COMMON FIXED POINTS OF COMMUTING HOLOMORPHIC MAPS OF THE HYPERBALL

T. J. Suffridge

1. INTRODUCTION

Let f and g be continuous functions on the closed unit disk of the complex plane, and suppose

- (i) f and g are holomorphic in the open unit disk,
- (ii) f and g map the closed disk into itself, and
- (iii) f and g commute under the operation of function composition.

In [10], A. L. Shields showed that under these conditions, f and g have a common fixed point. D. J. Eustice [5] has extended this result to the polydisk in complex 2-space. W. M. Boyce [1] and J. P. Huneke [8] have independently given counter-examples to show that two continuous functions that commute and map the closed unit interval into itself need not have a common fixed point. In this paper, we extend the result of Shields to finite-dimensional inner-product spaces.

For a characterization of commuting polynomials, see [9] and [2]. For a more complete discussion of the history of problems concerning commuting maps, see [1].

2. HOLOMORPHIC IDEMPOTENTS ON THE UNIT BALL OF A HILBERT SPACE

We shall use the following notation.

- (i) H is a Hilbert space (either finite-dimensional or infinite-dimensional) with inner product $\langle \cdot, \cdot \rangle$;
- (ii) B is the unit ball of H, that is, B = $\{z \in H: \langle z, z \rangle < 1\}$, and \overline{B} is the closure of B;
 - (iii) $\mathcal{H}(B)$ is the set of functions $f: B \to B$ that are holomorphic on B; and
- (iv) if $f \in \mathcal{H}(B)$, then f^k is defined inductively for $k = 1, 2, \cdots$ by $f^l = f$ and $f^{k+1} = f \circ f^k$.

The unit ball B of H is known to be a homogeneous domain (see [3] and [7]). That is, corresponding to each pair of points u, v ϵ B there exists a function L ϵ $\mathscr{H}(B)$ such that L(u) = v, L is a one-to-one map of B onto B, and L⁻¹ is holomorphic. Such a map is called a biholomorphic map of B onto B. For example, if we write u in the form u = α b, where $\|b\| = 1$ and α is a complex number such that $|\alpha| < 1$, then the map L_u defined by

Received May 9, 1974.

This research was supported in part by the National Science Foundation, Grant GP-39053.

Michigan Math. J. 21 (1974).

$$L_{u}(x) = \frac{1}{1 - \langle x, \alpha b \rangle} (\langle x - \alpha b, b \rangle b + \sqrt{1 - |\alpha|^{2}} (x - \langle x, b \rangle b))$$

is a biholomorphic map of B onto B such that $L_u(u) = 0$. The most general biholomorphic map of B onto B that has the value 0 at the point u is $T \circ L_u$, where T is a unitary map. For a discussion of maps of this type for other spaces, see [6, pp. 13-40].

A holomorphic idempotent on B is a holomorphic function $f\colon B\to B$ such that $f^2=f$. The holomorphic idempotents on B are characterized in the following theorem.

THEOREM 1. The holomorphic idempotents f mapping B into B are of the form

$$f = L \circ F \circ L^{-1},$$

where L is a biholomorphic map of B onto B, F(B) is the intersection of B with a linear subspace of H, and F(0) = 0.

Proof. Assume f is a holomorphic idempotent on B. If f(0) = 0, let L be the identity map, and let F = f. If $f(0) \neq 0$, let $b \in f(B)$ ($b \neq 0$), and let L be a biholomorphic map of B onto B such that L(0) = b. Since f is an idempotent, the equality f(b) = b holds, and setting $F = L^{-1} \circ f \circ L$, we conclude that F(0) = 0, $F^2 = F$, and f satisfies (1). It remains to show that F(B) is the intersection of B with a linear subspace of H.

We wish to show that if u, v \in F(B), then F(α u + β v) = α u + β v whenever $\|\alpha u + \beta v\| < 1$. We begin by assuming u \in F(B), u \neq 0. Then, since F is an idempotent, F(u) = u. Let $\ell_u \in H^*$ be the linear functional $\ell_u(x) = \langle x, u/\|u\| \rangle$, so that $\ell_u(u) = \|u\|$ and $\|\ell_u\| = 1$. Define $g(\alpha)$ in $|\alpha| < 1$ by $g(\alpha) = \ell_u(F(\alpha u/\|u\|))$, so that g is holomorphic, g(0) = 0, and $|g(\alpha)| < 1$ when $|\alpha| < 1$. Applying Schwarz's lemma and using the fact that $g(\|u\|) = \ell_u(F(u)) = \ell_u(u) = \|u\|$, we conclude that $g(\alpha) = \alpha$ when $|\alpha| < 1$. Thus we have shown that

