ON THE SIGNATURE OF FERMAT SURFACES
John Ewing and Suresh Moolgavkar

1. In this note, we study the signature of certain hypersurfaces of complex pro-
jective space. Specifically, we are interested in questions of divisibility of the sig-
nature of these hypersurfaces by certain primes; the questions are interesting both
because of applications to cobordism theory [9] and because they are related to
number-theoretic problems. That such considerations lead to difficult problems in
elementary number theory is not surprising. However, it is perhaps unexpected that
in certain cases these problems are related to the Fermat conjecture.

Let CP™ denote complex projective space of dimension n. We define the
Fermat surface Q,(q) to be the hypersurface of complex dimension n and degree q
in CP*! given by the formula

Qu@ = {[z0, 21, =, Zor1] € CP* ] 25 +2F + -+ 27, =0}.

These hypersurfaces admit, in a natural way, an action of an (n + 2)-dimensional
torus, and hence, actions of subgroups of that torus. Study of the equivariant signa-
ture under a variety of these actions has led to a number of interesting connections
between number theory and topology ([5], [6], [12]). It is our thesis that on an even
more elementary level, the study of divisibility of the signature of Q,(q) by powers
of q, where q is an odd prime, leads to interesting questions. In this respect, the
present paper is somewhat preliminary; it does not answer the questions, but rather
explores the relations between number theory and topology in our special context.

That such relations exist seems to be a consequence of the fact that the signa-
ture of the Fermat surfaces can be computed (at least in principle) in divers ways.
We point out at the start that although for q =2 and 3 simple formulas for the sig-
nature can be obtained, for even modest values of q the numbers involved are quite
large, and no simple closed formula, suitable for answering these questions of
divisibility, seems to exist. (The signature of Qg(11) is 48 162 411, while the rank
of the middle-dimensional cohomology is 909 090 911.) We have organized this
paper from the point of view of obtaining three different formulas for the signature,
each with its own purpose.

In Section 2, we briefly sketch the proofs of some well-known facts about the co-
homology and Euler characteristic of Qn(q). Applying the Riemann-Roch theorem,
we compute the xK-invariants of Q,(q). Using the Hodge theorem, we therefore
establish our first formula for the signature of Q,(q) as a sum of products of pairs
of binomial coefficients. The purpose of this calculation is not so much to investi-
gate divisibility of the signature by powers of ¢, but to prove a conjecture about
x¥(Q,(q)). It is easy to compute the Todd genus of Q, (q) and to see that when
n>q-1itis 1. This implies that h®1(Q,(q)) = 0 when n>q - 1 (see [4] for
notation.) Hence one might conjecture that for fixed k, xk(Q,(q)) = (-1)k and
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therefore hk:n-X(Q,(q)) = 0, for sufficiently large n. Observation of the formula for
x ¥ in this section readily yields this result. There is another interesting conse-
quence. Subsequent to our work, results of F. Hirzebruch and D. B. Zagier [7] have
appeared in which xk (Qn(q)) is computed in terms of certain combinatorial quanti-
ties involving restricted partitions of multiples of q. Equating the two results yields
some interesting combinatorial identities. We mention this aspect in the concluding
remarks.

In Section 3, we use the signature theorem of Hirzebruch to compute the signa-
ture of Q,(q) and to reduce it modulo q2 and g3 when ¢ is an odd prime. This
provides an algorithm for determining when g2 or q3 divides the signature. The
special case of Qq_3(q) is related to some unsolved problems in elementary number
theory.

In Section 4, we derive a result of Hirzebruch, giving the signature of Q,(q) as
a certain coefficient in the power series of a rational function, and we use it to ob-
tain our last expression for the signature in terms of tangent sums. We can there-
fore rephrase questions of divisibility of the signature inside certain algebraic num-
ber rings. This expression also gives an estimate of the absolute size of the signa-
ture.

