MODELS FOR COMMUTING CONTRACTIONS

Arthur Lubin

1. INTRODUCTION

Let L denote the unilateral shift on a vector-valued H^2 space $H^2_{\mathscr{H}}$. Let M be a closed invariant subspace for L, let P project $H^2_{\mathscr{H}}$ onto M^\perp , and denote by T the restricted shift $T = PL \mid_{M^\perp}$. G.-C. Rota showed by an amazingly simple argument that T^* is a universal model for a large class of operators; that is, if S is a contraction on \mathscr{H} of norm less than 1 then S is similar to some T^* . Rota's technique was refined by L. de Branges and J. Rovnyak to yield a model up to unitary equivalence: S is unitarily equivalent to some T^* if and only if $\|S\| \leq 1$ and $S^n \to 0$ strongly. (Both these results and basic background material on shifts and vectorial function theory can be found in [3].) Using restricted shifts as models, an extensive structure theory for operators has been developed; see [10].

D. N. Clark [1] extended Rota's theorem to the case of N commuting contractions by using the maps $T_k = PL_k \mid_{M^{\perp}}$ as a model, where

$$L_k f(z_1, \dots, z_N) = z_k f(z_1, \dots, z_N)$$

in the polydisc space $H^2(U^N)$. (See [6] for a basic reference.) Clark also characterized the commutant of $\{T_1, \cdots, T_N\}$, and hence, up to similarity, the commutant of N commuting contractions; this extended the one variable results of D. Sarason [7] and B. Sz.-Nagy and C. Foiaş [10]. In this paper, we modify the de Branges-Rovnyak technique to construct a unitary equivalence model for N commuting contractions by using a weighted shift analog of the maps T_k , and we extend Clark's description of the commutant to this case. We explain our notation below; for the basic theory of one variable weighted shifts the reader can consult [8].

2. NOTATION AND MODELS

For a fixed positive integer N, we use the notation $z=(z_1\,,\,\cdots,\,z_N),$ $e^{i\varphi}=(e^{i\varphi_1}\,,\,\cdots,\,e^{i\varphi_N}),$ and $J=(j_1\,,\,\cdots,\,j_N)$ a multi-index of either nonnegative integers, which we indicate by $J\geq 0,$ or arbitrary integers. We let e_k denote the multi-index J with $j_k=1$ and $j_n=0$ otherwise; $J\pm e_k$ has the obvious meaning except that by using $J-e_k$ we imply that $j_k\geq 1.$ We use $J\cdot\phi=j_1\phi_1+\cdots+j_N\phi_N;$ for $J\geq 0,\ \left|J\right|=j_1+\cdots+j_N,\ J!=j_1!\cdots j_N!,\ z^J=z_1^{j_1}\cdots z_N^{j_N};$ and given commuting operators $S_1\,,\,\cdots,\,S_N,\ S^J=S_1^{j_1}\cdots S_N^{j_N}.$ We let U^N and T^N denote the N-dimensional unit polydisc and torus respectively.

For a separable Hilbert space \mathscr{H} , $L^2 = L^2_{\mathscr{H}}(T^N)$ and $H^2 = H^2_{\mathscr{H}}(U^n)$ denote the standard Lebesgue and Hardy spaces of square summable vector-valued functions from T^N into \mathscr{H} : $f \in L^2$ has Fourier expansion

Received November 13, 1975.

Michigan Math. J. 23 (1976).

$$\sum f_J e^{iJ \cdot \phi}$$
 with $f_J \in \mathcal{H}$, $\sum \|f_J\|_{\mathcal{H}}^2 < \infty$,

and $f \in L^2$ is in H^2 if and only if $f_J = 0$ unless $J \ge 0$. For $f \in H^2$, we freely identify $f(e^{i\phi})$ with f(z), its analytic extension to U^n . We define \widetilde{L}_k on H^2 to be the unique bounded linear map such that

$$\tilde{L}_k(xz^J) = w_{J,k}xz^{J+e_k}, \quad w_{J,k} = ((j_k + 1)/(|J| + 1))^{1/2}$$

for all $x \in \mathcal{H}$, $J \geq 0$, $k = 1, \dots, N$.

