A CLASSIFICATION OF UNSPLITTABLE-LINK COMPLEMENTS
Wilbur Whitten

Several persons have recently given algebraic characterizations of tame knots
and links in S3: (1) J. Simon characterized the type of a knot by the free product of
two cable-knot groups [6]; (2) J. H. Conway and C. McA. Gordon characterized the
type of an oriented knot by the free product of the associated group and the group

N, a,brad=1 alax=a2, b7 =1, p~l by =b2, [a, b]=[u, 2] =1]|

amalgamated along the peripheral subgroup |;.L, ¢ [, Al 1[ ¢ is a meridian of
the knot; A, a longitude) [1]; (3) I characterized the (amblent) isotopy type of a link
by the group of the link’s “double” ([9], [10}, [11]). Like mine, Simon’s characteriz-
ing groups obviously have other geometric interpretations, but the proofs that these
groups actually characterize knots and links are long and difficult, requiring the
heaviest machinery in the theory of three-manifolds. On the other hand, though the
Conway-Gordon groups have no prima-facie geometric interpretations apart from
their knot-classifying properties, the proof that they characterize oriented-knot
types is rather simple and is all algebraic until the end, when basic results of C. D.
Papakyriakopoulos [5, p. 19, Theorem (28.1)(i)] and of F. Waldhausen [8, p. 80,
Corollary 6.5] change algebra into geometry.

In this paper, roughly speaking, we adjoin copies of Z X Z X Z, along the pe-
ripheral structure of an unsplitiable link’s group to obtain a group characterizing
the topological type of the link’s complement. My proof, like Conway and Gordon’s,
is chiefly algebraic.

First, some preliminaries. All knots and links are oriented, and they are
tamely imbedded in S3; all links are unrestricted as to splittability, unless speci-
fied otherwise; all mappings are piecewise linear; and all regular neighborhoods, at
least second-regular. Let L denote the link K; U --- U K,,, let V; be a closed
regular neighborhood of X; (i =1, --, m), and assume that V; N V; = @, when i # j.
Set C(L) =S3 -Int(V, U--- UV_). For eachof i =1, -*, m, the inclusion map
7;: 0V; — C(L) induces a homomorphism T; e : 71(8V;) — 7;(C(L)) determined up to
an inner automorphism of 7;(C(L)), and 7; (nl(aV )) is determined up to conjugacy
in 7T1(C(L)) of course, we are assuming a f1xed basepoint for each of 7,(C(L)) and

We define a special group G*(L) as follows. Let p be the basepoint of
71 (C(L)), and let p; be the basepoint of 7,(aV;). To fix 7; i,» we choose a path y;

from p to p;. Let {p;, 2;} be a set of generators (in 7,(C(L), p)) of the free
abelian group 'ri*(ﬂl(aVi, p;)), which is, of course, either of rank one or of rank

two. If m(C(L), p) = |X : R], set
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GYNL) = |X, 4, ", am: R, a%=[y;, a;] =y, 23]=1 (=1, -, m)].

PROPOSITION. If L is a link in 83, then G*(L) is independent, up to isomor-
phism, of the choice of basepoints, connecting paths, and generating sets {“i’ 7‘1}
(i = 1’ .., m).

Proof. After giving some preliminaries, we shall prove that
G*(L, p, Pis ¥ir 1His Aiy (=1, =+, m) =~
GML, p', b}, ¥}, {0, Aj} (=1, -, m)).
For eachof h=1, ---, m, set
Gh ) = |X, a;, ", 3, :R,a f=[u1,a]—[)\l,a] (i=1, -, h),

set I'j = Ti, (my(@V;, p;)) i=1, -+, m), and set

X; = ,ui,)ui,ai:a;?:[ui,ai]=[7\i,ai]=[ui,hi]=1| or X;= 'tixai- 12 [t;, a;] = I

depending on whether 'ri* is or is not a monomorphism. If 7, 1s a monomorphism,
%

then X; ~ Z X Z X Z,; otherwise, X; = Z X Z,, and t; (= u} r]) generates the infinite
cyclic group 7; (n;(@V;, p;)). Evidently,

Gr(L) = (- (@ (C(L) * X)) = X)) * X, .
I I Fp

Finally, with other basepoints p', py, ***, p,,,, with other paths y;, **, v, , and
with other generating sets {pi, A} (i=1, -+, m), we have 7 (C(L), p') = |x': R,
'GH(L) = |X', a}, ', aj, : R, aiz [u, all=[},all=1 (i=1, -, h)|,

1’
and I“i' = T'i*(nl(aVi, p;).