This last expression for the signature in terms of tangent sums is closely re-
lated to similar expressions for the signature of certain Brieskorn varieties and for
the Browder-Livesay invariant of certain lens spaces. We briefly mention some of
these connections in our concluding remarks in Section 5. Naturally, one might hope
that reduction of these other invariants modulo g2 and g3 might be more easily
accomplished.

We are indebted to Larry Smith for many useful discussions concerning these
problems, and to the referee for many helpful comments.

2. First we determine the integral homology of the hypersurfaces Q,(q) and
calculate the Euler characteristic.

THEOREM 2.1. Let Qulq) be the q-dric of complex dimension n. Then

H,.(Q.(a); Z2) ~ Z (0<i<2n; 2i#n),
H2;:1(Qn(a); Z) =~ 0 (2i+1 # n).

Moreover, H,(Qp(q); Z) is torsion-free.

Proof. From the Lefschetz hyperplane theorem [1], we know that the canonical
embedding j: Q,{q) — CP"*! induces an isomorphism

i Hi{(Q,(w); Z) — Hy(cP™; z2)

when i <n - 1. The first two statements follow immediately. The last statement
follows since by Poincaré duality the torsion subgroup of H,(Qu(q); Z) is isomorphic
to that of H,_(Q(q); Z). =

All that remains then to compute the integral homology is to find the rank of
H,(Qn(a); Z). We do so by computing the Euler characteristic. Fix q and let
X = x(Q,(@). Since Qplq) is simply a set of q points, we see that xo =q. For
n > 0, define a map f: Q,(q) — CP” by
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£([2zg, 21, > Zns1)) = (205 215 =) Zpl-

It is easy to see that f: Q,(q) — CP" is a g-fold branched cover with branching
locus Q,,_;(q). Hence, for a suitable triangulation, we obtain (by counting simplices)
the formula

X = ax(CP®) - (a- Ux,, (>0).

Solving the recursive relation, we obtain the following result.

_ nt2 _
THEOREM 2.2. x(Qu(@) = n+2+ 1 -9 L

From Theorem 2.2 we see that

n+2
2+(1—q) —1| (n even),

rank Hn(Qn(Q)) = b2
1+ 8- q)q - 1| (n odd) .

Finally, Qu(q) is a Kdhler manifold. Let the fundamental class of the Kahler
metric on Q,(q) be € € HXQu(q), C).

THEOREM 2.3. Q! generates H2{(Qu(q); C), for 1 <i< 2n and 2i # n.
We now compute the other invariants of Q,(q). Let y be the Hopf bundle over
cP™"1, Clearly, the normal bundle of Q,(q) — CP™"! is 9.

PROPOSITION 2.4. The Todd genus Tg(Q,(@) of Qqa) is 1+ (-1)" ( 9 i ) .

Proof. Since the Todd polynomial is multiplicative, we see that

n 1 ) 1 -e 9%
TQu() = (raer e = (—25) ()
where w is the first Chern class of y. Therefore Tg(Qu(q)) = <Td(Qn(q)); [Qp(a)] >

Recalling that Q,(q) is a gq-fold branched cover of CP", we see that a simple resi-
due computation yields the answer. ®

Proposition 2.4 implies, in particular, that

hn-O(Qn(q)) = geometric genus (Qn(q)) = g;i )

Hence, when n > q - 2, geometric genus (Q,(q)) = 0.

In the case n = 2, we have enough information to apply the theorem of Hodge,
and we obtain the following resuit.

.

PROPOSITION 2.5. 7(Q2(q)) =g(—4—3-g—l, wheve T is the signature.

From now on, Q, = Qu(q). In this section, we use the Riemann-Roch theorem of
Hirzebruch to compute x%(Q,). Let M be an algebraic manifold, [M] the fundamen-
tal class of M, and £ a holomorphic vector bundle over M. Then the Hirzebruch-
Riemann-Roch theorem states that
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x°(M, £) = x(M, £ = {(TdM) - ch & [M]).
We compute

(Td@Qy - ch(ARTHQW)), [Qu] ) = xX(Qu).

