THE CURVATURE OF oI+ BII+ vIII ON A SURFACE
IN A 3-MANIFOLD OF CONSTANT CURVATURE

Tilla Klotz Milnor

1. INTRODUCTION

There has been growing interest during recent years in the differential-
geometric properties of nonstandard metrics on immersed surfaces. This interest
has centered on the study of the geometry of the second and third fundamental forms
II and III on compact surfaces in Euclidean 3-space E3. (See [10] for an extensive
review, or [12], [17], [18], and [21].) However, in [3] and [4], N. V. Efimov obtained
impressive results about open complete surfaces in E3 by studying the properties of
the metric |K| I, where I is the first fundamental form and K is Gauss curvature.

In this paper, we consider a surface immersed in a Riemannian 3-manifold of
constant curvature, and for arbitrary constants «, 8, and vy, we compute the curva-
ture of the (not necessarily Riemannian) metric A = I+ gII + yIII wherever A is
nondegenerate. Our formula extends work due to N. Hicks [5] and J. A. Wolf [23],
and it yields as a minor byproduct the fact that the curvature K(II) on such a sur-
face is just the ratio of intrinsic to extrinsic curvature. It is remarkable that this
simple formula (which can easily be verified directly) seems to have first appeared
in the literature just recently as a special case of a more general result due to
B. Wegner [22].

The applications included in this paper are fairly pedestrian. Perhaps others
will find more significant uses for our formulas. But we hope this article will en-
courage the study of metrics other than I, II, and III that are nonetheless deter-
mined by the immersion of a surface in some Riemannian 3-manifold. (See [13],
[14], and [15].) The goal of such efforts should be the accumulation of information
useful in solving problems in-the-large.

2. THE BASIC COMPUTATION

Suppose X: S — # is a C3 immersion of a surface S in some Riemannian 3-
manifold .4, and that v is a unit normal vector field on the immersed surface. Let
D denote the covariant differential in .« [6, p. 56] and let - denote the inner product
provided by the Riemannian metric on .# [6, p. 21]. Then there are two restrictions
[16, p. 527] on the fundamental forms

I

DX - DX = Edx2 + 2F dxdy + G dy?,
II = -DX - Dy = Ldx2 + 2Mdxdy + Ndy?

of the immersion. First, the intrinsic curvature K(I) [6, p. 29] of the official
Riemannian metric I on S is related to the extrinsic curvature
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K = (LN - M2)/(EG - F2)
by the Gauss equation
(1) K1) = & +K,
where <4 is the sectional curvature of -# associated with the tangent plane to the
immersed surface at any point [6, p. 73]. Second, the Codazzi-Mainardi equations
must be satisfied. If .# has constant sectional curvature ¢, then the Codazzi-
Mainardi equations are the same [11, p. 144] as they are in the classical case when

4« = E3 . One can verify, using the Weingarten equations [16, p. 524] that the
familiar relation

(2) III = 2HII - KI

still holds, where III = Dv - Dv is the third fundamental form and H is mean curva-
ture on S, given by

2H = (EN + GL - 2FM)/(EG - F?).

If k) and kp, are the principal curvatures on S, then K =k k; and 2H =k; +k;.
We shall use the notation 2H' = |k, - k; | and 2H" =k, - k;, so that

H = JH2 -K = |H"].

Umbilics occur on S wherever H' (or H") vanishes.

For the moment, assume that S is C*-immersed in .. Then in the neighbor-
hood of each nonumbilic on S there are C® line-of-curvature coordinates x, y such
that

I=Edx®+Gdy2, I =k;Edx®+k,Gdy2, I = k%Edx®+k5Gady?.
The classical formula [20, p. 141]
(3) 4(EG)2K(I) = Gy(EG)y + Ey(EG)y - 2EG(Gyy + Eyy)
gives K(I). Setting €, =a +8k; + yk% and €, = a + gk, + yk% , we obtain the formula
A=ol+BII+yII =g Edx? + £, Gdy?,
so that the equation
4(e, €, EG)2K(A) = (e,G), (e, &, EG),
@ . + (g E)y(s1 €5 EG)Y - 26,8, EG[(e, Gy, + (g E)yy]

gives K(A) wherever €&, # 0. The Codazzi-Mainardi equations reduce (20, p. 149]
to