The proof is by induction on h. A path ¢ from p to p' induces an isomorphism
a: 71(C(L), p) — 7, (C(L), p) Choose a path 6; on 9V, from p; to p). Conjugation
of 7,(C(L), p') by [7’151 21 1y] yields an inner automorphlsm B sendmg a(I’y) onto
I'; and, in general, sending a(T;) onto a conjugate of I; i=1, -, m). If we define
Ba(a;) =a;, then Ba extends to an isomorphism of G*(L) onto 'G*(L), as one can
easily prove.

Suppose now that m > 1, that 1 <h < m, and that there is an isomorphism
a: Gf(L) — 'Gf(L) taking wl(C(L) p) onto w;(C(L), p') and taking I'; onto a conju-
gate of T (i =1, ---, m). Clearly,

* _ * 1~k ik
Ihia Th+1
Conjugation of 'G;';(L) by an appropriate element of 7,(C(L), p') yields an inner

automorphism g of 'G}(L) taking a(FhH) onto TI'y,;. If we define Ba(a, ) =2y,
then Ba extends to an isomorphism of Gh+1(L) onto Gh+1(L) such that
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Ba(r,(C(L), p)) = 7,(C(L), p') and such that Ba(T;) is a conjugate of T}
(i=1, -+, m).

. . . 1~ K
Induction now implies that G*m(L) ~ 'Gp(L). But

G;kn(L) = G*(L’ P, Pis ¥i>» {lui, Ai}‘ (i= 1, -, m))
and
1+ ¥ — ! [l 1 1 1 .
Gm(L) - G*(Ls P pi: Yis {lu'i » Ai} (1 - 1’ Ty m))’
and so the proposition is proved.

THEOREM. If L. is an unsplittable link, then the isomorphism class of the
group G*(L) characterizes the topological type of C(L); that is,if L and L' ave
links and if L is unsplittable, then C(L) = C(L') if and only if G¥(L) ~ G*(L").

Pyroof. Suppose that ¢: C(L) — C(L') is a homeomorphism. Then
H,(C(L)) ~ H(C(LY),

and, because the number of components in a link is equal to the rank of the link-
complement’s first homology group, the links L and L' have the same number m of
components. Clearly,

G*(L, B, Pis 7i» {U‘i; Ai} (i =1, -, m)) =
G*(Ll, d)(p), ¢(pi)’ ¢(7i), {¢*(“1), (p*o\]_)} (1 = 1’ T m)) >

hence, by the proposition, G*(L) ~ G*(L'), and the necessity is established without,
we note, requiring the unsplittability of L.
Now, let G = 7,(C(L)), and consider Gy(L) (h =1, ---, m). Because
G}(L) =G * X, elements of finite order in G}(L) are conjugates of elements
Iy
belonging either to G or to X; [3, p. 208, Corollary 4.4.5]. Because G is torsion
free [5, p. 23, Corollary (31.9)] and because X| ~ Z XZ X Z, or X; = Z XZ,, the

nontrivial elements of finite order in G}(L) are precisely the conjugates of a;.

Suppose that m > 1, that 1 < h < m, and that the nontrivial elements of finite
order in G’;(L) are the conjugates of a;, -, a;. Then the nontrivial elements of

finite order in G’;H(L) are just the conjugates of a;, ***, ap,|, because
G’flJrl(L) = GE(L) * X, ., and because each element of finite order in G>}|;+1(L) is

Iy
in a conjugate of G’{‘I(L) or of X, ,;. Thus, induction implies that the nontrivial ele-

ments of finite order in G*(L) (= G’fn(L)) are just the conjugates of a;, -+, a,,.