$$|\alpha| = |\langle \mathbf{F}(\alpha \mathbf{u}/\|\mathbf{u}\|), \mathbf{u}/\|\mathbf{u}\| \rangle| \leq ||\mathbf{F}(\alpha \mathbf{u}/\|\mathbf{u}\|)| \leq |\alpha|,$$

so that equality must hold in (2). This means that $F(\alpha u/\|u\|) = \alpha u/\|u\|$ when $|\alpha| < 1$, or equivalently, that $F(\alpha u) = \alpha u$ when $|\alpha| < 1/\|u\|$.

Now suppose $v \in F(B)$, and let α and β be complex numbers such that $\|\alpha u + \beta v\| \le 1$. Then

$$\frac{1}{\lambda} F(\lambda(\alpha u + \beta v)) = \sum_{k=1}^{\infty} \frac{1}{k!} \lambda^{k-1} D^k F(0) (\alpha u + \beta v)^k$$

is a holomorphic function of λ in the disk $\{|\lambda| < 1\}$, where

$$D^{k} F(0) (x)^{k} = D^{k} F(0) (x, x, \dots, x)$$
.

Since DF(0) is linear and u, $v \in F(B)$, we know

$$DF(0) (\alpha u + \beta v) = \alpha DF(0) (u) + \beta DF(0) (v) = \alpha u + \beta v.$$

By Schwarz's lemma, $\|F(\lambda(\alpha u + \beta v))\| \le |\lambda| \|\alpha u + \beta v\|$, so that

$$\left\|\frac{1}{\lambda} F(\lambda(\alpha u + \beta v))\right\| \leq \|\alpha u + \beta v\|,$$

with equality when $\lambda = 0$. We now apply the strong-maximum principle of E. Thorp and R. Whitley [11] to conclude $F(\lambda(\alpha u + \beta v)) = \lambda(\alpha u + \beta)$, where $|\lambda| < 1$, whenever $||\alpha u + \beta v|| < 1$ and u, $v \in F(B)$. This completes the proof of the theorem.

THEOREM 2. Let f be holomorphic in B and continuous in \overline{B} , with $f(B) \subset \overline{B}$. If f is an idempotent, then either f is given by (1) or f is a constant of norm 1.

Proof. This follows easily from Theorem 1, the strong-maximum principle of Thorp and Whitley [11], and the observation that the functions L are continuous on \overline{B} .

3. COMMON FIXED POINTS

Suppose L is a biholomorphic map of B onto B. The following results were obtained in [7]. The map L takes affine subspaces into affine subspaces (actually, the intersection of affine subspaces with B), L extends to an automorphism of \overline{B} onto \overline{B} and has a fixed point in \overline{B} , and if L does not have a fixed point in B then it has a unique fixed boundary point or it has exactly two fixed boundary points. Concerning the latter case, we have the following result, which is related to a result of A. Denjoy [4] and J. Wolff [13], [14] for the complex plane.

THEOREM 3. If L has two fixed points in \overline{B} and no fixed points in B, then the iterates L^n of L converge to a fixed point of L. The convergence is uniform on the ball of radius r < 1.

Proof. Since L leaves two distinct points fixed and L takes affine subspaces into affine subspaces, the affine subspace joining the two fixed points is invariant under L. If K is a biholomorphic map of B onto B, then L^n converges if and only if $(K^{-1} \circ L \circ K)^n$ converges. Hence we may assume that the affine subspace joining the two fixed points contains the origin and that it is the set $\{\alpha x_0 \colon |\alpha| < 1\}$, where $\|x_0\| = 1$. Then $L = U \circ h$, where

$$h(x) = \frac{1}{1 - \overline{\beta} \langle x, x_0 \rangle} \left(\left(\langle x, x_0 \rangle - \beta \right) x_0 + \sqrt{1 - |\beta|^2} (x - \langle x, x_0 \rangle x_0) \right).$$

U is unitary and $U(x_0) = \gamma x_0$ for some γ ($|\gamma| = 1$), and β is chosen so that $L(\beta x_0) = 0$. This representation follows if we apply Schwarz's lemma to $L \circ h^{-1}$ and use the invariance of $\{\alpha x_0: |\alpha| < 1\}$.

