A CLASSIFICATION OF UNSPLITTABLE-LINK COMPLEMENTS

Wilbur Whitten

Several persons have recently given algebraic characterizations of tame knots and links in S³: (1) J. Simon characterized the type of a knot by the free product of two cable-knot groups [6]; (2) J. H. Conway and C. McA. Gordon characterized the type of an oriented knot by the free product of the associated group and the group

$$|\mu, \lambda, a, b : a^5 = 1, \lambda^{-1} a \lambda = a^2, b^7 = 1, \mu^{-1} b \mu = b^2, [a, b] = [\mu, \lambda] = 1$$

amalgamated along the peripheral subgroup $|\mu, \lambda: [\mu, \lambda] = 1|$ (μ is a meridian of the knot; λ , a longitude) [1]; (3) I characterized the (ambient) isotopy type of a link by the group of the link's "double" ([9], [10], [11]). Like mine, Simon's characterizing groups obviously have other geometric interpretations, but the proofs that these groups actually characterize knots and links are long and difficult, requiring the heaviest machinery in the theory of three-manifolds. On the other hand, though the Conway-Gordon groups have no *prima-facie* geometric interpretations apart from their knot-classifying properties, the proof that they characterize oriented-knot types is rather simple and is all algebraic until the end, when basic results of C. D. Papakyriakopoulos [5, p. 19, Theorem (28.1)(i)] and of F. Waldhausen [8, p. 80, Corollary 6.5] change algebra into geometry.

In this paper, roughly speaking, we adjoin copies of $\mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}_2$ along the peripheral structure of an *unsplittable* link's group to obtain a group characterizing the topological type of the link's complement. My proof, like Conway and Gordon's, is chiefly algebraic.

First, some preliminaries. All knots and links are oriented, and they are tamely imbedded in S^3 ; all links are unrestricted as to splittability, unless specified otherwise; all mappings are piecewise linear; and all regular neighborhoods, at least second-regular. Let L denote the link $K_1 \cup \cdots \cup K_m$, let V_i be a closed regular neighborhood of K_i (i = 1, \cdots , m), and assume that $V_i \cap V_j = \emptyset$, when i \neq j. Set $C(L) = S^3 - Int(V_1 \cup \cdots \cup V_m)$. For each of i = 1, \cdots , m, the inclusion map τ_i : $\partial V_i \to C(L)$ induces a homomorphism τ_i : $\pi_1(\partial V_i) \to \pi_1(C(L))$ determined up to an inner automorphism of $\pi_1(C(L))$, and τ_i ($\pi_1(\partial V_i)$) is determined up to conjugacy in $\pi_1(C(L))$; of course, we are assuming a fixed basepoint for each of $\pi_1(C(L))$ and $\pi_1(\partial V_i)$.

We define a special group $G^*(L)$ as follows. Let p be the basepoint of $\pi_1(C(L))$, and let p_i be the basepoint of $\pi_1(\partial V_i)$. To fix τ_{i_*} , we choose a path γ_i from p to p_i . Let $\{\mu_i, \lambda_i\}$ be a set of generators (in $\pi_1(C(L), p)$) of the free abelian group $\tau_{i_*}(\pi_1(\partial V_i, p_i))$, which is, of course, either of rank one or of rank two. If $\pi_1(C(L), p) = |X:R|$, set

Received September 29, 1975.

The National Science Foundation grant MPS 75-05258 partially financed this work.

Michigan Math. J. 23 (1976).

$$G^*(L) = |X, a_1, \dots, a_m : R, a_i^2 = [\mu_i, a_i] = [\lambda_i, a_i] = 1 \ (i = 1, \dots, m)|.$$

PROPOSITION. If L is a link in S^3 , then $G^*(L)$ is independent, up to isomorphism, of the choice of basepoints, connecting paths, and generating sets $\{\mu_i, \lambda_i\}$ (i = 1, ..., m).