(5) (k)G = -H"G,, (k) E =H"E,.
If we set € = o + BH + yK, then (5) gives the equations

(6) (e2G)x = Gy, (e1E)y = eEy,
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so that substitution of (8) in (4) yields the formula
4(e, £,)° EGK(A) = 4eg, £, EGK(I)
(7
+¢[Gyle) e2)x + Ey(e) £2)y] - 281 £2(ex Gx + ey Ey).
Using the values for G, and Ey provided by (5), we get

2(e1£2)%K(A) = 2ee, £, K()

dk k n
2 _ e a S| _ e OK dH
(8) + (8 4a7){dsl [(B + yH)K as, log K, vH as; + 200 as;
dkl d kl , dK dg"
+a§£|:(ﬁ+’yH)Ka?2‘10g EE +yvH ds, - 2a ds, ,

where d/ds; = (1/VE)3/ax and d /s, = (1/VG)a/ay are the directional derivatives
in the principal directions dy = 0, dx > 0 and dx = 0, dy > 0, respectively.

Suppose now that S is only C%*-immersed in . Then K(A) is defined and
continuous wherever A is nondegenerate. Note that A is degenerate if and only if
€1 €, = 0. At an umbilic, € =¢; =&,, sothat A is degenerate if and only if £ = 0.
Of course, we cannot automatically use (8) to compute K(A) at nonumbilics where
£1&, # 0, since line-of-curvature coordinates need only be C2-smooth.

On a C*-immersed S, it will be convenient to distinguish as regular any um-
bilic in whose neighborhood there exist C3 coordinates orthogonal with respect to
both 1 and II. (Every interior point of the umbilic set on S is regular, for exam-
ple.) The set containing all nonumbilics and all regular umbilics will be called the
vegular set. Note that the regular set is open and dense on S.

3. RESULTS

Throughout this section, S denotes a surface C*-immersed in a C® Riemannian
3-manifold -# of constant curvature <. As in Section 2, we set A=al+ I +yIII
for constants «, B, and y, with

£=a+PH+K, & =a+pk; +1k}, &,=a+pk, k3.

In the neighborhood of each nonumbilic on S, d/ds; and d/ds, are unit tangent vec-
tor fields in the appropriately oriented principal directions associated with the prin-
cipal curvatures k; and k,, respectively. The following theorem is the main result
of this paper. (A generalization of this theorem for hypersurfaces of arbitrary di-
mension in Riemannian manifolds of constant sectional curvature has recently been
obtained by J. D’Atri in [2].)

THEOREM. Af a nonumbilic wheve €€, # 0, the curvature K(A) is given by
(8). At vegulay umbilics where € # 0,

(9) K(A) = K(I)/¢ .

Pyoof. Let p be a nonumbilic point on S where g, &, # 0. Consider a C*-
immersion X: U — .#, where U is some neighborhood of p on S. Choose X so that
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the nth partial derivatives of X and X at p (with respect to local coordinates near
p) agree for n=0, 1, 2, 3, and 4. It follows that at the one point p, the forms I, 1I,
and III as well as the curvatures H, K, H', H", k;, and k; must coincide for the two
immersions X and X. In particular, p is nonumbilic for X with £1e€2 # 0. More-
over, K(A) exists and must be the same for both X and X at p. Finally, everything
on the right side of (8) makes sense for X as well as for X near p, and the right
side of (8) must be the same when computed for the two immersions at p. But our
previous computations show that (8) gives K(A) at p for X. Thus (8) also gives
K(A) at p for X.

If € # 0 at a regular umbilic that is not an interior point of the umbilic set, then
(8) holds at a sequence of nonumbilics converging to p. By continuity, (8) holds also
at p. Since H" =0 at p, (5) shows that dk,/ds) = dk; /ds, = 0 at p, so that (9) is
valid there.

