## SEMIFREE INVOLUTIONS ON SPHERE KNOTS

## Chao-Chu Liang

If m is a positive integer, an m-knot  $(S^{m+2}, \Sigma^m)$  consists of an (m+2)-homotopy sphere  $S^{m+2}$  and an m-homotopy sphere  $\Sigma^m$  differentiably embedded in it. A (2n-1)-knot is simple if the homotopy groups of its complement  $S^{2n+1} - \Sigma^{2n-1}$  coincide with those of the circle in dimension less than n. From now on, we assume  $n \geq 2$ .

To each simple knot  $(S^{2n+1}, \Sigma^{2n-1})$  there corresponds an associated Seifert matrix A (see [1], [3]) such that  $A + \epsilon A^T$  is unimodular, where  $\epsilon = (-1)^n$  and  $A^T$  is the transpose of A. The matrix A is determined by a Seifert submanifold V, a 2n-submanifold of  $S^{2n+1}$  that bounds  $M^{2n-1}$ ; and V can be chosen to be (n-1)-connected (see [2]). The normal bundle of  $\Sigma^{2n-1}$  in  $S^{2n+1}$  is trivial. Let  $Y = \text{closure}(S^{2n+1} - \Sigma^{2n-1} \times D^2)$ , and let  $Y_V$  be the (n-1)-connected manifold obtained by cutting  $S^{2n+1}$  along V with  $\partial Y_V = V_+ \cup V_-$  (two copies of V). The matrix A is the matrix for the mapping  $j_+\colon H_n(V_+) \to H_n(Y_V)$ , and the matrix  $(-1)^{n+1}A^T$  is the matrix for the mapping  $j_-\colon H_n(V_-) \to H_n(Y_V)$ , with respect to the bases given by the Alexander duality (see [1], [2]).

Let T be an involution ( $T^2$  = identity) acting differentiably on  $S^{2n+1}$  with  $\Sigma^{2n-1}$  as its fixed points, denoted by (T;  $S^{2n+1}$ ,  $\Sigma^{2n-1}$ ). If ( $S^{2n+1}$ ,  $\Sigma^{2n-1}$ ) is simple, then the orbit space  $S^{2n+1}/T$  is easily seen to be a homotopy sphere, and ( $S^{2n+1}/T$ ,  $\Sigma^{2n-1}$ ) is again a simple knot. The purpose of this note is to determine which simple knot can be realized as the orbit space of such an involution.

PROPOSITION. A simple knot  $(S^{2n+1}, \Sigma^{2n-1})$  is the orbit space of a  $(T; S_1^{2n+1}, \Sigma^{2n-1})$  if and only if both  $A + A^T$  and  $A - A^T$  are unimodular, where A is its Seifert matrix determined by some (n-1)-connected submanifold  $V^{2n}$  in  $S^{2n+1}$ .

*Proof.* Let  $\{W_i,\,V_{+i},\,V_{-i}\}$  (i = 1, 2) be two copies of  $\{Y_V,\,V_+,\,V_-\}$ . Construct a manifold X by joining  $W_1$  and  $W_2$  by gluing  $V_{+1}$  to  $V_{-1}$  and  $V_{+2}$  to  $V_{-1}$ . From the Mayer-Vietoris sequence

$$\longrightarrow H_{q+1}(X) \longrightarrow H_{q}(V_{+1}) \oplus H_{q}(V_{-1}) \xrightarrow{\lambda_{q}} H_{q}(W_{1}) \oplus H_{q}(W_{2}) \longrightarrow H_{q}(X) \longrightarrow$$

we see that

$$H_q(X) = \begin{cases} Z & \text{if } q = 0 \text{ or } q = 1, \\ 0 & \text{if } q \neq n \text{ and } q \neq n + 1, \end{cases}$$

and  $H_n(X) = H_{n+1}(X) = 0$  if and only if  $\lambda_n$  is unimodular. But

Received May 12, 1975.

This research was supported in part by National Science Foundation grant MPS 72-05055 A02.

Michigan Math. J. 22 (1975).

$$\lambda_n = \begin{pmatrix} A & (-1)^{n+1} A^T \\ (-1)^{n+1} A^T & A \end{pmatrix};$$

if we write  $B = (-1)^{n+1} A^T$ , then

$$\det \lambda_n = \begin{vmatrix} A & B \\ B & A \end{vmatrix} = \begin{vmatrix} A+B & A \\ B+A & A \end{vmatrix} = \begin{vmatrix} A+B & B \\ 0 & A-B \end{vmatrix} = \begin{vmatrix} A+B \end{vmatrix} \begin{vmatrix} A-B \end{vmatrix}.$$

Thus  $\boldsymbol{\lambda}_n$  is unimodular if and only if both  $A+A^T$  and A -  $A^T$  are unimodular.

