THE MARX CONJECTURE FOR SOME ALPHA-CONVEX FUNCTIONS

Ronald J. Leach

A function $f(z) = z + a_2 z^2 + \cdots$ analytic and univalent in the unit disc U is said to be *starlike* if

$$\Re \frac{z f'(z)}{f(z)} > 0 \quad (z \in U).$$

Let S^* denote the class of starlike functions. In 1933, A. Marx [3] conjectured that if $f \in S^*$, then $\log f'(z)$ is subordinate to $\log k'(z)$, where k(z) denotes the Koebe function $z(1-z)^{-2}$ for |z| < 1. (If g is subordinate to h, we write g < h.) Several authors have shown that

$$\log f'(z) < \log k'(z)$$
 $(|z| < r)$

for various values of r. However, in 1972, J. A. Hummel [2] showed, using a computer, that counterexamples exist for r > 0.94.

For each real α , let $C(\alpha)$ denote the family of functions $f(z)=z+\cdots$ analytic in U with $f'(z)f(z)/z\neq 0$ in U such that

$$\Re \left\{ \alpha (1 + z f''(z)/f'(z)) + (1 - \alpha) z f'(z)/f(z) \right\} > 0 \qquad (z \in U).$$

Functions in $C(\alpha)$ are called α -convex (P. T. Mocanu [6]). The families C(0) and C(1) are the families S^* and C of univalent, normalized starlike and convex functions, respectively. It is known that

- (i) $C(\alpha)$ consists only of univalent starlike functions,
- (ii) $C(\beta) \subset C(\alpha)$ if $0 \le \alpha < \beta$,
- (iii) if $\alpha > 0$ and $f \in C(\alpha)$, then there exists a $\sigma \in S^*$ such that

(1)
$$f(z) = \left(\frac{1}{\alpha} \int_0^z \sigma^{1/\alpha}(\xi) \, \xi^{-1} \, d\xi\right)^{\alpha}$$

(see [5] for (i), and [4] for (ii) and (iii)).

In many instances, the function

$$f_{\alpha}(z) = \left(\frac{1}{\alpha} \int_{0}^{z} k(\xi)^{1/\alpha} \xi^{-1} d\xi\right)^{\alpha} \quad (\alpha > 0)$$

is the solution to an extremal problem in $C(\alpha)$. R. Barnard and J. L. Lewis [1] have shown that if $\alpha \geq 0$ and $f \in C(\alpha)$, then

Received February 20, 1975.

Michigan Math. J. 22 (1975).

$$f(z)/z \prec f_{\alpha}(z)/z \quad (|z| < 1)$$
.

(For the case $\alpha = 0$, this was already proved by Marx [3].)

It is natural to consider the analogue of the Marx conjecture for $C(\alpha)$. Following the notation in [2], we define the Marx region for $C(\alpha)$ as the set

$$M_{\alpha}(r) = \{ \log f'(r) | f \in C(\alpha) \}.$$

Also, we let

$$K_{\alpha}(r) = \{ \log f'_{\alpha}(xr) | |x| = 1 \}, \quad D_{\alpha}(r) = \{ \log f(r)/r | f \in C(\alpha) \}.$$

The Marx conjecture for $C(\alpha)$ is that $M_{\alpha}(r) = K_{\alpha}(r)$ when $0 \le r < 1$. Since $M_0(r) \ne K_0(r)$, it follows that the conjecture for $C(\alpha)$ is false, when α is sufficiently close to 0.

THEOREM. Let $f \in C(\alpha)$ $(\alpha \geq 1)$. Then

$$\log f'(z) < \log f_{O}'(z) \quad (|z| < 1).$$

Proof. Using (1), we compute

$$\log f'(z) = (1 - 1/\alpha) \log f(z)/z + (1/\alpha) \log \sigma(z)/z$$
.

The assumption $\alpha \ge 1$ implies that $1 - 1/\alpha \ge 0$, and hence $\log f'(z)$ is a convex combination of $\log f(z)/z$ and $\log \sigma(z)/z$. Fix r(0 < r < 1), and suppose |z| = r. If

$$\sigma(z) \not\equiv x^{-1}k(xz) \qquad (|x| = 1),$$

then [3] $\log \sigma(\mathbf{r})/\mathbf{r}$ is an interior point of $D_0(\mathbf{r})$ and [1] $\log f(\mathbf{r})/\mathbf{r}$ is an interior point of $D_{\alpha}(\mathbf{r})$. Thus there exist neighborhoods N_1 and N_2 of $\log \sigma(\mathbf{r})/\mathbf{r}$ and $\log f(\mathbf{r})/\mathbf{r}$, and contained in $D_0(\mathbf{r})$ and $D_{\alpha}(\mathbf{r})$, respectively.

Using equation (1), we may assume that each element of N_2 comes from an element of N_1 . Since $1/\alpha$ and $1 - 1/\alpha$ are nonnegative, the set

$$N = (1 - 1/\alpha) N_1 + (1/\alpha) N_2$$

is a neighborhood of log f'(r), and hence boundary points of $M_{\alpha}(r)$ occur only if $\log \sigma(r)/r$ is a boundary point of $D_0(r)$, that is, if $f(z) = x^{-1} f_{\alpha}(xz)$. Therefore $M_{\alpha}(r) = K_{\alpha}(r)$, for $\alpha \geq 1$.

Note. For $\alpha = 1$, this result was obtained in [3].

The proof of Theorem 1 breaks down if $0<\alpha<1$, since there exist numbers w_i and r_i (i = 1, 2) such that the circles C_i : $\left|w-w_i\right|< r_i$ are mapped to a set

$$A = (1 - 1/\alpha) C_1 + (1/\alpha) C_2$$

such that $(1 - 1/\alpha) w_1 + (1/\alpha) w_2$ is a boundary point.

REFERENCES

- 1. R. Barnard and J. L. Lewis, Subordination theorems for some classes of star-like functions. Pacific J. Math. 56 (1975), 333-366.
- 2. J. A. Hummel, The Marx conjecture for starlike functions. Michigan Math. J. 19 (1972), 257-266.
- 3. A. Marx, Untersuchungen über schlichte Abbildungen. Math. Ann. 107 (1933), 40-67.
- 4. S. S. Miller, Distortion properties of alpha-starlike functions. Proc. Amer. Math. Soc. 38 (1971), 311-318.
- 5. S. S. Miller, P. T. Mocanu, and M. O. Reade, All α -convex functions are star-like. Rev. Roumaine Math. Pures Appl. 17 (1972), 1395-1397.
- 6. P. T. Mocanu, Une propriété de convexité généralisée dans la théorie de la représentation conforme. Mathematica (Cluj) 11 (34) (1969), 127-133.

Howard University Washington, D.C. 20001