Since xX(Q,) = (-1)XhXX(Q) + (-1)2-Knk:n-K(Q_) and hkX(Q,) = 1, this enables us
to compute hk:2-K(Q, ). Henceforth, we let

T = T(Qu), T* =T*XQu), Tpnyp = T(CP2FL), T} = T(CPntl),
Then Ty = T @ 99, where y is the Hopf bundle over CP™*! and all the bundles

are restricted to Q.. In all that follows, restrictions of bundles will be clear from
the context.

We observe that
TX =T*@y ™ = ARTE | = AR IT* @ -9 @ ART*,

Using the fact that ch is both additive and multiplicative, we obtain the formula

k
k m* _ e (nt+t2\ _ _(k-f)w
ch(A*T , ) Q?()( Dk - IZ) e .

Finally, using the fact that ch T* = ch T§+1 - e 9% we see that

k k-¢
ch AKT* = 75 X5 (-1)“3( nt2 )e‘(k“ﬁ‘S”fﬁq)w.
~ k-¢-s8
£=0 s=0
Hence,
k k-£ +9 . \
X<(@Qu) =  TAQy) X T (ntre ([ Bh2 ) erlbretae g 5
£=0 s=0 k-£-s

A simple residue computation gives us the following.

LEMMA 2.6.
nt2 -
-m w 1-e 9%y
Commo (o)™ (2222 0 >
-1 - )
SVl G EA LN G N S
Tg(Qn) ifm=0 .

Hence,
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N k k-4
k _ . Q+S+n+l( n+2 (k-Q—S-*‘ﬂq—l)
X in 20[(1) k-2-s n+1
= sS=

fhgin( DE2 )(q+k—ﬂ—s+ﬂq—1)
+(-1) (k—ﬂ-s n+1

L Coet (RFR) (Kre ) wpem(RR2) (TR ) |
s=0

+ (-1)k Tg(Q,) -

Recalling that Tg(Q,) =1 + (-1)" (g ——I— i) , we obtain the formula

k-£

k
Xk = (-Dk+ D B (pbrsin (| nF2 ){(q+k-ﬂ—+sl+ﬂq-1)
=0 s=0 -t s n

i (k—ﬁ—s+£q—1)
n+1 )

Finally, by telescoping, we obtain the following result.

k
THEOREM 2.7. xK = (-1)k + 25 (-1)ptk-t (nfz) (

ak -t+1) +t - 1)
t=0

n-+1

We see immediately that if q +kq < n + 2, then xX(Q,) = (-1)k, and this implies
the following.

COROLLARY 2.8. If q +kq <n +2, then h®n-KQ,) = 0. In particular, if
q <n+ 2, geometric genus (Q,) = 0.

By a theorem of Hodge [4, page 125], we can, in principle, compute the signature
Tald) of Qu(a):

n

@ = 2 xNQ, ().

k=0

3. Although we have in the preceding section obtained an explicit formula for the
signature of Q,(q), its usefulness for actual computation is, in general, rather lim-
ited. We are interested in reducing the signature of Q,(q) modulo powers of q, when
q is an odd prime. In Section 4 it will be shown that q divides the signature of
Q2n(q) if and only if 2n < q - 3. In this section, we use the signature theorem of
Hirzebruch to reduce some topological questions to difficult unsolved problems in
elementary number theory.

Throughout this section, let p denote an odd prime, and let 7,(p) denote the
signature of Q,(p). Recall that y is the Hopf bundle and that w is the first Chern
class of y. Clearly, the normal bundle of Q,(p) in CP**! is yP. From all this, it
is easy to compute L(Q,(p)), the L-polynomial of Q,(p):

n+2 tanh pw

L(Qn(p)) = ( tancir)l w) pw
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Hence,

B w \™"2 tanh pw > _ < @  \""2 tanh pw n >
Tn(p) _<(tanh w) pw ’ [Qup)] > = (tanh w) pw ’ p[CP™] /.