Remark 1. I L is not a trivial knot, then, because L is unsplittable, each ho-
momorphism Ti,C 7,(av;) = 7,(C(L)) (i=1, ---, m) is a monomorphism, whence

each X, ~ Z X2 X2, . To provethis, one can construct an argument involving the
combined Dehn lemma and loop theorem [7, p. 5, Theorem 1.B.2].

Before proving the sufficiency, we note one other property of G*(L): the sub-
group X; is the normalizer N; of [ai: ai2 = lf in G*(L). Denote |a-1: aiz = 11 by
A;. Clearly, X;C N;. Now, if <ai> denotes the consequence of {a;} in G*(L),
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then G¥(L) = (G*(L)/< ai>) ; X;, and one can write each element of G*(L) uniquely
1

in the form gc; -*-c4, in which g € T';, each cy is a coset representative of I'; in

c*w)/{ a; ) orin X;, no ¢, = 1, and ¢; and ¢y, are neither both in G*w)/{ a; )

nor both in X; [3, p. 205, Corollary 4.4.1]. Hence, if N; contains an element

f Q’ X;, then there are nontrivial coset representatives h;, ---, h, of I} in

G*(L)/<a1> and there is an element g € I"; such that f can be written uniquely in

exactly one of the following forms: gh;ajh;---aj;h,; gh;a;---h a;; gajh;---a;h,;

ga;h;a;---h,a;. Because of the normal form’s uniqueness, it is easy to see that

fA; # A;f. Consequently, N; = Xj.

Now, the sufficiency. Suppose that 7;(C(L')) = IY : Ql and that

G*(L') = |Y’ by, sy byt Q, ij = [”J!’ b_]] = [7\3, b.

J=1G=1, -, m)].

We assume the existence of an isomorphism y,: G*(L) — G*(L").
For eachof i =1, -+, m, there exists g; in G*(L') such that ¥,(a;) = g;b;, gi!
1

for some j; (1 <j; £ m'). Furthermore, because no two distinct aj’s are conjugate
[3, p. 212, Theorem 4.6(ii)] and because Y, is an isomorphism, ¥, maps distinct
a;’s onto conjugates of distinct b;’s; hence, m < m'. Similarly, m' < m, whence

m =m' and <b1, ree, bm.> = <b1, o, bm>. Moreover,

<¢*(al)’ I l’[/>|<(am)> = <b1’ Ty bm>’

and, because ¥, (a;, -+, A ) = <'ll/*(a1), -+, Y, (a_)) [2, p. 39, Theorem (1.1)}, we
have ¢ (al y T, am> = <b1 y s by > Therefore, {, induces a unique isomor-
phism

¥ GHL)/(ay, =, ay, ) — GMLY/ (b, =, by ).

But GX(L)/{a;, =, am y = 1 (C(L) and GXL)/{by, -, by » = 7 (C(L"); thus,
we have the consistent diagram :

G*1L) —i-—> G*L")

W

71 (C(L)) —‘I'*——> 71 (C(L"))

in which 7; and 7, are the natural homomorphisms.

We know that each of L and L' has m components. If L is a trivial knot, then
71;(C(L)) ~ Z; hence, the diagram in the foregoing paragraph implies that 7;(C(L"))
is also isomorphic to Z. Consequently, L' is also a trivial knot [5, p. 19, Theorem
(28.1)]; thus, C(L') = c(L).

We now assume that L is not a trivial knot; clearly then, L' is also not a trivial
knot. Because L is unsplittable, 7;(C(L)) is indecomposable (as a free product of
nontrivial groups) [5, p. 19, Theorem (27.1)]. Because 7(C(L')) ~ n,(C(L)), the
group 7;(C(L')) is also indecomposable; thus, L' as well as L is unsplittable [5,
(toc. cit.)).
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Let Kj, ***, K}, denote the components of L', let V' be a closed regular
neighborhood of K: (j =1, -+, m), and suppose that V N V = @, when i # j. We can
assume that C(L') =83 - Int(V} U --- U V. ). The inclusion map 0;: aV; — C(L") in-

duces a monomorphism o; : 7 (BV) nl(C( ')), because L' is unspllttable cf.
*

Remark 1. Set Q =0} (7rl (BV )), and set

= ! ! . 2 = i = ! = ! " = 1 = ess .
Yj = [J.j,kj, bj -bj [“j’ bj] [Aj,bj] [IJ-j;Aj] 1' (G=1, , m);
we are assuming, of course, that we have chosen basepoints p' and p , connecting

