COMMON" FIXED POINTS OF COMMUTING HOLOMORPHIC
MAPS OF THE HYPERBALL

T. J. Suffridge

1. INTRODUCTION

Let £ and g be continuous functions on the closed unit disk of the complex
plane, and suppose

(i) £ and g are holomorphic in the open unit disk,
(ii) f and g map the closed disk into itself, and
(iii) f and g commute under the operation of function composition.

In [10], A. L. Shields showed that under these conditions, f and g have a common
fixed point. D. J. Eustice [5] has extended this result to the polydisk in complex 2-
space. W. M. Boyce [1] and J. P. Huneke [8] have independently given counter-
examples to show that two continuous functions that commute and map the closed
unit inferval into itself need not have a common fixed point. In this paper, we extend
the result of Shields to finite-dimensional inner-product spaces.

For a characterization of commuting polynomials, see [9] and [2]. For a more
complete discussion of the history of problems concerning commuting maps, see [1].

2. HOLOMORPHIC IDEMPOTENTS ON THE UNIT BALL
OF A HILBERT SPACE

We shall use the following notation.

(i) H is a Hilbert space (either finite-dimensional or infinite-dimensional)
with inner product ot >;

(ii) B is the unit ball of H, that is, B= {z € H: <z, z ) <1}, and B is the
closure of B;

(iii) «#(B) is the set of functions f: B — B that are holomorphic on B; and

(iv) if f € #(B), then fk is defined inductively for k =1, 2, --- by f! =f and
fk+l =fo fk .

The unit ball B of H is known to be a homogeneous domain (see [3] and [7]).
That is, corresponding to each pair of points u, v € B there exists a function
L € o (B) such that L(u) =v, L is a one-to-one map of B onto B, and L-! is
holomorphic. Such a map is called a biholomorphic map of B onto B. For example,
if we write u in the form u = ab, where |[b| =1 and @ is a complex number such
that ]al < 1, then the map L, defined by
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L,(x) = " _<}1{’ ) ({x-ab,byb+V1-|a]2(x-{x b)D)

is a biholomorphic map of B onto B such that L,(u) = 0. The most general biholo-
morphic map of B onto B that has the value 0 at the point u is T o L;, where T
is a unitary map. For a discussion of maps of this type for other spaces, see [6,
pp. 13-40].

A holomorphic idempotent on B is a holomorphic function f: B — B such that
f2 = f. The holomorphic idempotents on B are characterized in the following theo-
rem.

THEOREM 1. The holomorphic idempotents £ mapping B into B are of the
Jorm

(1) f=LoFoL™l

where L is a biholomorphic map of B onto B, F(B) is the intersection of B with a
linear subspace of H, and F(0) = 0.

Proof. Assume f is a holomorphic idempotent on B. If f(0) = 0, let L be the
identity map, and let F =£. If £f(0) # 0, let b € f(B) (b # 0), and let L be a biholo-
morplic map of B onto B such that L(0) = b. Since f is an idempotent, the equality
f(b) =b holds, and setting F = L-! o f o L, we conclude that F(0) = 0, F2=F, and f
satisfies (1). It remains to show that F(B) is the intersection of B with a linear
subspace of H.

We wish to show that if u, v € F(B), then F(au + 8v) = au + 8v whenever
|eu +Bv| < 1. We begin by assuming u € F(B), u # 0. Then, since F is an idem-
potent, F(u) = u. Let £, € H* be the linear functional £, (x) = <x, u/ "u“> , so that
0,) = |[ull and | 2.]| = 1. Define gla) in |a| <1 by gla) = L (Flau/|ul])), so
that g is holomorphic, g(0) = 0, and Ig(a)l <1 when Ial < 1. Applying Schwarz’s
lemma and using the fact that g(]u]]) = ¢(F(w)) = ¢4(v) = [u]|, we conclude that
g(a) = @ when !al < 1. Thus we have shown that

(2) || = [{Flaw/|u]), w/lul) | < [Fl/lup] < fa],

so that equality must hold in (2). This means that F(au/||u) = au/|ju]| when
|| <1, or equivalently, that F(au) = au when |a| < 1/|ul.