If p is an interior umbilic on S, use C3 coordinates X, y in some neighborhood
of p that are orthogonal with respect to both I and II. Then (5) and (6) are valid
with €, = €, = €. Hence (7) easily reduces to (9). (For a discussion of all-umbilic
portions of S, see [19].)

Remark 1. If ¢ # 0 at a nonregular umbilic p that is a limit point of regular
umbilics on S, then (9) still holds at p, by continuity. To find K(A) at any other
nonregular umbilic where € # 0, choose a sequence of nonumbilic points converging
to p, and take the limit of the values K(A) provided by (8) at the points of the se-
quence. This process will not always yield the value given by (9). (See Remark 10,
or Corollary 11 below.)

Remark 2. If H is constant on S, computation reduces (8) to the equation
(,€,)°K(A) = g€, £, K1) + (B2 - 4ay)(2yH% + BH - YK + @) |grad k; |2 (i=1, 2).

(See Corollaries 2 and 11.) Simplifications of (8) also occur if 82 = 4ay, if K, H",
ki, ky, or k; /kz is constant, or if S is a surface of revolution in a complete,
simply connected .#. (See Corollaries 4, 10, 12, and 13.)

The following extends a result due to Wolf [23].
COROLLARY 1. If € = 0 on S, then K(A) = 0 wherever €€, # 0.

Proof. Here A is degenerate at every umbilic, since £ = 0. Thus (8) applies
wherever €)¢; # 0, and further computation yields K(A) = 0. (If the immersion is
smoother, K(A) = 0 follows easily from (7).)

Corollaries 2 and 3 extend results due to Hicks [5] and Wolf [23].

COROLLARY 2. If H is constant, and if S is C%-immersed in ., the metric
A = -HI + 1 is flat and indefinite. If H = 0 (so that S is minimal), 11 is flat and in-
definite whevever K # 0.

Proof. Because H is constant, one can choose coordinates on S so as to make
its immersion C*. (We thank Joel Spruck for this fact, and for the reference [7].)
Apply Corollary 1 with @ = -H, 8 =1, and y = 0. One easily verifies that A is in-
definite at nonumbilics and degenerate at umbilics. If H= 0, then A =1I and K <0,
with umbilics characterized by K = 0.

Remark 3. In Corollary 2, A is not the flat metric H'I studied, for example, in
[11] and [24]. For suitable coordinates X, y near any nonumbilic, A = dx2 - dy?2
while H'I = dx2 +dy2. (See [11].)
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COROLLARY 3. If K is a nonzero constant on S, then away from umbilics, the
metric A = -K1 + 111 is flat, definite wheve K < 0, and indefinite wheve K > 0.

Pyroof. Apply Corollary 1 with a = -K, 8 =0, and y =1. Simple arithmetic
based on (2) shows that A is degenerate at umbilics, definite where K < 0, and
indefinite where K > 0.

COROLLARY 4. If o and y ave nonnegalive constants, then whevever
e=a+2VayH+yK # 0 on S, the curvature of A = ol £+ 2V ayIl + yIIl is given by
the equation

(10) K(A) = K1) /e .

Proof. Apply the Theorem with B2 = 4ay. Here g, = (Ve + V7k;)? and
g, = (Va + Vyk,)?, sothat £¢&5 = g2, If ¢ # 0 at a nonumbilic, then £, # 0,
and (8) reduces to (10). At regular umbilics, €; = €, = €, so that (10) simply re-
states (9) if ¢ # 0. Because the regular set is dense on S, (10) holds wherever
€1 &, # 0, by continuity.

Remark 4. 1f K = 0 in Corollary 4, then A = oI+ 2(yH + Vay)II and
€ =a+2VayH. If H is bounded, one can take @/y so large that (10) holds every-
where. If K(A) is constant and K = 0, then either K(I) = & is zero by (1), or else
H is constant. The first case occurs for every developable surface in E3. The
second case (H constant, K = 0, and & # 0) can occur only for totally geodesic
surfaces, so that H = K = (.

Remark 5. If H= 0 in Corollary 4, then A = (& - 9K)I + 2V ayII and
£ =a + vK. If K is bounded, one can take @/y so large that (10) holds everywhere.

