REDUCTIVE OPERATORS THAT COMMUTE
WITH A COMPACT OPERATOR

Robert L.. Moore

A bounded operator T on a Hilbert space & is reductive if every invariant
subspace of T reduces T. It is well known that every reductive operator is normal
if and only if every operator has a nontrivial invariant subspace [4]. In 1963, T.
Andd [1] showed that every compact reductive operator is normal, and in 1968 P.
Rosenthal [10] was able to extend this result by showing that every polynomially
compact reductive operator is normal. In this paper we use the work of V. I..
Lomonosov [7] to generalize these results; the principal theorem is that a reductive
operator that commutes with an injective compact operator must be normal.

Rosenthal [11] has recently shown that if an injective compact operator is con-
tained in the commutant of a reductive algebra, then the reductive algebra must be
self-adjoint. In addition, recent papers by E. Azoff [2] and A. 1. Loginov and V. S.
Sul’man [6] contain generalizations of Rosenthal’s result. Rosenthal’s theorem is
stronger than our Theorem 1; however, the techniques used herein are quite differ-
ent from Rosenthal’s, and several of the intermediate results are of interest in
themselves. The proof of the first proposition is essentially in [1] and [10]; we
include it here for completeness.

PROPOSITION 1. Let C be a nonzevo compact opevator. Let G be a family of
subspaces with the followi:g properties:

(i) ¢ is totally ovdeved by veverse inclusion;
(ii) each subspace - in G reduces C;

(iii) for each 4 in 4, ||C || =|c].

Then the intevsection M = N ¢ is nonzero and lclz,| =]c].

Proof. For each .« € 4, C | A is a compact operator, and since a compact
operator achieves its norm, there is a unit vector f_,, € .# such that
Ict il = llc || = |c|l. Because the f_, all lie in the unit ball of the Hilbert
space and the unit ball is weakly compact, there is a weak cluster point f; of the set
{fd,/} “in the unit ball. We consider {f ,/,,} as a net, indexed by the totally ordered
set @ ; some subnet of {fu//} converges to fp, and we assume without losing gen-
erality that the full net {f 4| convergesto fy. Since C is compact, Cf , — Cfy in

norm, whence |[Cfo] = |C||; because C is nonzero, £y is nonzero. Moreover, for
each .« ' in ¢, the tail of the net {fU{[} lies in %' (since ¥ is ordered by re-
verse inclusion), so that fg lies in .# (. Thus ¢ is nonzero and

lelaol = Jef.
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We shall call a pair of operators {B;, By } completely veducible if, whenever
A/ reduces both B, and B;, and dim .# > 2, then ./ properly contains a nonzero
subspace that reduces B; and B; .

PROPOSITION 2. Let C be a nonzevo compact opevatov. If the set {B, C} is
completely rveducible, then B and C have a common veducing eigenvector.

pProof. Let €' = {.#: . reduces B and C and ”C l,/I/ ” = ”C”}, partially
ordered by reverse inclusion. By the Hausdorff Maximality Principle, there is a
maximal totally ordered subset of %', which we call ¥. Let .# ¢ = n Y. Then Ao
reduces B and C, and according to the previous proposition, .# ¢ is nonzero and
”C lu//o |[ = HC H If dim .#¢y > 2, complete reducibility gives a proper subspace
A" of g that reduces B and C. Since |C|| = |[C|.#p ” is the larger of
IC|aw|| and ||C|#o@ "], either ' or Mo O ' lies in €' and is
strictly smaller than .« g, and this contradicts the construction of ¢ and #g.

Thus dim .#y< 1, and since # is nonzero, the dimension must be 1. Hence
each unit vector in .# ¢ must be a common reducing eigenvector for B and C.

LEMMA 1. Suppose that R, S, and X ave operators on o fov which R® S
is reductive and RX = XS. Then R*X = XS* as well (that is, if X inteviwines R and
S, it also intertwines R* and S¥*).

Proof. The set A = {(Xf, f): fe o} is a subspace of # ® o. It is in-
variant under R @ S, because

(R 0) (Xf) _ RXf) - (%)
0 S f Sf St/
Since R @ S is reductive, .# is invariant under (R @ S)*. Thus, for each

k
f € o7, the vector (g* fo) must lie in .} it follows that R*Xf = XS*f for all f.

A subspace . is hypevinvariant for an operator A if .4 is invariant for
every operator in the commutant of A. If .# reduces every operator in the com-
mutant of A, we call .« hyperveducing for A.

PROPOSITION 3. If A is rveductive, then every hyperinvariant subspace of A
is hyperveducing.

Proof. Suppose that - is hyperinvariant for A, and suppose that B commutes
with A. Then # is invariant under B, and with respect to the decomposition
M @D A+ we can write A and B as operator matrices as follows:

R O E F
A=( ) and B = .
0 S 0 G

Since AB = BA, it is true that-RF = FS, and by Lemma 1, R*F = FS* as well. The
last equation is the same as F*R = SF*, and this means that A commutes with the

operator
0 0
p-( .
F* 0
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But -# is hyperinvariant for A, and hence is invariant under D. Thus F*=0, or
F =0 and -# reduces B.