Proof. After giving some preliminaries, we shall prove that

G*(L, p, p_i,
$$\gamma_i$$
, { μ_i , λ_i } (i = 1, ..., m)) \approx

$$G^*(L, p', p'_i, \gamma'_i, {\mu'_i, \lambda'_i}) (i = 1, ..., m)).$$

For each of $h = 1, \dots, m$, set

$$G_{h}^{*}(L) = [X, a_{1}, \dots, a_{h} : R, a_{i}^{2} = [\mu_{i}, a_{i}] = [\lambda_{i}, a_{i}] = 1 \quad (i = 1, \dots, h)],$$

set $\Gamma_i = \tau_{i_{\downarrow}}(\pi_1(\partial V_i, p_i))$ (i = 1, ..., m), and set

$$X_i = [\mu_i, \lambda_i, a_i : a_i^2 = [\mu_i, a_i] = [\lambda_i, a_i] = [\mu_i, \lambda_i] = 1$$
 or $X_i = [t_i, a_i : a_i^2 = [t_i, a_i] = 1]$,

depending on whether τ_{i_*} is or is not a monomorphism. If τ_{i_*} is a monomorphism, then $X_i \approx Z \times Z \times Z_2$; otherwise, $X_i \approx Z \times Z_2$, and $t_i = \mu_i^v \lambda_i^s$ generates the infinite cyclic group $\tau_{i_*}(\pi_1(\partial V_i, p_i))$. Evidently,

$$G_h^*(L) \approx (\cdots((\pi_1(C(L)) * X_1) * X_2) \cdots) * X_h.$$

Finally, with other basepoints p', p'_1, ..., p'_m, with other paths γ_1' , ..., γ_m' , and with other generating sets $\left\{\mu_i', \lambda_i'\right\}$ (i = 1, ..., m), we have $\pi_1(C(L), p') = |X': R'|$,

The proof is by induction on h. A path γ from p to p' induces an isomorphism $\alpha\colon\pi_1(C(L),\,p)\to\pi_1(C(L),\,p')$. Choose a path δ_1 on ∂V_1 from p_1 to p_1' . Conjugation of $\pi_1(C(L),\,p')$ by $\left[\gamma_1'\,\delta_1^{-1}\,\gamma_1^{-1}\,\gamma\right]$ yields an inner automorphism β sending $\alpha(\Gamma_1)$ onto Γ_1' and, in general, sending $\alpha(\Gamma_i)$ onto a conjugate of Γ_i' (i = 1, ..., m). If we define $\beta\alpha(a_1)=a_1'$, then $\beta\alpha$ extends to an isomorphism of $G_1^*(L)$ onto $G_1^*(L)$, as one can easily prove.

Suppose now that m>1, that $1\leq h< m$, and that there is an isomorphism $\alpha\colon G_h^*(L)\to {}^!G_h^*(L)$ taking $\pi_1(C(L),p)$ onto $\pi_1(C(L),p')$ and taking Γ_i onto a conjugate of $\Gamma_i^!$ ($i=1,\cdots,m$). Clearly,

$$G_{h+1}^*(L) = G_h^*(L) * X_{h+1}$$
 and $G_{h+1}^*(L) = G_h^*(L) * X_{h+1}'$.

Conjugation of 'G_h*(L) by an appropriate element of $\pi_1(C(L), p')$ yields an inner automorphism β of 'G_h*(L) taking $\alpha(\Gamma_{h+1})$ onto Γ_{h+1}' . If we define $\beta\alpha(a_{h+1}) = a_{h+1}'$, then $\beta\alpha$ extends to an isomorphism of $G_{h+1}^*(L)$ onto 'G_h*(L) such that

 $\beta\alpha(\pi_1(C(L), p)) = \pi_1(C(L), p')$ and such that $\beta\alpha(\Gamma_i)$ is a conjugate of Γ_i' (i = 1, ..., m).

Induction now implies that $G_m^*(L) \approx G_m^*(L)$. But

$$G_{m}^{*}(L) = G^{*}(L, p, p_{i}, \gamma_{i}, \{\mu_{i}, \lambda_{i}\}) (i = 1, \dots, m)$$

and

$${}^{'}G_{m}^{*}(L) = G^{*}(L, p', p_{i}', \gamma_{i}', \{\mu_{i}', \lambda_{i}'\} (i = 1, \dots, m)),$$

and so the proposition is proved.

THEOREM. If L is an unsplittable link, then the isomorphism class of the group $G^*(L)$ characterizes the topological type of C(L); that is, if L and L' are links and if L is unsplittable, then $C(L) \cong C(L')$ if and only if $G^*(L) \approx G^*(L')$.