Writing $L_0(z) = \gamma \frac{z - \beta}{1 - \bar{\beta}z}$ (z complex, |z| < 1), we see that

$$L(x) = L_0(\langle x, x_0 \rangle) x_0 + L_1(x),$$

where

$$L_{1}(x) = U\left(\frac{\sqrt{1-|\beta|^{2}}(x-\langle x, x_{0}\rangle x_{0})}{1-\bar{\beta}\langle x, x_{0}\rangle}\right)$$

is orthogonal to x_0 for every $x \in B$.

Hence $L^n(x) = L_0^n(\langle x, x_0 \rangle) x_0 + L_n(x)$, where $L_n(x)$ is orthogonal to x_0 for every $x \in B$. If L_0 has a fixed point z (|z| < 1), then zx_0 is a fixed point of L. Hence L_0 does not have such a fixed point and L_0^n converges to a fixed point on the

boundary |z| = 1 (uniformly on subdisks) [4] and [13] (see also [10]). This implies $L_n(x) \to 0$ uniformly on the ball of radius r < 1. This concludes the proof of Theorem 3.

We assume from this point on that H is finite-dimensional. In this case, if f is holomorphic in B and continuous on \overline{B} with values in \overline{B} , then the family of all functions that are holomorphic on B, map B into \overline{B} , and commute with f forms a compact topological semigroup. The proof is the same as that of Shields [10] for n = 1.

We require the following two results concerning compact topological semigroups; they were used also by Shields [10] and Eustice [5], and they can be found in [12].

- (i) If S is a compact topological semigroup and $x \in S$, then the closure of the iterates of x (denoted by $\Gamma(x)$) is an Abelian subsemigroup that contains exactly one idempotent e.
- (ii) If the idempotent $e \in \Gamma(x)$ is an identity, then $\Gamma(x)$ is a group and $x^{-1} \in \Gamma(x)$.

THEOREM 4. If f and g are holomorphic on B (the unit ball in a finite-dimensional complex inner-product space H) and continuous on the closure \overline{B} , and if $\underline{f}(\overline{B}) \subset \overline{B}$, $\underline{g}(\overline{B}) \subset \overline{B}$, and $\underline{f} \circ \underline{g} = \underline{g} \circ \underline{f}$, then f and g have a common fixed point in \overline{B} .

Proof. We proceed by induction on the dimension n of H. For n = 1, the result is that of Shields [10]. Assume that the theorem holds when n < k, where k is an integer $(k \ge 2)$, and consider the case n = k. If $\Gamma(f)$ contains an element F such that $F(B) \not\subset B$, then ||F(x)|| = 1 for some $x \in B$, and the maximum principle of Thorp and Whitley [11] implies that $F(x) \equiv c$ for some c (||c|| = 1). In this case,

$$g(c) = g(F(c)) = F(g(c)) = c = F(f(c)) = f(F(c)) = f(c)$$

so that f and g have a common fixed point in \overline{B} . Notice that according to Theorem 3, this case occurs when f is a biholomorphic map of B onto B that has exactly two fixed boundary points.

Now suppose every $F \in \Gamma(f)$ satisfies $F(B) \subseteq B$. Then $\Gamma(f)$ contains an idempotent F as characterized in Theorem 1. Since commutativity, existence of common fixed points, and idempotency are all preserved if we replace f, g, and F by

$$L^{-1} \circ f \circ L$$
, $L^{-1} \circ g \circ L$, and $L^{-1} \circ F \circ L$,

respectively, where L is a biholomorphic map of B onto B, we may assume F(B) is the intersection of B with a linear subspace of H, and that F(0) = 0.

Now assume F is not the identity. Then dim $F(B) < \dim H = n$. If dim F(B) = 0, then 0 is clearly a common fixed point of f and g; therefore we assume dim $F(B) \ge 1$. Since F is the identity map on a subspace of H (actually, the intersection of a subspace of H with B), we may write $H = H_1 \oplus H_2$, where $F(B) = B_1$ (the unit ball in H_1), and dim $H_1 < n$. It is clear that $g(B_1) \subset B_1$ and $f(B_1) \subset B_1$, so that f and g have a common fixed point in \overline{B}_1 , by the induction hypothesis.

Now assume F is the identity. In this case, f is a biholomorphic map of B onto B. If f has no fixed points in B, then f has a unique fixed point on the boundary, and this is also a fixed point of g.