It follows that 7,(p) is the coefficient of x™ in

(1) ( X )n+2 tanh px
tanh x X :

To facilitate statements of results, we work in Z(p), the integers localized at
p, which is the subring of rationals with denominators prime to p.

THEOREM 3.1. For 2n<p - 3,

- 1. 1. . 1 3
Tzn(p)-—p(1+3+5+ +2n+1)(modp).

Proof. We have the well-known power series expansions

[+ e}
B.
X _ it _Th o2i 21
tanh x 1+.§ (-1) @i 27" x

and
z B
tanh x = 2 (-1)1T1 228221 _ 1) L x2i-1

i=1

where Bj is the ith Bernoulli number. By a theorem of Von Staudt, the denominator
of B; is prime to p if i < (p - 1)/2. Hence, for 2n < p - 3, we can truncate the
power series above, reduce modulo p3, and, using (1) from above, conclude that
To,(p) is congruent (mod p3) to the coefficient of x22 in

p tanh x )

Let ¢ denote the coefficient of x2" in (x/tanh x)2™*2 . Then, as usual, we perform a
residue computation to evaluate c. Integrating around a small circle about the ori-
gin, we obtain the formula

1 X
c = - dx.
211 J (tanh x)?2

Substituting u = tanh x, we see that

_ 1 tanh~! u
¢ 2mi u2n~!—2 (1 - uZ)

du.

Hence c is the coefficient of u?®*! in (tanh~! u)/(1 - u?). However,

3 5
_‘:1_..+_.u_

-1 _
tanh™ u u.+3 5

+...’
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and therefore

- L S
c=14g+ptto—g.

Theorem 3.1 gives a relatively simple condition for p2 or p3 to divide 724(p).
The sums involved can easily be expressed in terms of harmonic numbers. For
fixed, small values of 2n it is a simple calculation to compute those primes for
which p? divides 7,,(p) (for example, p% divides 7;2(p) if and only if p = 88 069).
No primes for which p3 divides T,,(p) are known.

The special case where 2n = p - 3 is interesting. It is well known (and easy to
show) that
1.1 1 2p-1

_ -1
1+§+§+ '+p_2= D (modp).

Hence we obtain the following result.
COROLLARY 3.2. 7,_3(p) = 2P~ - 1 (mod p?).

Remark. A prime p such that 2P-! - 1 = 0 (mod p?) is called a Wieferich
squave. In 1909, A. Wieferich [11] showed that if p is not a Wieferich square, then
the equation xP + yP = zP cannot be solved in integers that are not divisible by p.
Because of the interesting connection with the Fermat conjecture, an extensive
search has been made for such primes. For p < 3 X 109, the only Wieferich
squares are 1093 and 3511 [2]. We conclude that p2 probably seldom divides
7-3(p). A heuristic argument suggests that

#{p < x| p? divides Tp_3(p)} ~ log log X.

In view of these remarks, the following result of H. S. Vandiver [10] is even
more remarkable.

PROPOSITION 3.3. Lel p be an odd prime greatev than 3. Then oP-1_1=9
(mod p3) if and only if
1 1

p(1+%+g+...+m) = 0 (mod p?).

COROLLARY 3.4. If p is an odd prime, then p3 divides ’rp_3(p) if and only if
2P-1 = 1 (mod p3).

Remarks. No primes less than 3 X 109 satisfy the condition of Corollary 3.4
([2]). A heuristic argument suggests that the number of such primes is finite. It
has been shown by Z.B. Linkovskii [8] that if the equation xP + yP = zP has a solution
in integers not divisible by p, then 2P-1 _ 1 =0 (mod p3). It is interesting {o con-
sider the possibility of answering by topological methods the question when p3
divides 7,_3(p).