A simple computation shows that for $x \in \mathcal{H}$, $J \geq 0$, $k = 1, \dots, N$,

$$\widetilde{L}_{k}^{*}(xz^{J}) = \begin{cases} w_{J-e_{k},k}xz^{J-e_{k}} & \text{if } j_{k} \geq 1 \\ 0 & \text{if } j_{k} = 0. \end{cases}$$

Clearly, $\widetilde{L}_j \widetilde{L}_k = \widetilde{L}_k \widetilde{L}_j$, so $\{\widetilde{L}_k\}$ is a family of commuting weighted shifts in N variables.

For $J \geq 0$, let $\beta_J = (J!/|J|!)^{1/2}$ and define the weighted H^2 space $H_{\beta}^2 = H_{\beta,\mathscr{H}}^2$ (U^n) to be the set of all \mathscr{H} -valued power series $\sum_{J\geq 0} f_J z^J$ such that $\sum \|f_J\|^2 \beta_J^2 < \infty$. We define L_k^i on H_{β}^2 by $L_k^i f = z_k^i f$, $k=1,\cdots,N$. Let W mapping H^2 to H_{β}^2 be the unique linear map such that $W(xz^J) = (|J|!/J!)^{1/2} x z^J$. It is easy to see that W is unitary and $\tilde{L}_k = W^* L_k^i W$, $k=1,\cdots,N$. Hence, the maps \tilde{L}_k and L_k^i are easily identified and can be used interchangeably. This is directly analogous to the one variable result in [8]. It can be shown in general that any family of commuting weighted shifts in W variables is unitarily equivalent to the family of unilateral shifts on a weighted H^2 space in W variables; details concerning this will appear elsewhere [4]. The maps $\{\tilde{L}_k^*\}$, or equivalently $\{L_k^{i*}\}$, will serve as our model; we will denote the compression of \tilde{L}_k or L_k^i to a space of the form M^1 by \tilde{T}_k or T_k^i respectively, where M is invariant under \tilde{L}_k or L_k^i , $k=1,\cdots,N$ respectively.

We note that each \widetilde{L}_k is a direct sum of one variable weighted shifts. For the case k=1, let J^* be an arbitrary multi-index of (N-1) nonnegative integers $(j_2,j_3,\cdots,j_N)=J^*$, and let

$$\mathbf{H}_{\mathbf{J}^*} = \left\{ \sum_{n=0}^{\infty} \mathbf{f}_n \mathbf{z}_1^n \mathbf{z}_*^{\mathbf{J}^*} \in \mathbf{H}^2 \right\}, \quad \text{where } \mathbf{z}_* = (\mathbf{z}_2, \dots, \mathbf{z}_N).$$

Each H_{J*} clearly reduces \tilde{L}_1 , $H^2=\bigoplus\sum_{J*}H_{J*}$ and $L_1|_{H_{J*}}$ is a weighted shift having weight sequence $\{((n+1)/(n+|J^*|+1))^{1/2}\}$. Hence, since \tilde{L}_1 is the unweighted unilateral shift on $H_0=\Big\{\sum f_nz_1^n\colon \sum\|f_n\|^2<\infty\Big\}$, we see from [8] that the spectrum of \tilde{L}_1 is $\{z\colon |z|\le 1\}$. It is also easy to see that L_1 is not similar to an unweighted shift operator. By [9], it follows that each $\tilde{L}_1|_{H_{J*}}$, and hence \tilde{L}_1 , is subnormal. By symmetry the same results hold for \tilde{L}_k , $k=2,\cdots$, N. However, the maps \tilde{L}_k do not have commuting normal extensions; we also note that $\sum_{k=1}^N \tilde{L}_k \tilde{L}_k^* = I$. This last condition characterizes $\{\tilde{L}_k\}$ among the commuting weighted shifts. Details will appear elsewhere [5].

3. THE REFINED ROTA-CLARK THEOREM

THEOREM 1. Let S_1 , \cdots , S_N be commuting contractions such that

$$\sum\limits_{k=1}^{N} S_k^* S_k < I$$
, and $\sum\limits_{J \geq 0} b_J S^J x$

converges for all $x \in \mathcal{H}$. Then there exist a closed subspace $M \subseteq H^2$ invariant under $\{\widetilde{L}_k \colon k=1,\cdots,N\}$ and a unitary $W \colon \mathscr{H} \to M^\perp \subseteq H^2$ such that $WS_kW^* = \widetilde{L}_k^* \big|_{M} = \widetilde{T}_k^*$.

