CONTRACTIVE LINEAR MAPS ON C*-ALGEBRAS

Richard I. Loebl

0. INTRODUCTORY REMARKS

The purpose of this note is to study the interplay and distinctions between con-
fractive and completely contractive linear maps on C*-algebras. Both in spirit and
in technique, these results follow the outline given by M.-D. Choi [2].

If &« and # are C*-algebras with identity, and ¢: & — & is a linear map,
then ¢, = ¢ ® id,, is the entry-wise map from the C*-algebra & () M, to B X My,
where M, denotes the C*-algebra of n-by-n complex matrices. We say that ¢ is
completely positive if every ¢, (n > 1) is positive; ¢ is completely contractive it
supy, |||l < 1; and ¢ is completely bounded if supy |¢n] < o; see [1]. Note that

leall > o]

Let Ci [, 8] denote the set of all linear maps ¢ from « to Z such that
¢,, -+, ¢ are contractive; C.l#, #] is then the set of all completely contractive

maps. It is easy to seethat C; D C2 D -+ and C, = ﬂk>1 Cxk.

It is known that if P[.«, #] denotes the set of all linear maps ¢ from  to
# such that ¢,, ---, ¢1. are positive, then Pi[ ., #] = Po[ A, B] if either & or &B
is commutative [1, p. 144]. Further, Choi established that Pi[«, #] = Py «, &1
implies # or # is commutative [2, Theorem 4].

The results we shall establish are analogous: if # is commutative, then
Cila,B]=Cl A, B, and if Ci[, B]=C,[«,B], then & or B is commuta-
tive. The analogy breaks down drastically in the case of a commutative domain: If
«/ is commutative, therefore of the form C(X) [5, Theorem 4.2.2] and
Ci[, B] = C,[, #], then by Theorem C, the space X contains at most two
points! We shall also make some remarks about the case of completely bounded
maps.

1. COMPLETELY CONTRACTIVE MAPS

LEMMA 1. Let < be a linear subspace of a C*-algebra, and let € be a com-

mutative C*-algebva. Let ¢: F — € be a linear map. Then || = ||¢,| for
n= 1, 2’ ces

Proof. We modify [1, Proposition 1.2.2]. Identify & as C(X), let n be a posi-
tive integer, and for [a;;] € 4 ® My, let ¢(a;;) = f3; € C(X). Then

|[£:51]l = sup  sup | [E:18, 1) |,
S T TS P T

where ¢, n € C". However,
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Hence, | ([t n )| < o]~ [n ] Il - [¢], so that o]l < |65 the oppo-
site inequality is evident.

Notice that Lemma 1 improves the result of [1, Proposition 1.2.11].

For reference, we restate the following result [6, Corollary 1].

LEMMA 2. Let ¢: A — B be a linear map of C*-algebras such that ¢(1) = 1.
Then ¢ is positive if and only if ||¢| = 1.

LEMMA 3. If C\[A, Bl =Col A, B] for all A, then B is commutative.

Proof. Uf # is not commutative, we shall produce a map ¢: M, — #B with the
properties that ¥(1) = 1, ¥ >0, but ¥, % 0; thus, by Lemma 2, [v» | >1. By[2,
Lemma 3], we can assume there are Hermitian operators B; , B, € # and nonzero
vectors u and v in the underlying Hilbert space of # such that B,u =0 and
B,B,u=v. Further, we can assume ||B;| < 1/2, so that 1 - B% - B% > 0. Let the
map ®: M, — & be defined by

a1 212 2 2 2 .2
@ = a;;Bf ta;;B) B, +a;;B;B; +ay;B5+aj (1 - BY - B).
az) ap2

If 6: M, — M, denotes the transpose, then ¢ =& o 6§ is positive and ¥(1) = 1. How-
ever, ¥, is not positive, since the inner product

(10 - 01 ]
00 - 00O
<¢2 e e (eev D), (~ev u)>
00 00

=& B v[2-2¢ |v[2+e2(|v][2- |Byv]2- |B,v[?

is negative whenever g is a sufficiently small positive number.

THEOREM A. A C*-algebra & is commultative if and only if V¢: A — 5,
looll = o]l =1, 2, ).

Scrutiny of the proof of Theorem A reveals that the following result is valid.

COROLLARY. # is commutative if and only if C1[ Y, #] = Cul4, »] for all
subspaces ¥ of a C*-algebra o ; this is so if and only if Ci[4, »]=Calu, w1
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Let us now attempt to reverse the role of range and domain in Theorem A.
LEMMA 4. If C,[A, B]=Cy[ A, B] for all B, then A is commutative.

Proof. If £ is not commutative, we can assume, as in [2, Lemma 2] that there
are self-adjoint A;, A, € 4 and nonzero vectors X and y in the underlying Hilbert
space such that A; x =0 and A; A, x =y. Without loss of generality, we can take

[l <1 and x| = 1. Then [y[ <1 and

<y, X> = <A1A2X, X> = <A2X, A1X> = 0.

