submanifold M" of an arbitrary Riemannian manifold is
called an extrinsic spheve if it is umbilical and has parallel mean curvature vector
H # 0. In the first part of this series, we have proved that a complete, simply con-
nected, even-dimensional extrinsic sphere in any Kidhler manifold is isometric to an
ordinary sphere if its normal connection is flat. Moreover, we have proved that
there exist no complete orientable extrinsic spheres of codimension 2 in any posi-
tively (or negatively) curved Kihler manifold.

On the other hand, it is known that there exist complete extrinsic spheres of
codimension p > m in 2m-dimensional complex projective space P2m(C) and com-
plex sphere Q2™ . Since P2™(C) and Q2™ are Hermitian symmetric spaces of
rank 1 and 2, and Hermitian symmetric spaces are the most important class of
Kihler manifolds, it seems to be interesting to determine the codimensions of ex-
trinsic spheres in all irreducible Hermitian symmetric spaces. In this paper, we
shall study such codimensions.

We shall use the same notations as in the first:part of this series [8], unless
mentioned otherwise.

2. HERMITIAN SYMMETRIC SPACES

Let G/K be an irreducible Hermitian symmetric space with an involution 7,
and let g and I be the Lie algebras of G and K, respectively. Then the eigenvalues
of 7 as a linear transformation of g are 1 and -1, and I is the eigenspace for 1.
Let m be the eigenspace for -1. Then g =f+m, and m can be regarded as the tan-
gent space of G/K at the origin. This decomposition of ¢ is called the canonical
decomposition of g. On the Lie algebra g, the Killing-Cartan form ¢ is given by

¢(X,Y) =tr(adX -adY), where X,Y € g.

The restriction of ¢ to m defines a G-invariant Hermitian metric on G/K. It is
well known that every G-invariant Hermitian metric is Kihlerian and it is a constant
multiple of the Killing-Cartan form.

The irreducible Hermitian symmetric spaces have been classified (up to con-
stant multiples for the metric) by E. Cartan. Throughout this paper we shall assume
that the maximal (respectively, minimal) holomorphic sectional curvatures are 1
(respectively, -1) for the Hermitian symmetric spaces of compact (respectlvely,
noncompact) type. The dlmensmns Ricci tensors S metric tensors g, and their
holomorphic sectional curvatures H are given in Tables I and II [2, 7, 10]. We shall
follow the notations of Helgason [9] for Lie groups and Hermitian symmetric spaces.
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TABLE I. Irreducible Hermitian Symmetric Spaces of Compact Type
M dimension | rank S H
AIll SU(q+q')/S(Uq><Uq.), qa>q'>1 2qq"' q' %(q+q')§ 1>H>1/q
BDI SO(2 +q)/SO(2) x SO(q), q> 3 2q 2 —‘215 1>H>1/2
DII SO(2q)/Ulg), q>5 ala - 1) |la/2]} (@ - DE |1>H>1/[q/2]
1 ~ ~
Cr  Splg)/Ulg), q>3 ala+1) [ ¢ |5l@+tDE 1>H>1/q
EII  (eq(_7g) 50(10) + R) 32 2 3g 1>H>1/2
9. ~
EVII (e;(_133), ¢6 +IR) 54 3 5E 1>H>1/3
TABLE II. Irreducible Hermitian Symmetric Spaces of Noncompact Type
M dimension | rank S H
1 ~ ~
Al sU(q, q')/S(Ugx Ugn), q2>2q'>1] 2qq q' [3la+talg|-l<H<-1/g
BDI SO04(2, q)/S0(2) x SO(q), q > 3 2q 2 -%g 1<H<-1/2
DII SO*(2q)/U(q), q>5 alg - 1) {la/2]] 1 -qF [-1<HL-1/[a/2]
1 ~ ~
CI  Splg, R)/Ulq), q>3" ala+1) | ¢ [5(@+1g [-1<HL-1/q
EIN  (eg.14), $0(10) +IR) 32 2 -3g -1<H<-1/2
9~ ~
EVIL (e7(_z5), ¢ +IR) 54 3 58 -1<H<L-1/3

3. POSITIVELY OR NEGATIVELY CURVED KAHLER MANIFOLDS

Let M™ be an n-dimensional extrinsic sphere in a 2m-dimensional Kihler

manifold M2™ . Then by definition, the second fundamental form ¢ and the mean
curvature vector H satisfy

(3.1)

X, Y) = g(X, Y)H,

DyH =

0,

and H # 0,

for all vectors X, Y tangent to M™. Thus the covariant derivative of ¢ satisfies
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(3.2) (Vxo )Y, Z) = Dxlo(Y, Z2)) - cVx Y, Z) - o(Y,Vx Z) = 0.