Now suppose v € F(B), and let ¢ and B be complex numbers such that
”au+Bv|| < 1. Then

oG

% FOMau +8v)) = 2 - a1 DK F(0) (au + pv)k

o1 K!
is a holomorphic function of A in the disk { ]7\| < 1}, where
DX F(0) (x)* = DXF(0) (x, %, -, X).
Since DF(0) is linear and u, v € F(B), we know
DF(0) (au + Bv) = a DF(0)(u) + BDF(0) (v) = au +Bv.

By Schwarz’s lemma, |[F(A(eu+pv)|} < |x] |lau+8v|, so that
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||% Fuau +v)|| < Jau+pv],

with equality when A = 0. We now apply the strong-maximum principle of E. Thorp
and R. Whitley [11] to conclude F(A(au + fv)) = A(au + B), where |r| < 1, whenever

[eu+pBv| <1 and u, v € F(B). This completes the proof of the theorem.

THEOREM 2. Let f be holomovphic in B and continuous in E, with £(B) C B.
If £ is an idempotent, then eithev f is given by (1) or { is a constant of norm 1.

Proof. This follows easily from Theorem 1, the strong-maximum principle of
Thorp and Whitley [11], and the observation that the functions L are continuous on B.

3. COMMON FIXED POINTS

Suppose L is a biholomorphic map of B onto B. The following results were
obtained in [7]. The map L takes affine subspaces into affine subspaces (actually,
the intersection of affine subspaces with B), L. extends to an automorphism of B
onto B and has a fixed point in _BT, and if L does not have a fixed point in B then it
has a unique fixed boundary point or it has exactly two fixed boundary points. Con-
cerning the latter case, we have the following result, which is related to a result of
A. Denjoy [4] and J. Wolff [13], [14] for the complex plane.

THEOREM 3. If L has two fixed points in B and no fixed points in B, then the
iterates L™ of L converge to a fixed point of L. The convergence is uniform on the
ball of radius r < 1.

Proof. Since L leaves two distinct points fixed and L takes affine subspaces
into affine subspaces, the affine subspace joining the two fixed points is invariant
under L. If K is a biholomorphic map of B onto B, then L™ converges if and only
if (K-1 o L o K)™ converges. Hence we may assume that the affine subspace joining
the two fixed points contains the origin and that it is the set {ax,: |oz[ < 1}, where

|xo| = 1. Then L =U o h, where

h(x) = . —B(i{, ) ({x x0) - B)xo+ V1~ [B]2(x- {x %0)x0).

U is unitary and U(xg) = yxo for some y (I'yi = 1), and B is chosen so that
L(Bxg) = 0. This representation follows if we apply Schwarz’s lemma to L © h-!
and use the invariance of {axo: [ozl < 1} .

z —-—
Writing Lg(z) = 'yrg; (z complex, |z| < 1), we see that

L(x) = L0(<x, x0> )xo + L1(x),

where
/1 - [B]2x - %, %0) %0)
1- B(X, X0>

Ll(X) = U(

is orthogonal to x for every x € B.

Hence L"(x) = L{j( < X, x0> )Xo + L,(x), where L,(x) is orthogonal to xq for
every Xx € B. If L has a fixed point z (|z| <1), then zxy is a fixed point of L.
Hence L, does not have such a fixed point and L3 converges to a fixed point on the
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boundary |z| =1 (uniformly on subdisks) [4] and [13] (see also [10]). This implies
L,(x) — 0 uniformly on the ball of radius r < 1. This concludes the proof of Theo-
rem 3.

We assume from this point on that H is finite-dimensional. In this case, if { is
holomorphic in B and continuous on B with values in B then the family of ali func-

tions that are holomorphic on B, map B into B, and commute with f forms a com-
pact topological semigroup. The proof is the same as that of Shields [10] for n = 1.

We require the following two results concerning compact topological semi-
groups; they were used also by Shields [10] and Eustice [5], and they can be found in
[12].