Proof. Suppose that $\phi: C(L) \to C(L')$ is a homeomorphism. Then

$$H_1(C(L)) \approx H_1(C(L')),$$

and, because the number of components in a link is equal to the rank of the link-complement's first homology group, the links L and L' have the same number m of components. Clearly,

$$G^{*}(L, p, p_{i}, \gamma_{i}, \{\mu_{i}, \lambda_{i}\} (i = 1, \dots, m)) \approx$$

$$G^{*}(L', \phi(p), \phi(p_{i}), \phi(\gamma_{i}), \{\phi_{*}(\mu_{i}), \phi_{*}(\lambda_{i})\} (i = 1, \dots, m));$$

hence, by the proposition, $G^*(L) \approx G^*(L')$, and the necessity is established without, we note, requiring the unsplittability of L.

Now, let $G = \pi_1(C(L))$, and consider $G_h^*(L)$ (h = 1, ..., m). Because $G_1^*(L) = G * X_1$, elements of finite order in $G_1^*(L)$ are conjugates of elements Γ_1

belonging either to G or to X_1 [3, p. 208, Corollary 4.4.5]. Because G is torsion free [5, p. 23, Corollary (31.9)] and because $X_1 \approx Z \times Z \times Z_2$ or $X_1 \approx Z \times Z_2$, the nontrivial elements of finite order in $G_1^*(L)$ are precisely the conjugates of a_1 .

Suppose that m > 1, that $1 \le h < m$, and that the nontrivial elements of finite order in $G_h^*(L)$ are the conjugates of a_1, \dots, a_h . Then the nontrivial elements of finite order in $G_{h+1}^*(L)$ are just the conjugates of a_1, \dots, a_{h+1} , because $G_{h+1}^*(L) = G_h^*(L) * X_{h+1}$ and because each element of finite order in $G_{h+1}^*(L)$ is Γ_{h+1} in a conjugate of $G_h^*(L)$ or of X_h . Thus, induction implies that the nontrivial elements of $G_h^*(L)$ are of X_h .

in a conjugate of $G_h^*(L)$ or of X_{h+1} . Thus, induction implies that the nontrivial elements of finite order in $G^*(L)$ (= $G_m^*(L)$) are just the conjugates of a_1, \dots, a_m .

Remark 1. If L is not a trivial knot, then, because L is unsplittable, each homomorphism τ_{i} : $\pi_{1}(\partial V_{i}) \rightarrow \pi_{1}(C(L))$ (i = 1, ..., m) is a monomorphism, whence each $X_{i} \approx Z \times Z \times Z_{2}$. To prove this, one can construct an argument involving the combined Dehn lemma and loop theorem [7, p. 5, Theorem 1.B.2].

Before proving the sufficiency, we note one other property of $G^*(L)$: the subgroup X_i is the normalizer N_i of $|a_i:a_i^2=1|$ in $G^*(L)$. Denote $|a_i:a_i^2=1|$ by A_i . Clearly, $X_i\subseteq N_i$. Now, if $\langle a_i\rangle$ denotes the consequence of $\{a_i\}$ in $G^*(L)$,

then $G^*(L) = (G^*(L)/\langle a_i \rangle) *_i X_i$, and one can write each element of $G^*(L)$ uniquely

in the form $gc_1\cdots c_d$, in which $g\in \Gamma_i$, each c_k is a coset representative of Γ_i in $G^*(L)/\left\langle a_i\right\rangle$ or in X_i , no $c_k=1$, and c_k and c_{k+1} are neither both in $G^*(L)/\left\langle a_i\right\rangle$ nor both in X_i [3, p. 205, Corollary 4.4.1]. Hence, if N_i contains an element $f\not\in X_i$, then there are nontrivial coset representatives h_1 , ..., h_n of Γ_i in $G^*(L)/\left\langle a_i\right\rangle$ and there is an element $g\in \Gamma_i$ such that f can be written uniquely in exactly one of the following forms: $gh_1a_ih_2\cdots a_ih_n$; $gh_1a_i\cdots h_na_i$; $ga_ih_1\cdots a_ih_n$; $ga_ih_1a_i\cdots h_na_i$. Because of the normal form's uniqueness, it is easy to see that $fA_i\neq A_i$ f. Consequently, $N_i=X_i$.