4. In this section we use the results of the preceding section to develop an ex-
pression for the signature of Q,(q) in terms of “tangent sums.” Our result has two
consequences. First, the formula obtained “explains?” the alternation of sign of the
signature, and it gives a crude estimate of the size. Second, it relates some of the
divisibility questions of Section 3 to questions of divisibility in the Kummer ring
Z [e2Ti/P], Although these questions are no more amenable to solution, the possible
connection with work of Kummer on the Fermat conjecture cannot go unnoticed.
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As before, we denote by p an odd prime and by 72n{p) the signature of Qzn(p).
From Section 3 we see that 7,,(p) is the coefficient of x20 in

( X )2n+2 tanh px
tanh x X ‘

As usual, using residues, and integrating around a small circle about the origin we
obtain the formula

1 tanh px
27i (tanh X) 2nt+2 :

T2n(p) =

Making the substitution u = tanh x, we see that

S 1f 11 (rwP--wP
TZn(p) 27 u2n+2 (1 _ U.Z) (1 +u)p + (1 - u)p du

Hence we deduce the result of Hirzebruch [3]:

THEOREM 4.1. 7, (p) is the coefficient of u?™*! in

1 (1 +u)P-(1-u)P
1-w| A+wWP+1-uP |’

COROLLARY 4.2.
0 (modp) (2n<p- 3),

T 5n(D)
g 1 (mod p) (2n>p - 3).

Proof. Reducing the rational function in Theorem 4.1 modulo p, we see that
72n(p) is congruent (mod p) to the coefficient of uéntl in uP/(1 - u2). m

For p =2 or 3, it is possible to obtain closed-form expressions for the signa-
ture of Q,(p) from Theorem 4.1. One could attempt to generalize this to larger
primes, by first using Theorem 4.1 to obtain an inductive formula for 7,,(p) and
then using finite-difference methods to obtain a closed form expression. A more
systematic approach is the following.

Consider the rational function

1 Q+uwP-(1-uwP | _wu
(1-u?| Q+uwP+1-uwP 1-u

f(u) = 5 .

2n+1

Since u/(1 - u?) =u +u3+u®+ -, we see that 7,, - 1 is the coefficient of u
in the power series expansion of f(u). Moreover, a simple calculation shows that

_Q +u)P-1 - (1 - wpP-!
fw) (1+uwWP+(1-uwP

Let g(u) = (1 +u)P+ (1 - u)P. Clearly,

1g'(u)
p glu) °

f(u) =
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Now g(u) has p - 1 zeros sy = Ck 1 k=1, 2, ---, p- 1), where ¢ = e27i/p,

Hence
p-1

f(u=12

(u - skJ

Therefore the coefficient of u2n*! in f(u) is

p-1

Py-1 “ 5k

Finally, using the fact that (¢¥ - 1)/(¢X+ 1) = i tan (kn/p), we deduce the following
result.

THEOREM 4.3. If p is an odd prime and ¢ = e2Ti/P | then

p-1

o = 1-3 T (LY S (k)

Since |tan(km/p)| is maximum when k = (p - 1)/2 or (p + 1)/2, we can obtain a
crude estimate of the size of 7,,(p).

COROLLARY 4.4. If p is an odd prime, then

% ((tan (p épl)” )ZW‘ < Jranl®) - 1] < 1) (tan £ ””)mz.

We can also obtain an asymptotic estimate for 7,,(p) by using the approxima-
tion tan x ~ 2/(r - 2x) for x sufficiently close to 7/2. Rewriting the formula of
Theorem 4.3, we see that

(p-3)/2

7,.p) =1 +——2("1) kEo (tan ( P

>2n+2

b —1-k>n/p

(p-3)/2

p =0 m 2k + 1

Py So 7 2k +1

- 2(_1)n p2n+1 (22n+2 _ 1)§(2n + 2)/ﬁ2n+2 )

(Here ¢ denotes the zeta function.) Using the formula £(2i) = 221-1 B; 7%1/(21)1, we
obtain the following result.