Proof. Let $R = [I - (S_1^*S_1 + \cdots + S_N^*S_N)]^{1/2}$ be the unique positive root of the positive operator. We define W on $\mathcal H$ by

$$Wx = \sum_{J \ge 0} b_J(RS^J x) z^J$$
, where $b_J = \beta_J^{-1} = (|J|!/J!)^{1/2}$.

We note that

$$\|\mathbf{R}\mathbf{S}^{\mathbf{J}}\mathbf{x}\|^2 = \|\mathbf{S}^{\mathbf{J}}\mathbf{x}\|^2 - \sum_{k=1}^{N} \|\mathbf{S}^{\mathbf{J}+e_k}\mathbf{x}\|^2,$$

and

$$\begin{split} \sum_{\left|J\right|=M} b_{J}^{2} \sum_{k=1}^{N} \|\mathbf{S}^{J+e_{k}}\mathbf{x}\|^{2} &= \sum_{\left|J\right|=M+1} \left(\sum_{k=1}^{N} \frac{(\left|J\right|-1)!}{(J-e_{k})!}\right) \|\mathbf{S}^{J}\mathbf{x}\|^{2} \\ &= \sum_{\left|J\right|=M+1} (\left|J\right|-1)! \left(\sum_{k=1}^{N} \frac{j_{k}}{J!}\right) \|\mathbf{S}^{J}\mathbf{x}\|^{2} \\ &= \sum_{\left|J\right|=M+1} \frac{\left|J\right|!}{J!} \|\mathbf{S}^{J}\mathbf{x}\|^{2} &= \sum_{\left|J\right|=M+1} b_{J}^{2} \|\mathbf{S}^{J}\mathbf{x}\|^{2}. \end{split}$$

Hence,

$$\begin{split} \| \mathbf{W} \mathbf{x} \|^2 &= \lim_{M \to \infty} \sum_{\mathbf{J} = 0}^{M} \mathbf{b}_{\mathbf{J}}^2 \| \mathbf{R} \mathbf{S}^{\mathbf{J}} \mathbf{x} \|^2 \\ &= \lim_{M \to \infty} \left[\sum_{\mathbf{J} = 0}^{M} \mathbf{b}_{\mathbf{J}}^2 \| \mathbf{S}^{\mathbf{J}} \mathbf{x} \|^2 - \sum_{\mathbf{J} = 0}^{M} \mathbf{b}_{\mathbf{J}}^2 \sum_{k=1}^{N} \| \mathbf{S}^{\mathbf{J} + \mathbf{e}_k} \mathbf{x} \|^2 \right] \\ &= \lim_{M \to \infty} \left[\sum_{\mathbf{J} = 0}^{M} \mathbf{b}_{\mathbf{J}}^2 \| \mathbf{S}^{\mathbf{J}} \mathbf{x} \|^2 - \sum_{\mathbf{J} = 1}^{M+1} \mathbf{b}_{\mathbf{J}}^2 \| \mathbf{S}^{\mathbf{J}} \mathbf{x} \|^2 \right] \\ &= \| \mathbf{x} \|^2 - \lim_{M \to \infty} \sum_{\mathbf{J} = M+1} \mathbf{b}_{\mathbf{J}}^2 \| \mathbf{S}^{\mathbf{J}} \mathbf{x} \|^2 = \| \mathbf{x} \|^2, \end{split}$$

since the series $\sum_{J \geq 0} \, b_J \, S^J \, x$ converges. For $x \, \epsilon \, \mathscr{H}$,

$$\begin{split} \widetilde{L}_{k}^{*}Wx &= \sum_{J \geq 0} b_{J} \, \widetilde{L}_{k}^{*}(RS^{J} \, xz^{J}) = \sum_{J \geq 0} \left(\frac{|J|!}{J!} \cdot \frac{j_{k}}{|J|} \right)^{1/2} RS^{J} \, xz^{J-e_{k}} \\ &= \sum_{J \geq 0} b_{J-e_{k}} RS^{(J-e_{k})} (S_{k} \, x) \, z^{J-e_{k}} = \sum_{J \geq 0} b_{J} RS^{J} (S_{k} \, x) \, z^{J} = WS_{k} \, x \, . \end{split}$$

(Recall that by our convention, the second and third summations are taken over $J \geq 0, \ j_k > 0.$) Hence, $\widetilde{L}_k^*W = WS_k$, so the range of W, which is closed since W is isometric, is invariant under \widetilde{L}_k^* , k = 1, ..., N. Hence, W maps $\mathscr H$ unitarily onto M^\perp for some M invariant under $\{\widetilde{L}_k\}$ and the theorem follows.