Now, the sufficiency. Suppose that $\pi_1(C(L')) = |Y:Q|$ and that

$$G^*(L') = |Y, b_1, \dots, b_{m'}: Q, b_j^2 = [\mu_j', b_j] = [\lambda_j', b_j] = 1 \ (j = 1, \dots, m')|.$$

We assume the existence of an isomorphism $\psi_*: G^*(L) \to G^*(L')$.

For each of $i=1, \cdots, m$, there exists g_i in $G^*(L')$ such that $\psi_*(a_i) = g_i b_{j_i} g_i^{-1}$ for some j_i $(1 \le j_i \le m')$. Furthermore, because no two distinct a_i 's are conjugate [3, p. 212, Theorem 4.6(ii)] and because ψ_* is an isomorphism, ψ_* maps distinct a_i 's onto conjugates of distinct b_j 's; hence, $m \le m'$. Similarly, $m' \le m$, whence m = m' and $\langle b_1, \cdots, b_{m'} \rangle = \langle b_1, \cdots, b_m \rangle$. Moreover,

$$\langle \psi_*(a_1), \dots, \psi_*(a_m) \rangle = \langle b_1, \dots, b_m \rangle$$
,

and, because $\psi_*\langle a_1, \cdots, a_m \rangle = \langle \psi_*(a_1), \cdots, \psi_*(a_m) \rangle$ [2, p. 39, Theorem (1.1)], we have $\psi_*\langle a_1, \cdots, a_m \rangle = \langle b_1, \cdots, b_m \rangle$. Therefore, ψ_* induces a unique isomorphism

$$\Psi_*: G^*(L)/\langle a_1, \dots, a_m \rangle \to G^*(L')/\langle b_1, \dots, b_m \rangle.$$

But $G^*(L)/\langle a_1, \dots, a_m \rangle = \pi_1(C(L))$ and $G^*(L')/\langle b_1, \dots, b_m \rangle = \pi_1(C(L'))$; thus, we have the consistent diagram

$$G^{*}(L) \xrightarrow{\psi_{*}} G^{*}(L')$$

$$\eta_{1} \downarrow \qquad \qquad \downarrow \eta_{2}$$

$$\pi_{1}(C(L)) \xrightarrow{\Psi_{*}} \pi_{1}(C(L'))$$

in which η_1 and η_2 are the natural homomorphisms.

We know that each of L and L' has m components. If L is a trivial knot, then $\pi_1(C(L)) \approx Z$; hence, the diagram in the foregoing paragraph implies that $\pi_1(C(L'))$ is also isomorphic to Z. Consequently, L' is also a trivial knot [5, p. 19, Theorem (28.1)]; thus, $C(L') \cong C(L)$.

We now assume that L is not a trivial knot; clearly then, L' is also not a trivial knot. Because L is unsplittable, $\pi_1(C(L))$ is indecomposable (as a free product of nontrivial groups) [5, p. 19, Theorem (27.1)]. Because $\pi_1(C(L')) \approx \pi_1(C(L))$, the group $\pi_1(C(L'))$ is also indecomposable; thus, L' as well as L is unsplittable [5, $(loc.\ cit.)$].

Let K_1' , \cdots , K_m' denote the components of L', let V_j' be a closed regular neighborhood of K_j' ($j=1,\cdots,m$), and suppose that $V_i'\cap V_j'=\emptyset$, when $i\neq j$. We can assume that $C(L')=S^3$ - $Int(V_1'\cup\cdots\cup V_m')$. The inclusion map $\sigma_j\colon\partial V_j'\to C(L')$ induces a monomorphism $\sigma_j\colon\pi_1(\partial V_j')\to\pi_1(C(L'))$, because L' is unsplittable; cf. Remark 1. Set $\Omega_j=\sigma_{j_*}(\pi_1(\partial V_j'))$, and set

$$Y_{j} = [\mu'_{j}, \lambda'_{j}, b_{j} : b_{j}^{2} = [\mu'_{j}, b_{j}] = [\lambda'_{j}, b_{j}] = [\mu'_{j}, \lambda'_{j}] = 1$$
 (j = 1, ..., m);

we are assuming, of course, that we have chosen basepoints p' and p'_j, connecting path γ_j , and generating set $\{\mu_j', \lambda_j'\}$.