COROLLARY 4.5. For n fixed and p — =,

Bnii
Tan(p) ~ (-DP2ENTE (20T 1) e pn el
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Remark 1. It is amusing to note that for the special case of interest in Section
3, namely Q;090(1093), the signature has approximately 3100 digits.

Remark 2, We can also prove Corollary 4.4 from the relation

tanh px )

7,.(p) = Tes,_g (m

by substituting the expression
o0

tanh px = 2 (-1)i1 221 (921 _ y)

i=1

B;

Ehl pZi—l x2i-1

n

This gives 7, (p) = 27 a,; p2itl  where
. j:O

. _ Bii x2j+1
L= (-1} 92j+2 (92j+2 _ 1) _*1 (____)
Anj (-1’2 (2 D (2j +2)! T€8x=0 (tanh x)2n+2 /°

In particular,

B
- (_l)n 22n+2 (2Zn+2 ntl

a “Ventor -

nn

Remark 3. Although we have considered 7,,(p) only in the case where p is an
odd prime, it is clear that the techniques used in this section can be used to obtain
estimates for 'an(q), where q is any positive integer. For even values of q the re-
sults are slightly different.

5. In this last section, we make some remarks concerning the preceding compu-
tations.

Hirzebruch and Zagier [7] have recently published work in which they have com-
puted the invariants x¥(Q,(q)) in terms of certain combinatorial quantities. Specifi-

cally, let ﬁk+ 1 denote the number of partitions of (k + 1)q into n + 2 parts, not ex-
ceeding q - 1. Then

ﬁkﬂ =#{0<a;,a,, ~,a,<ala;ta,+-+a ., =(k+1qf.
Hirzebruch and Zagier have shown that
XEQ (@) = (DX + ()P RN,, .
By virtue of the results in Section 2 about the cohomology of Qn(q), this shows im-

mediately that when n is sufficiently large (k fixed), hk.n-KQ (q)) = 0. Moreover,
comparing their result with the formula obtained in Theorem 2.7 we see that

k
Ny = tZ:?O o ("F2) (q(k -tn++1)1+t -1y,

The signature of Q,,(p) is also related to two other topological invariants. The
first is the signature of the Brieskorn variety V given by
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V = {(ZO, Z]’ ey Zzn) € Czn‘i'].l Zg_l_ cue +Z12)n: 1} .

We easily see that

sign (Qan(p)) = 1 +signV,

by decomposing Qz,(p) into a tubular neighborhood of Q,,,_;(p) € Q,,(p), which has
signature 1, and the complement, which is essentially V. (See [7, page 203].)

The second related invariant is the Browder-Livesay invariant of a certain lens
space. Consider S%7*3 ag the unit sphere in €272, Let the cyclic group of order
p act on S4nt3 py

(Zo, Zy, """, Zzn+1) = (CZQ, €z, -+, CZZnH)’

and let L(p; 4n + 3) denote the orbit space. The antipodal map induces a free involu-
tion T on L(p; 4n + 3). If a(T; L(p, 4n + 3)) denotes the Browder-Livesay invariant
of this involution, then

sign Qo (p) = 1+ a(T; L(p, 4n + 3))

We can see this either by comparing the formula for an(p) developed in Section 4
with the results of [5], or more directly, by noting that L(p, 4n + 3) is the sphere
bundle of yP, which implies the relationship after calculation. Naturally, one might
hope to reduce these two invariants modulo p2 and p3.

Are these curious and perhaps unexpected results merely accidents, or do they
follow from some deep relationship between the topology of Fermat surfaces and
their numerical invariants? We do not know. Certainly, other mathematicians have
obtained similar results. The G-signature theorem, in particular, has led to the
discovery of a number of such relationships [7]. Perhaps a better understanding of
the topology of Fermat surfaces will shed new light on long-standing problems in
number theory.
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