(i) If S is a compact topological semigroup and x € S, then the closure of the
iterates of x (denoted by I'(x)) is an Abelian subsemigroup that contains exactly one
itdempotent e.

(ii) If the idempotent e € T'(x) is an identity, then I(x) is a group and
x-1 e I'(x).

THEOREM 4. If f and g ave holomorphic on B (the unit ball in'a finite-
dimensional complex innev-product space H) and continuous on the closurve B, and
if f_(_—]§) CB, gB)CB, and fog=gof, then.f and g have a common fixed point
in B.

Proof. We proceed by induction on the dimension n of H. For n = 1, the re-
sult is that of Shields [10]. Assume that the theorem holds when n < k, where k is
an integer (k > 2), and consider the case n =k. If I(f) contains an element F such
that F(B) ¢ B, then || F(x)|| =1 for some x € B, and the maximum principle of
Thorp and Whitley [11] implies that F(x) = ¢ for some c ("c” =1). In this case,

gc) = g(F(c)) = Flglc)) = ¢ = F(i(c)) = £(F(c)) = £(c),

so that f and g have a common fixed point in B. Notice that according to Theorem
3, this case occurs when f is a biholomorphic map of B onto B that has exactly two
fixed boundary points.

Now suppose every F € I'(f) satisfies F(B) C B. Then I'(f) contains an idem-
potent F as characterized in Theorem 1. Since commutativity, existence of common
fixed points, and idempotency are all preserved if we replace {, g, and F by

L-lofol, L-logoL, andLloFolL,

respectively, where L is a biholomorphic map of B onto B, we may assume F(B)
is the intersection of B with a linear subspace of H, and that F(0) = 0.

Now assume F is not the identity. Then dim F(B) < dim H=n. If
dim F(B) = 0, then 0 is clearly a common fixed point of £ and g; therefore we as-
sume dim F(B) > 1. Since F is the identity map on a subspace of H (actually, the
intersection of a subspace of H with B), we may write H = H; @Hz , Where
F(B) = By (the unit ball in H;), and dim H; <n. It is clear that g(B;) € B; and
f(B;) ¢ By, so that f and g have a common fixed point in B, by the induction
hypothesis.

Now assume F is the identity. In this case, f is a biholomorphic map of B
onto B. If f has no fixed points in B, then f has a unique fixed point on the bound-
ary, and this is also a fixed point of g.
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The remaining case is the case in which f is a biholomorphic map of B onto B
with a fixed point in B. As before, we may assume f(0) = 0, so that f is the restric-
tion of a unitary map U. Let H; be the subspace {x ¢ H: U(x) =x}. If H| =H,
then every fixed point of g in B is a common fixed point of f and g. If H; # H, we
see that f(g(x)) = g(f(x)) = g(x) for all x € B (the unit ball in H;), and this shows

that x € B; implies g(x) € B;. By the induction hypothesis, f and g have a com-
mon fixed point in Bj.

4. EXAMPLES

Example 1. Let H = C2 with the usual inner product <z, W> =z 1W] tz2W2,
where z =(z;, z;) and w = (w;, wp). Let

f&)=( L-r%z, Zl"r) (r<1),

l1-rz; ° 1-rz

so that f is holomorphic in a neighborhood of B and maps B onto B. The point
1-V1-7r2 1-v1-12Y)_
r ’ r
r2 < 8/9, and then f has two fixed points outside B. When r? = 8/9, zg lies on the
boundary of B and is the unique fixed point of f. When 1> r2 > 8/9, z, is outside

of B and f has two fixed points on the boundary of B. The iterates of f then con-
verge to one of these fixed boundary points (assuming the domain is restricted to B),
by Theorem 3.

Zo is always a fixed point of f. It lies in B when

Example 2. Let r < 1, and set

Z;-r zz—r)
1-rz;’ 1-rz;

-4

and g(z) = (z;,, z7).

We are again taking H = C2 with the usual inner product. Then f and g commute
and have the common fixed point (a, a), where a=(1 - v 1+ 8r2)/4r.
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