The remaining case is the case in which f is a biholomorphic map of B onto B with a fixed point in B. As before, we may assume f(0) = 0, so that f is the restriction of a unitary map U. Let H_1 be the subspace $\{x \in H: U(x) = x\}$. If $H_1 = H$, then every fixed point of g in \overline{B} is a common fixed point of f and g. If $H_1 \neq H$, we see that f(g(x)) = g(f(x)) = g(x) for all $x \in B_1$ (the unit ball in H_1), and this shows that $x \in B_1$ implies $g(x) \in B_1$. By the induction hypothesis, f and g have a common fixed point in \overline{B}_1 .

4. EXAMPLES

Example 1. Let $H=C^2$ with the usual inner product $\langle z,w\rangle=z_1\overline{w}_1+z_2\overline{w}_2$, where $z=(z_1,z_2)$ and $w=(w_1,w_2)$. Let

$$f(z) = \left(\frac{\sqrt{1-r^2z_2}}{1-rz_1}, -\frac{z_1-r}{1-rz_1}\right) \quad (r < 1),$$

so that f is holomorphic in a neighborhood of B and maps B onto B. The point $\left(\frac{1-\sqrt{1-r^2}}{r}, \frac{1-\sqrt{1-r^2}}{r}\right) = z_0$ is always a fixed point of f. It lies in B when $r^2 < 8/9$, and then f has two fixed points outside \overline{B} . When $r^2 = 8/9$, z_0 lies on the boundary of B and is the unique fixed point of f. When $1 > r^2 > 8/9$, z_0 is outside of \overline{B} and f has two fixed points on the boundary of B. The iterates of f then converge to one of these fixed boundary points (assuming the domain is restricted to B), by Theorem 3.

Example 2. Let r < 1, and set

$$f(z) = \frac{1}{2} \left(\frac{z_1 - r}{1 - r z_1}, \frac{z_2 - r}{1 - r z_2} \right)$$
 and $g(z) = (z_2, z_1)$.

We are again taking $H = C^2$ with the usual inner product. Then f and g commute and have the common fixed point (a, a), where $a = (1 - \sqrt{1 + 8r^2})/4r$.

Acknowledgment. This research was performed while the author was a visitor in the Department of Mathematics at the University of Maryland. He expresses sincere thanks for the hospitality of the members of that department during his visit.

REFERENCES

- 1. W. M. Boyce, Commuting functions with no common fixed point. Trans. Amer. Math. Soc. 137 (1969), 77-92.
- 2. H. D. Block and H. P. Thielman, *Commutative polynomials*. Quart. J. Math. Oxford Ser. (2) 2 (1951), 241-243.
- 3. H. Cartan, Sur les transformations analytiques des domaines cerclés et semicerclés bornés. Math. Ann. 106 (1932), 540-573.
- 4. A. Denjoy, Sur l'itération des fonctions analytiques. C. R. Acad. Sci. Paris, 182 (1926), 255-257.

- 5. D. J. Eustice, Holomorphic idempotents and common fixed points on the 2-disk. Michigan Math. J. 19 (1972), 347-352.
- 6. L. A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces. Proceedings on Infinite Dimensional Holomorphy, pp. 13-40. Lecture Notes in Mathematics, 364, Springer-Verlag, New York, 1974.
- 7. T. L. Hayden and T. J. Suffridge, Biholomorphic maps in Hilbert space have a fixed point. Pacific J. Math. 38 (1971), 419-422.
- 8. J. P. Huneke, On common fixed points of commuting continuous functions on an interval. Trans. Amer. Math. Soc., 139 (1969), 371-381.
- 9. J. F. Ritt, Permutable rational functions. Trans. Amer. Math. Soc. 25 (1923), 399-448.
- 10. A. L. Shields, On fixed points of commuting analytic functions. Proc. Amer. Math. Soc., 15 (1964), 703-706.
- 11. E. Thorp and R. Whitley, The strong maximum modulus theorem for analytic functions into a Banach space. Proc. Amer. Math. Soc. 18 (1967), 640-646.
- 12. A. D. Wallace, *The structure of topological semigroups*. Bull. Amer. Math. Soc. 61 (1955), 95-112.
- 13. J. Wolff, Sur l'itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent à cette region. C. R. Acad. Sci. Paris 182 (1926), 42-43.
- 14. ——, Sur l'itération des fonctions bornées. C. R. Acad. Sci. Paris 182 (1926), 200-201.

University of Kentucky Lexington, Kentucky 40506