Let e be a state of . Let 7: « — M, be defined by

<Ax, x> <Ay, x> 00
7(A) = + e(A)

(any) (ay,v) 0 1- b1

Again, let 6: M, — M be the transpose. Then ¢ = 6 o7 satisfies the conditions
o >0 and o(1) = 1, and exactly as in [2, Lemma 2], we conclude that o, % 0. Hence
Cl[‘ﬂy MZ] - CZ["d’ MZ]-

We can now prove the following analogue of [2, Theorem 4].
THEOREM B. If Ci[ &, B]=C,y[ A, B, then either «4 ov B is commutative.

Proof. If not, repeat the argument of [2, Theorem 4] applied to Y o 7, where ¥
is the map of Lemma 3 and 7 is the map of Lemma 4; we obtain the relations

(Yo7) >0, (Wo1)(1) =1, and (Yo 71), 2 0.

Having in hand Theorems A and B and the results of [2], one now expects the
following to be true:

Statement. If « is commutative, then for all &, C[ A, B]=C[ A, £].
This is not so! Instead, the following rather surprising result holds.

THEOREM C. If C|[, #B] = Ca[ A, B]| for all B, then A is commulative
and at most two-dimensional. That is, A = C(X) and X C {x,, x,}.

Proof. Since C; = C,, we can apply Lemma 4 and assert that the algebra ¢ is
commutative; hence & = C(X), where X is a compact Hausdorff space. If X has
more than two points, there are three positive linear functionals on C(X) with dis-
joint closed supports and norm 1/vV6. Let A;, A,, A3 € M, be the following:

1 0 01 0 i
Ay = ( )’ Ap = ( )’ Az = ( )
0 -1 10 -i0

Then we have the relations
(a) A;=Af,
(b) A? =1,, where I, is the 2-by-2 identity matrix,
(€) AjA;+AjA; = 265515,
If f e C(X) and {p;} is the set of functionals above, let

Y(f) = py () Ay +pa(f) Ay - p3(f) Az
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Then, as in [4, Theorem 2.2], we see that |y (®)| < V2V 2 |p;®)[* < |£]|, so that ¥

is a contraction.

We claim that ||¢,] > 1. To show this, let F(x) € C(X)(® M, be such that on
the support K; of p;, F(x) = A;, and such that otherwise F(x) is a convex combina-
tion of the A;. Then ||F| =sup, [|[F(| =1.

We see that

Yo(F) = (¢ ®idy) (F) = ((p; @ A +p, X Ay - p3 B A3) K idy) (F)

o1l A1 ® A + oz | Az & Az - |p3]| A3 & As.

Notice that ¥,(F) is self-adjoint, so that [|¢2(F)| = sup, -1 [{¥2(F)z, 2 )].

We claim that there is a unit vector z ¢ €% such that (A D A))(z) =2,
(A, X Aj)(z) =z, but (Az3(X A3)(z) = -z. For such a vector z,

(Wa®)z, z) = o1l + lozll + losl = 3/V6 > 1,

so that ”1[/2” > 1. In fact, ”‘PZ” = ”pl ” + ”p;g" + "p3 ” To find the vector z,

compute the matrices A; (X A;, and notice that the vector (1, 0, 0, 1), when nor-
malized, does the trick.

We conjecture that Theorem C can be improved to say that X = {x, }, but at the
present we do not see how to do this. It follows from Lemma 1 that
Cl [C, e%] = Coo[c, e%] for all &.

2. COMPLETELY BOUNDED MAPS

Now let B[, 8] denote the family of all completely bounded maps from ¢
to &, and let B[ ., #] denote the bounded maps. We can then restate Lemma 1 in
the following form.

LEMMA 1'. If # is commutative, then B[ ¥, B]| = B[S, B].

Since each ¢, is bounded, the question is how rapidly the sequence { ”q&n[l }
grows. We can answer this in some special cases. An easy application of Lemma 1'
yields the following result.

LEMMA 5. If « is finite-dimensional, then B[ A, B] = B[, #].
The proof of [4, Theorem 2.2] establishes the following result.

THEOREM D. Let X be a compact Hausdovff space with an infinite numbeyr of
points., Then theve is a bounded map ® from C(X) into the compact operators on a
separable Hilbevt space such that & is not completely bounded.

Using Theorem D, we can establish the converse to Lemma 5.

THEOREM E. B[, B] =Bl A, #] for all # if and only if A is finite-
dimensional.

Proof. We need only establish the theorem in one direction; assume therefore
that B[, #] = B[ #, #] for all #. Let S =S* € «, and consider the commuta-
tive C*-subalgebra generated by 1 and S. This subalgebra is C(X), for some com-
pact Hausdorff space X. If X is infinite, we argue as follows. The proof of Theo-
rem D, like that of Theorem C, involves choosing positive linear functionals of
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disjoint support on C(X) C «. By Krein’s theorem [5, p. 227] these functionals can
be extended to be positive on . But this extends the map & of Theorem D to all of
«+ in such a way that the norm of the extension equals ||<I> ” Theorem D then im-
plies that the extended map is not completely bounded.