Using the Van Kampen theorem repeatedly, we see that  $\pi_1(\partial X) = \pi_1(X) = Z$ . By means of the Mayer-Vietoris sequence, we can show as above that  $H_1(X, \partial X) = 0$ . The mapping  $\pi_1(\partial X) \to \pi_1(X)$  is surjective, and  $\partial X = \Sigma^{2n-1} \times S^1$ . Construct  $S_1^{2n+1}$  by gluing  $\Sigma^{2n-1} \times D^2$  and X along their boundary. Define an involution T on  $S_1^{2n+1}$  by combining the covering transformation on X and the action on  $\Sigma^{2n-1} \times D^2$  defined by  $(y, re^{i\theta}) \to (y, re^{2i\theta})$ . If  $\lambda_n$  is unimodular, then  $S_1^{2n+1}$  is a homotopy sphere, and the involution  $(T; S_1^{2n+1}, \Sigma^{2n-1})$  has  $(S^{2n+1}, \Sigma^{2n-1})$  as the orbit.

Conversely, given an involution (T;  $S_1^{2n+1}$ ,  $\Sigma^{2n-1}$ ), where ( $S_1^{2n+1}$ ,  $\Sigma^{2n-1}$ ) is simple, we may apply equivariant surgery as in [4] to obtain two (n - 1)-connected Seifert submanifold  $V_1$  and  $V_2$  such that  $TV_1 = V_2$ . The set  $V_1 \cup V_2$  divides  $S_1$  into two parts  $W_1'$  and  $W_2'$  with  $TW_1' = W_2'$ . Thus  $X = \overline{S_1} - \Sigma \times D^2$  can be expressed as a union of the sets  $\left\{W_1, V_+, V_-\right\}$  (i = 1 or 2) as above. Then  $S^{2n+1} = S_1/T = \Sigma \times D^2 \cup Y$ , where Y is obtained from  $W_1$  by gluing  $V_+$  and  $V_-$  together. In the orbit space,  $V_+ = V_- = V$  is a Seifert submanifold for ( $S^{2n+1}$ ,  $\Sigma^{2n-1}$ ). By the first part of the proof, we see that the Seifert matrix A determined by V satisfies the equations  $\det(A + A^T) = \pm 1 = \det(A - A^T)$ .

Remark. Let  $Z_{\rm P}$  denote the cyclic group of order p. Then the argument above also works for other  $Z_{\rm P}$  semifree actions, where

$$\lambda_{n} = \begin{pmatrix} A & B \\ & A & . \\ & & . & B \\ B & & & A \end{pmatrix}$$
 (P copies of A on the diagonal).

In [3], J. Levine introduced some cobordism groups of matrices  $G_+$ ,  $G_-$ , and he showed that for  $n \geq 3$ , there is an isomorphism  $\phi_n$  from the knot cobordism group  $C_{2n-1}$  to  $G_{\epsilon_n}$  ( $\epsilon_n = (-1)^n$ ). A matrix A has the property  $\epsilon$  ( $\epsilon = \pm 1$ ) if  $A + \epsilon A^T$  is unimodular.  $G_{\epsilon}$  is the group of cobordism classes of matrices with property  $\epsilon$  (see [3, p. 231]). Let  $D_{2n-1}$  be the subgroup of  $C_{2n-1}$  consisting of the cobordism classes having a representative ( $S^{2n+1}$ ,  $\Sigma^{2n-1}$ ), a simple knot, that is the orbit space of some (T,  $S_1^{2n+1}$ ,  $\Sigma^{2n-1}$ ). Since every cobordism class contains a simple knot [3], we have the following result.

COROLLARY. For  $n\geq 3,$  under the isomorphism  $\varphi_n\colon C_{2n-1}\to G_{\epsilon_n}$   $(\epsilon_n$  = (-1)^n),  $D_n$  is in one-to-one correspondence with the subgroup  $G_+\cap G_-.$ 

Levine [3, p. 243] showed that  $G_+\cap G_-$  is an infinitely generated subgroup of  $G_+$  or  $G_-$  such that

$$A_{k} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & k & 0 \\ 0 & -k & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (k = 1, 2, ...);

here  $A_k \in G_+ \cap G_-,$  and the  $A_k$  represent linearly independent elements of  $G_+$  .

## REFERENCES

- 1. M. A. Kervaire, Les noeuds de dimensions supérieures. Bull. Soc. Math. France 93 (1965), 225-271.
- 2. J. Levine, Unknotting spheres in codimension two. Topology 4 (1965), 9-16.
- 3. ——, Knot cobordism groups in codimension two. Comment. Math. Helv. 44 (1969), 229-244.
- 4. N. W. Stoltzfus, *Equivariant concordance of invariant knots*. Dissertation, Princeton University, 1974.

Institute for Advanced Study Princeton, New Jersey 08540 and University of Kansas Lawrence, Kansas 66045