~

Substituting this into the equation of Codazzi, we see that the curvature tensor R of
M2m gatisfies

~

(3.3) RX, Y;Z, £ =0

for all vectors X, Y, Z tangent to M"™ and £ normal to M".
On the other hand, since H is parallel and the second fundamental tensors com-
mute, the equation of Ricci gives
(3.4) R(X, Y; H, £) = 0.
Combining (3.3) and (3.4), we have
(3.5) R(X, JX; H, JH) = 0

for all X € TM" N J(TM"), where TM" is the tangent bundle of M" and J is the

complex structure of M2™ . Let K(X, H) denote the sectional curvature of M2™ on
the plane section spanned by X and H. Then (3.5) and the first Bianchi identity im-
ply the following.

LEMMA 1. Let M"™ be an extrinsic sphere in a Kahler manifold M2™ | Then
(3.6) K(X, H) + K(JX, H) = 0

Jor any vector X € TM"™ N J(TM").
From Lemma 1, we get immediately the following.

THEOREM 1. Let M2™ pe qa positively (or negatively) curved 2m-dimensional
Kihler manifold. Then M2?™ admits no extvinsic spheres of codimension p < m.

This theorem generalizes the corollary of [8].

For later use, we mention the following.

LEMMA 2. Let N, and N, be ovthonormal vectors in a Kihlev manifold M>™
such that g(N;, JN,) = 0. Then

~ "~ 1 ~ ~ ~

+H(N, - JN,) - H(N;) - H(N,)].

This lemma can be found in [6].

4. EXTRINSIC SPHERES IN HERMITIAN SYMMETRIC SPACES

Let M™ be an n-dimensional extrinsic sphere in a 2m-dimensional irreducible
Hermitian symmetric space MZ2™ | Then it is well known that the sectional curva-
tures of M2™ are nonnegative (respectively, nonpositive) if M2m is of compact type
(respectively, noncompact type). (See, for instance, [9, p. 205].) Let x € M™ and
V= Ti@JTj{ , where T)l{ denotes the normal space of M™ in MZ2™M at x. Then V
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is a complex vector space whose dimension is less than or equal to 2p = 4m - 2n.
We denote by 2s the dimension of V. Let Ny, ---, Ng, JN;, ---, JNg be 2s ortho-
normal vectors in V such that N; = H/|H| Then by Lemma 1, the Ricci tensor of
M2™ gatisfies

S

(4.1) S(N,, N)) = 22 [K(vy, N+ K(N,, IN)] + H(N,),
r=2

where ﬁ(Nl) denotes the holomorphic sectional curvature of M2™ at N, . Since
g(N;, JN,) =g(N;, N;) = 0, (4.1) and Lemma 2 imply

SNy, Ny % E (BN, +N_) + AN, - N,)

(4.2)
+ H(N, +JIN,) + HN, - IN,) - H(N,)].

LEMMA 3. Let M™ be an extvinsic spheve in a compact (vespectively, noncom-
pact) irreducible Hermitian symmetvic space of vank 2. Then

(4.3) H(X) = IN{(NI) =1 (respectively, -1),

wheve X is any unit vector in TM™ n J(TM™) and N, = H/|H|.

Proof. Let M™ be an extrinsic sphere in an irreducible Hermitian symmetric
space M2?™ of rank 2. Then Lemma 1 implies

(4.4) K(H, X) + KH, JX) = 0,
for any unit vector X € TM" N J(TM"). Thus Lemma 2 gives

(4.5) H(N] +X) + H(N; - X) + HN; +JX) + H(N; - JX) = HNp) + HX).

~

On the other hand, Tables I and II tell us that the holomorphic sectional curvature H
of M2™ js (1/2)-pinching. Thus, (4.5) implies (4.3).