Note that equivalently we have S_k unitarily equivalent to $T_k^{!*}$ in H_β^2 . Also, if $\sum_{k=1}^N \|S_k\|^2 < 1$, then $\{S_k\}$ satisfies the hypothesis of the theorem. Given any commuting contractions S_1 , ..., S_N , then for C sufficiently large (any C > N will suffice) Theorem 1 applies to $C^{-1}S_1$, ..., $C^{-1}S_N$. Multiplying by a constant does not affect the invariant subspaces of the operators or their commutant, which we consider below.

4. THE COMMUTANT

Clark's description of the commutant [1] extends immediately to the case of $\left\{T_k'\right\}$ on H_β^2 . We give the terminology of [1] necessary to state the theorem below; the proof follows verbatim from [1].

For $z \in U^N$, let u(z) be a bounded operator on $\mathscr H$ depending analytically on z and suppose that $u(z) \times \epsilon H_\beta^2$ for all $x \in \mathscr H$. We call u(z) an operator-valued function and note that $(uf)(z) = u(z) f(z) \in H_\beta^2$ for all polynomials $f \in H_\beta^2$; that is, $f = \sum f_J z^J$ where $f_J = 0$ except for finitely many J. We say u is compatible with a subspace M if and only if $uf \in M$ for all $f \in M$ such that $uf \in H_\beta^2$. For any subspace $K \subseteq H_\beta^2$, let K_B denote the projections onto K of all polynomials in H_β^2 . For any u compatible with M, define T_u on $(M^\perp)_B$ by

$$T_u f = Pug,$$

where P projects onto M^{\perp} , and g is a polynomial such that f = Pg. By the compatibility of u, T_u is a well-defined (possibly unbounded) operator defined on a dense subspace of M. We say $u \in \mathcal{B} = \mathcal{B}(M)$ whenever T_u has a (necessarily unique) bounded extension to all of M.

THEOREM 2. Any operator T' on $M_{\beta}^{\perp} \subseteq H_{\beta}^2$ that commutes with T_1' , ..., T_N' has the form $T' = T_u$ where u is an operator-valued function compatible with M and $u \in \mathcal{B}$. Conversely, every such T_u commutes with T_1' , ..., T_N' .

As we remarked earlier, this describes the commutant of any N commuting contractions up to unitary equivalence. Clark showed in [1] that u cannot necessarily be chosen such that $\|T_u\| = \sup_{z \in U^n} \|u(z)\|$; see [2] for an example where

 $\sup \|u(z)\| = +\infty.$

REFERENCES

- 1. D. N. Clark, On commuting contractions. J. Math. Anal. Appl. 32 (1970), 590-596.
- 2. ——, Commutants that do not dilate. Proc. Amer. Math. Soc. 35 (1972), 483-486.
- 3. P. A. Fillmore, *Notes on operator theory*. Van Nostrand Reinhold Co., New York-London-Melbourne, 1970.
- 4. A. R. Lubin, Commuting weighted shifts in several variables, to appear.
- 5. ——, Weighted shifts and products of subnormal operators, to appear.
- 6. W. Rudin, *Function theory in polydiscs*. W. A. Benjamin, Inc., New York-Amsterdam, 1969.
- 7. D. Sarason, Generalized interpolation in $\operatorname{H}^{\infty}$. Trans. Amer. Math. Soc. 127 (1967), 179-203.
- 8. A. L. Shields, Weighted shift operators and analytic function theory. Topics in operator theory, pp. 49-128. Math. Surveys, No. 13. Amer. Math. Soc., Providence, R.I., 1974.
- 9. J. G. Stampfli, Which weighted shifts are subnormal? Pacific J. Math. 17 (1966), 367-379.
- 10. B. Sz.-Nagy and C. Foias, Harmonic analysis of operators on Hilbert space. Akadémiai Kiadó, Budapest, 1970.

Mathematics Department
Illinois Institute of Technology
Chicago, Illinois 60616