We have $\eta_1(X_i) = \Gamma_i$ and $\eta_2(Y_{j_i}) = \Omega_{j_i}$. Furthermore, the normalizer of $|b_{j_i}:b_{j_i}^2=1|$ in $G^*(L')$ is clearly Y_{j_i} . Thus, $\psi_*(X_i)=g_i\,Y_{j_i}\,g_i^{-1}$, because $\psi_*(a_i)=g_i\,b_{j_i}\,g_i^{-1}$. Consequently, $\Psi_*(\Gamma_i)=\eta_2(g_i)\,\Omega_{j_i}\,\eta_2(g_i^{-1})$, and so the isomorphism Ψ_* preserves the peripheral group system. Therefore, the hypotheses of Waldhausen's result—Corollary 6.5, p. 80 of [8]—hold, and we have $C(L)\cong C(L')$, completing the theorem's proof.

Remark 2. If L is unsplittable, then the isomorphism class of $G^*(L)$ characterizes the topological type of S^3 - L as well as the topological type of C(L), because S^3 - L $\cong S^3$ - L' if and only if $C(L) \cong C(L')$.

In conclusion, we note that $G^*(L)$ does not necessarily characterize C(L), when L is splittable; that is, there are splittable links L and L' for which $G^*(L) \approx G^*(L')$ but for which $C(L) \not\equiv C(L')$. For example, let K_1 and K_2 be trefoil knots, and let K_1^* be K_1^* 's mirror image. Suppose that $L = K_1 \cup K_2$, that $L' = K_1 \cup K_2^*$, and that each of L and L' is splittable. Evidently, $G^*(L) = G^*(K_1) * G^*(K_2)$ and $G^*(L') = G^*(K_1) * G^*(K_2^*)$; furthermore, our theorem implies that $G^*(K_2) \approx G^*(K_2^*)$. Hence, $G^*(L) \approx G^*(L')$.

On the other hand, $C(L) = C(K_1) \# C(K_2)$ and $C(L') = C(K_1) \# C(K_2^*)$, and each of the knot manifolds, $C(K_i)$ and $C(K_i^*)$ (i = 1, 2), is prime, because it is irreducible. Moreover, because K_i (i = 1, 2) is not amphicheiral and because the topological type of K_i 's complement determines the knot type of K_i , the knot manifolds $C(K_i)$ and $C(K_i^*)$ are not isomorphic; that is, there is no orientation-preserving homeomorphism of $C(K_i)$ onto $C(K_i^*)$. Thus, C(L) is not isomorphic to C(L') [4, p. 5, Generalization 1]. If there were an orientation-reversing homeomorphism of C(L) onto C(L'), then C(L) would be isomorphic to $C(K_1^*) \# C(K_2)$. Evidently, this is not true (see [4, loc. cit.]); hence, $C(L) \not\equiv C(L')$.

REFERENCES

- 1. J. H. Conway and C. McA. Gordon, A group to classify knots. Bull. London Math. Soc. 7 (1975), 84-86.
- 2. R. H. Crowell and R. H. Fox, *Introduction to knot theory*. Ginn and Co., Boston, 1963.
- 3. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory: presentation of groups in terms of generators and relations. Pure and Applied Mathematics, Vol. 13, Interscience Publishers (John Wiley and Sons, Inc.), New York, 1966.

- 4. J. W. Milnor, A unique decomposition theorem for 3-manifolds. Amer. J. Math. 84 (1962), 1-7.
- 5. C. D. Papakyriakopoulos, On Dehn's lemma and the asphericity of knots. Ann. of Math. (2) 66 (1957), 1-26.
- 6. J. Simon, An algebraic classification of knots in S³. Ann. of Math. (2) 97 (1973), 1-13.
- 7. J. Stallings, *Group theory and three-dimensional manifolds*. Yale Mathematical Monographs 4, Yale University Press, New Haven, 1971.
- 8. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large. Ann. of Math. (2) 87 (1968), 56-88.
- 9. W. Whitten, Algebraic and geometric characterizations of knots. Invent. Math. 26 (1974), 259-270.
- 10. ——, Characterizations of knots and links. Bull. Amer. Math. Soc. 80 (1974), 1265-1270.
- 11. ——, Groups and manifolds characterizing links. Knots, groups and 3-manifolds. Annals of Mathematics Studies 84, Princeton University Press, Princeton, N.J., 1975, 63-84.

Department of Mathematics University of Southwestern Louisiana Lafayette, Louisiana 70504