path y. i and generating set {uJ , )t }

We have 1;(X;) = T'; and nZ(YJi) jS. Furthermore, the normalizer of
lbji :bjzi = 1| in G*(L'") is clearly Y;j. . Thus, ¥, (X;) = g Y;, g1, because
Yla;) = gibj g.'l . Consequently, ¥ _(T;) = n,(g; )SZ Tzz(g1 1), and so the isomor-

phism ¥ _ preserves the peripheral group system. Therefore, the hypotheses of
Waldhausen’s result— Corollary 6.5, p. 80 of [8]—hold, and we have C(L) = C(L"),
completing the theorem’s proof.

Remark 2. If L is unsphttable, then the isomorphism class of G*(L) charac-
terizes the topological type of S3 - L as well as the topological type of C(L), be-
cause S3 - L £83 - L' if and only if C(L) = C(L").

In conclusion, we note that G*(L) does not necessarily characterize C(L), when
L is splittable; that is, there are splittable links L and L' for which G*(L) ~ G*(L")
put for which C(L) # C(L'). For example, let K; and K, be trefoil knots, and let

K} be K;’s mirror image. Suppose that L =K; U K, that L' = K; U K%, and that
each of L and L' is splittable. Evidently, G*(L) = G*(Kl) * G (K ) and

G*(L') = G*(X|) » GMK3Y); furthermore, our theorem implies that G*(KZ) ~ G*(K3).
Hence, G*(L) ~ G*(L').

On the other hand, C(L) = C(K;) # C(K;) and C(L') = C(K;) # C(K3}), and each of
the knot manifolds, C(K;) and C(K¥) (i = 1, 2), is prime, because it is irreducible.
Moreover, because K; (i =1, 2) is not amphicheiral and because the topological type
of K;’s complement determines the knot type of Kj, the knot manifolds C(K;) and
C(K’i") are not isomorphic; that is, there is no orientation-preserving homeomor-
phism of C(K;) onto C(K¥). Thus, C(L) is not isomorphic to C(L') [4, p. 5, Gen-
eralization 1]. If there were an orientation-reversing homeomorphism of C(L) onto
C(L"), then C(L) would be isomorphic to C(K}) # C(K,). Evidently, this is not true
(see [4, loc. cit.]); hence, C(L) Z C(L").

REFERENCES

1. J. H. Conway and C. McA. Gordon, A group to classify knots. Bull. London
Math. Soec. 7 (1975), 84-86.

2. R. H. Crowell and R. H. Fox, Introduction to knot theory. Ginn and Co.,
Boston, 1963.

3. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory: presenta-
tion of groups in teyms of genevators and velations. Pure and Applied Mathema-
tics, Vol. 13, Interscience Publishers (John Wiley and Sons, Inc.), New York,
1966.



266 WILBUR WHITTEN
4. J. W. Milnor, A unique decomposition theovem for 3-manifolds. Amer. J. Math.
84 (1962), 1-1.

5. C. D. Papakyriakopoulos, On Dehn's lemma and the asphevicity of knots. Ann.
of Math. (2) 66 (1957), 1-26.

6. J. Simon, An algebvaic classification of knots in S3. Ann. of Math. (2) 97 (1973),
1-13.

7. J. Stallings, Group theory and thvee-dimensional manifolds. Yale Mathematical
Monographs 4, Yale University Press, New Haven, 1971.

8. F. Waldhausen, On irreducible 3-manifolds which ave sufficiently lavge. Ann.
of Math. (2) 87 (1968), 56-88.

9. W. Whitten, Algebraic and geomelvic chavactevizations of knots. Invent. Math.
26 (1974), 259-2170.

10. , Charactevizations of knots and links. Bull. Amer. Math. Soc. 80 (1974),
1265-1270.
11. , Groups and manifolds charactevizing links. Knots, groups and 3-mani-

folds. Annals of Mathematics Studies 84, Princeton University Press, Princeton,
N.J., 1975, 63-84.

Department of Mathematics
University of Southwestern Louisiana
Lafayette, Louisiana 70504