We thank J. D’Atri for pointing out that the following is a special case of a
result in [22].

COROLLARY 5. Wherever K # 0, K(III) = K(I)/K.
Proof. Apply Corollary 4 with @ =0 and y = 1.

Remark 6. Using (1) and Corollary 5, we see that K(III) = 1 + ( &# /K). Thus
K(II) = 1 if and only if < = 0. (For a surface in E3, III is the pull-back of the
metric on the unit 2-sphere under the Gauss spherical-image map.)

Remavk 7. If S is immersed in the unit sphere .« = &3 c E#, the unit normal
to S describes a surface S in 3 called the polar surface of S. Wherever K # 0
on S, 8 is nondegenerate and its first fundamental form pulls back to III on S. (We
thank S. S. Chern for reminding us of this.) Note that S and § have the same intrin-
sic curvature, wherever K =1 on S.

Remark 8. If K # 0, then III is flat if and only if I is flat, and K(III) is con-
stant if and only if < /K is constant.

COROLLARY 6. Suppose IIl is complete, and x/K > c - 1, wheve ¢ > 0 is”
constant and K # 0. Then S is compact, while K, K({I), and the Eulev charactevistic
X of S ave all strictly positive.

Proof. Here (1) and Corollary 5 yield the equation
(11) KII) = (x/K)+1>c¢c > 0.

Since III is complete, the Bonnet-Hopf-Rinow theorem [9] implies that S is com-
pact. By (11), the total curvature of IIl on S must be positive. Thus x > 0, by the
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Gauss-Bonnet theorem, and the total curvature of I on S must be positive as well.
Since K never changes sign, while K(III) = K(I)/K > 0, it follows that K(I) never
changes sign. Thus K(I) is positive, and so is K.

COROLLARY 7. If a and y are nonnegative constants, while
A=ol+2Vayll+yIl and € =a +2VayH+yK # 0 on S, then

S SK(A) dA, = (sign &) 5 SK(I)dAI.

In particular, if K+ 0 on S, then

5 5 K(I) dAy; = (sign®) | xmaay.

Proof. The element of area associated with A is the square root of the absolute
value of its determinant. Thus it is easy to verify that dA, = |¢|dA;. Using Corol-
lary 4, we see that

§§rwyaay = § § x _I_z_l dAr = (signe) | | KM aar.

In particular, when A =III, then ¢ = K.

COROLLARY 8. If K< 0 and S is compact, then the Eulev charactevistic x of
S is zevo, and A > 0.

Pyroof. By the Gauss-Bonnet theorem, the total curvatures T(I) of I and T(II)
of III both equal 2IIx. By Corollary 7, T(I) = -T(II), so that T(I) = T(III) = x = 0.
(One can also deduce that X = 0 from the fact that S is umbilic-free. See [20, p.
244].) If o <0, (1) would imply that K(I) < 0, yielding the contradiction T(I) < 0.

Remark 9. The hypotheses of Corollary 8 are satisfied, for example, by a flat

torus in the 3-sphere.
COROLLARY 9. Af nonumbilics where K # 0,

) *3s, dsz I }

(13) K(I1) = (H/K)K({) = HK(III)

k;
k;

(12) K@) = (H/K) KD + 1/41{){dk (o 106

At regular umbilics wheve K # 0,

Pyoof. Use the theorem with @ =y =0 and B = 1, and for (13), apply Corol-
lary 5.

Remark 10. By the procedure indicated in Remark 1, K(II) can be found at all
nonregular umbilics where K # 0. Note that (13) need not be valid at all suc_h points.
If the equation z = f(x, y) describes a surface in E3 with = I, = f =1, xy = =0 and
f..=1f,, at x=y =0, then K(II) is defined at the umbilic x=y = z = 0 -and given by

Yy
(13) if and only if H # 0 and fyy(fyyy = fxxy) = fyyslfyyx - f3x0d. In particular, (13)
fails at the umbilic x =y =z = 0 on the surface described by

z = X%+ xzﬂy‘-‘l—’ y2+(y3/3).