An equivalent statement of Proposition 3 is that the commutant of a reductive
operator is a reductive algebra. In [6], Loginov and Sul’man announce the following
theorem: The commulant of a commutative veductive set of operators is reductive.
The latter result can be proved by means of essentially the technique that is em-
ployed in the proof of Proposition 3.

We can now prove the central result:

THEOREM 1. If A is veductive and C is an injective compact opevator that
commules with A, then A is diagonal, and hence normal.

Proof. Let & be the subspace spanned by all the eigenvectors of A. Then &
is invariant under C, and since each eigenvector of A is an eigenvector of A* the
subspace € reduces C. Let A; and C; be the restrictions of A and C to &+.
Then A; and C; satisfy the hypotheses of the theorem, and A; has no eigenvalues.
Assertion: The pair {A;, C;} is completely reducible. Reason: Let .# be a sub-
space of &', with dimension no less than two, that reduces A; and C;, and let A,
and C, be the restrictions of A; and C; to .#. Then A, is nonscalar (since A,
has no eigenvalues) and C, is a nonzero compact operator that commutes with A, .
Lomonosov’s result [7] therefore implies that A, has a hyperinvariant subspace,
which by the preceding proposition is hyperreducing and therefore reduces A; and
C,. Thus {A,, C;} is completely reducible. But then, by Proposition 2, A| and
C, have a common reducing eigenvector. This last statement contradicts the con-
struction of A;. We deduce that &1 = 0, and therefore that A is diagonal.

We point out that in order to prove Theorem 1, we need some restriction on the
kernel of the compact operator. Simply requiring C to be nonzero is not sufficient;

for instance, if C has the form (I(){ g ) and if A is (lg g), then the fact that
AC = CA yields no information about S at all.
The previously mentioned theorem of Rosenthal follows easily from Theorem 1:

COROLLARY 1. If A is reductive and polynomially compact, then A is nor-
mal,

Proof. Let p(A) = C be compact, and let & = ker C. Then, since AC = CA, we
see that & reduces A, and therefore A reduces C. The operator A l A+ com-
mutes with the injective compact operator C | -1, and thus A | o 1 is normal, by
Theorem 1. On the other hand, p(A | ) =C | H = 0; that is, A ! S is algebraic, so
that A | ¢ is normal, by Lemma 9.3 of [9]. Hence A itself is normal.

It is obvious from Theorem 1 that if A is reductive and commutes with an in-
jective compact C, then A* commutes with C. In fact, for this result it is possible
to dispense with the hypothesis of injectivity.

THEOREM 2. If A is veductive and commutes with a compact operator C, then
A* commutes with C.

Proof. Let .# be the largest subspace of the kernel of A*C - CA* that is in-
variant under A and C. We shall show that .# 1 is the zero subspace. Using the
decomposition & = .« @ .« +, we write A and C as operator matrices:
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Commutativity requires that R commute with E, that S commute with G, and that
RF = FS; and, by construction of .#, the operator R* commutes with E as well.

We assert that ker G = 0. To establish this, note that ker G and 4 are invariant
under A (since S and G commute), and therefore .# @ ker G is invariant under A.
Further, it is clear from the matrix computation that C takes every vector in ker G
into A ; thus, .# @ ker G is also invariant under C. Finally, matrix computation

shows that if g lies in ker G, then
(a*xC - ca®) {0, g) = { (R*F - FS*)g, -GS*g ).

Since RF = FS and R ® S is reductive, Lemma 1 shows that R*F = FS*. More-
over, S commutes with G, so that ker G is invariant under S, and hence under S*
(S being reductive), whence GS*g = 0. Therefore, ker G is contained in

ker (A*C - CA*). We have shown that .# @ ker G is invariant under A and C and
that it is a subspace of ker (A*C - CA*); but .# is maximal among such subspaces.
Hence it follows that ker G = 0.

S is a reductive operator, and it commutes with the compact operator G, which
we have shown to be injective. Theorem 1 then asserts that S is normal, and the
Fuglede theorem ensures that S* commutes with G. We already know that
R*F = FS* and that R* commutes with E. These three facts suffice to show that
A*lcommutes with C on all of H. By our choice of .#, we can conclude that
A =0,

Corollary 2 is a previously announced result of the author [8]:

COROLLARY 2. If a reductive opevator A is the sum of a novrmal operator and
a commuting compact opevator, then A is normal,

Proof. Let A =N + C, where N is normal, C is compact, and NC = CN. Then
AC = CA; thus, by Theorem 2, A*C = CA*. Furthermore, N*C = CN*, by the
Fuglede theorem. It follows that C*C = CC*, so that C is normal and A, being the
sum of commuting normal operators, is normal.

Two possibilities for extending Theorem 1 suggest themselves:

1. If C is an injective compact operator, if B is nonscalar, and if AB = BA and
BC = CB, then Lomonosov’s result ensures the existence of an invariant subspace for
A. Question: If A is reductive and B has no eigenvalues of infinite multiplicity, is
A normal? (The restriction on the eigenvalues of B is necessary for reasons
similar to those in the paragraph following Theorem 1.)

2. Recently, H. Kim, C. Pearcy, and A. Shields [5], generalizing the work of
J. Daughtry [3], have shown that if C is a nonzero compact operator and AC - CA
has rank 1, then A has a hyperinvariant subspace. Question: If A is reductive and
C is injective, is A normal?
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