Hence, X must be finite; that is, every self-adjoint S € .« has finite spectrum.
Further, every abelian *-subalgebra must also be finite-dimensional. This forces
«/ to be finite-dimensional (see [3]). For the sake of completeness, we sketch a
proof.

Notice that self-adjoint elements having finite spectrum implies the existence of
spectral projections. Therefore, let E = {ea} be a maximal family of commuting
nonzero projections in . This family is finite, since otherwise the abelian alge-
bra they generate would be infinite-dimensional. Order E by the usual partial
ordering (e < f if and only if ef = fe = e); since we have a finite set, there exist
minimal elements with respect to this ordering; call them ey, ---, e,. Then
1=e)+--+ey, by maximality of E and by the definition of the e,.

Now & = Eij e; «7 e; is a decomposition of . Note that e; # e; is a c*-
algebra with identity. By [5, Theorem 1.6.15], for a € «,

sp () = speidei(a) U {o0};

in particular, every self-adjoint element in e; ¢ e; has finite spectrum. Therefore
the spectral projections of such an element are in e; £ e;, and they are subprojec-
tions of e;. This contradicts the choice of e;. Hence, every self-adjoint element in
e; + e; is a scalar multiple of e;; therefore e; «# e; = Ce;, and thus e; & e; is
one-dimensional.

Let i # j, and suppose e-l.,dej # {0} If a+# 0e€ ejfej, then
0+# a*a e €] dej = Cej. By scaling, we can assume a*a = ej. Define the map
T:e; #e;— e; L e; by Tx =xa*. Then T is one-to-one, for

xa* = ya* =>» xa*a = ya*a,

or xe; = ye;; but ej is a right identity for e; 4/ ej. Since e; 4 e; is one-dimen-
sional, e; «/ e; is also one-dimensional. Hence, dim « <n2.

We now ask about the ranges.

LEMMA 6. Let « be a C*-algebva. Then B[, M,] = B[4, My].

Proof. If ¢: «Z — My, then ¢(a) = [¢;5(a)], where ¢;5: +/ — C, and
[¢:;] < [l¢f. Therefore ¢ idi =[50 idk]. It follows that

¢ & ddic] < an sup [l¢55:% idi]
1}

where A, is a constant depending on n but not on ¢. By Lemma 1,
los; % ddi |l = flos;ll

for all k; therefore ||¢ % id, | < a, ||¢].

LEMMA 7. Let ./ be a C*-algebva, and let B C € X M,,, wheve € is com-
mutative. Then B|[.-¢, 5] =Byl.+/, #].
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Proof. The result follows from an easy modification of the proof of Lemma 6,
which also establishes the following (possibly trivial) result.

LEMMA 7T'. Suppose that B[4, B| = By[ A, B]| fov all . Then
B[, BRM,] = B[A, B X M,] for all n.

We feel that the converse to Lemma 7 is also true; but we have been able to
show it only in such special cases as Type I von Neumann algebras.

CONJECTURE 1. If B [, B] =B [, B] for all A, then B C € X M,,,
Jor some commutative C*-algebra & and some integer n.

The major difficulty encountered in working on this conjecture is a shortage of
maps that fail to be completely bounded. An affirmative answer to Conjecture 1
would make Lemma 7' trivial.

A proof of Conjecture 1 would establish the following analogue of Theorem B.
CONJECTURE 2. If B[, B]| =B, [ A, B], then either A is finite-dimen-
sional or B'C € (X) My, .

It would be desirable to have a quantitative method for deciding whether a given
map is completely contractive or completely bounded. We have found such methods
in special cases, and the following conjecture has held in every example we have
tried. It is an analogue of Theorems 5, 6, 7, and 8 of [2].

CONJECTURE 3. If & ov & is a subalgebra of M,, (where n is minimal) and
¢: oL — B, then supy oy ]| = [on]-

The reader should notice how Conjecture 3 has been used to prove the results of
this paper.

Added Mavch 8, 1976. We have established the validity of Conjectures 1 and 2 in
case &£ is a von Neumann algebra.

REFERENCES

1. W. B. Arveson, Subalgebras of C*-algebras. Acta Math. 123 (1969), 141-224.

2. M.-D. Choi, Positive linear maps on C*-algebras. Canad. J. Math. 24 (1972),
520-529.

3. R. A. Hirschfeld and B. E. Johnson, Spectral chavactevization of finite-dimen-
sional algebras. Indag. Math. 34 (1972), 19-23.

4. R. 1. Loebl, A Hahn decomposition for linear maps. Pacific J. Math. (to ap-
pear).

5. C. E. Rickart, General theory of Banach algebras. Von Nostrand, New York,
1960.

6. B. Russo and H. A. Dye, A note on unitary opevators in C*-algebras. Duke
Math. J. 33 (1966), 413-4186.

Wayne State University
Detroit, Michigan 48202