CURVATURE OF «al+8II+yIO0 ON A SURFACE IN A 3-MANIFOLD 253

Remark 11. In [5], Hicks obtained (12) with K = K(I) at nonumbilic points of a
surface C*-immersed in E3. (Note that Hicks takes H = k; + k,, which is twice
our H.) In obtaining (8), we were guided by Hicks’s formula.

COROLLARY 10. If k; = cky for a constant c # 0, then K(II) is given by (13)
whevever K # 0.

Pyoof. If ¢ # 1, there are no umbilics, and where K # 0, (12) applies, reducing
to (13) since k; /k, and k, /k; are constant. If ¢ =1, S is totally umbilic, and (13)
holds wherever K # 0.

If H is constant on S, and II = L du + 2M dudv + Ndv2 for isothermal coordi-
nates u, v on S, then ¢ =L -~ N - 2iM is an analytic function of w = u + iv whose
zeros coincide with the umbilics on S. Thus, if S is not totally umbilic, its umbilics
are isolated, and the index of an isolated umbilic p in the net of lines-of-curvature
is -n/2, where n is the order of the zero of ¢ at p. (See [8].) This leads to the
following extension of a result of Hicks [5].

COROLLARY 11. Suppose that H is constant, and S is C%-immersed in A .
At a nonumbilic wheve K # 0,

(14) K(I) = H{K(I) + (1/2K?) |grad k; [} (=1, 2).

At an umbilic wheve K # 0, K(II) is given by (13) unless the umbilic is isolated and
has index -1. Wherever K = 0, K(II) > HK(III).

Proof. Once again, we can choose coordinates on S so that its immersion is
C®. (See [7].) At a nonumbilic, dk; /ds] = -dk2 /ds; and dkj /dsz = -dkp /ds2,
since k) +k, is constant. If K # 0 at a nonumbilic, (12) reduces to (14), and
K(II) >HK(III). If umbilics are isolated, K(II) > HK(III) wherever K # 0, by con-
tinuity. Otherwise, S is all-umbilic, and K(II) = HK(III). In some neighborhood of
each isolated umbilic p, there are isothermal coordinates x, y in terms of which
¢ = 4z" , where n > 0 is an integer, and z = x + iy vanishes at p. (See [1].) Since
I =x(dx%+ dy?) and

II = (\H + 2 Rzm)dx2 - 4 z"dxdy + (\H - 2 ftzP)dy?2,
computation of K(II) at p yields the formula

K(II) = HK(II) + (1/AH)%( R z")

XX’

if K# 0 at p. But (®#2%),, =0 at z=0 unless n=2. Thus if K# 0 at p, (13)
fails if and only if the index of p is -1.

COROLLARY 12. If either principal curvatuve is a constant c, then whevever
K # 0, K(II) > HEK(1I1) if ¢> 0, and K(II) S HK(III) if ¢<O.

Proof. We may assume that k; = c¢. At nonumbilics where K # 0, (12) implies
that

K(I) = HK(II) + (1/4ck3) (dk, /ds; ).
Since the corollary holds on the regular set, which is dense on S, a continuity argu-
ment completes the proof.

COROLLARY 13. Suppose that 4 is complete and simply connected, and that
S is a suvface of revolution. Let k; denote principal curvature in the divection of
mevidians. At every nonumbilic where K # 0,
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ko

(15) K(II) = HK(II) + (1/4K) [ % ( d_(si-z log

)}

Proof. Along each parallel, k; is constant. Thus (12) gives (15) at every non-
umbilic. If K # 0 at an umbilic p off the axis of revolution, then p is regular, so
that (13) holds. In case K # 0 at an umbilic p on the axis of revolution, pick a
meridian ending at p, and continue along its opposite meridian leaving p. Para-
metrize the smooth arc p so obtained by arc length s, with s =0 at p. Then k;
and k, are even, differentiable functions of s along u, so that dk; /ds = dk, /ds = 0
at s = 0. But (15) holds on pu for all small values of s = s; > 0, reducing to (13) at
umbilics. Computing the limit of K(II) along p as s = s; > 0 goes to zero, we get
(13) at p.

At every umbilic wheve K # 0, K(II) is given by (13).
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