LEMMA 4. Let M2™ be a compact (respectively, noncompact) ivveducible
Hermitian symmetvic space of vrank 2. Then

dim {X € T,M%™: |X| =1, HX) =1} =

(vespectively, dim {X € T, M%™: |X| =1, H(X) =-1} =m - 1) for x € M?™,

Proof. Let G = Io(ﬁzm) be the identity component of the group of isometry of
M?2™ and K its isotropy. Then M2™ = G/K. Let ¢ and f be the Lie algebras of G
and K, respectively, and let g = f + m be the canonical decomposition of g. Then
m can be regarded as the tangent space of M?2™ at the origin 0. Let 1 be the max-
imal abelian subspace of m. Then dim U = rank M2m =9, Moreover, every vector
X of M2™ at the origin can be mapped into a vector in 11 by the isotropy. The set

of unit vectors X in U with H(X) = 1 (respectively, -1) is discrete if M2™ is of
compact type (respectively, noncompact type). Thus

dim {X € ToM?™: |X| =1, HX) =1} =m -1
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(respectively, dim {X € ToM2™: |X| =1, H(X) =-1} =m - 1). Since M2m
symmetric, a similar result holds at every other point x € M2m

THEOREM 2. The Hevmitian symmelric spaces (eg (-78)s 30(10) +R) and
("'6( 14)» 30(10) + R) admit no extrvinsic spheves of codimension p < 8.

Proof. Since both (e¢(_7g8), 30(10) + R) and (eg(_14), $0(10) + R) are of rank
2, Lemmas 3 and 4 imply that dim(TM™ N J(TM")) < 16 for every extrinsic sphere
Mn. This shows that n < 28 and p > 8.

THEOREM 3. The Hermitian symmetric spaces SO(2 + m)/SO(2) X SO(m) and
S0(2, m)/S0(2) x SO(m) admit no extvinsic spheves of codimension p <4m/5 - 3.

Proof. If M™ is an extrinsic sphere of codimension p in
SO(2 + m)/S0(2) X SO(m),

then from Lemma 3 and (4.2) we get

SNy, N;) = Z) [H(N, +N_) +HN, - N,) + HN, +JIN,)
(4.6) %2

+H(N, - IN,) - HN,)].
Since s < p, Table I and (4.6) imply

5s + 3 5p + 3
g <" 8 °

m ~
5 = SNy, Ny) <

from which we get p> 4m/5 - 3. A similar argument applies to extrinsic spheres
in SO(2, m)/SO(2) X SO(m).

THEOREM 4. The Hermitian symmetvic spaces SO(2q)/Ulq) and SO*(2q)/U(q)
admit no extvinsic spheves of codimension p < q (respectively, p <q) for q> 6
(respectively, q =5, 6).

Proof. Let M™ be an extrinsic sphere of codimension p in SO(2q)/U(q), q > 5.
Then (4.2) holds for some s < p.

Case 1. If s > 5, Table I and (4.2) give
4(q/20q - 1) < (4[q/2] - 1)s - 4[a/2] + 6.

Combining this with p > s, we get p > q +(q - 6)/(4[q/2] - 1).

Case 2. If s =p <5, then Table I and (4.2) imply p > 29/5, which is a contra-
diction.

Case 3. If s<p-1 and s <5, then Table I and (4.2) imply

p > (4q[a/2] - 2[a/2] - 2)/B[a/2] - 1) > q.

Consequently, we get p > q for q > 6 and p> q for q =5, 6. A similar argument
applies to extrinsic spheres in SO*(2q)/U(q).

Remark 1. By arguments similar to the proof of Theorem 4, we may also prove
the following.
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(a) The Hermitian symmetric spaces (e7(_133), ¢ + R) and (e7(_25), ¢4 +IR)
admit no extrinsic spheres of codimension p < 6;

(b) The Hermitian symmetric spaces Sp(q)/U(q) and Sp(q, R)/U(q) admit no
extrinsic spheres of codimension p <q/2 + 1; and

(c) The Hermitian symmetric spaces
SU(q +q")/S(Ug X Ug) and SU(q, q')/S(Uq X Uq1), q>q'>2,

admit no extrinsic spheres of codimension p < q'{q +q')/(2q"' - 1).

Remark 2. I M2™ is an irreducible Hermitian symmetric space of rank £,

then M2™ admits extrinsic spheres of dimensions less than or equal to ¢ - 1 with
flat normal connection; namely, extrinsic spheres of maximal flat totally geodesic

submanifolds of M2™,

Remavk 3. Since an m-sphere can be isometrically imbedded in the complex
sphere Q2™ = SO(2 + m)/SO(2) X SO(m) as a totally geodesic submanifold, Q%™ ad-
mits extrinsic spheres of dimension n < m.
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