EXISTENCE OF SOLUTIONS OF A NONLINEAR PROBLEM
IN POTENTIAL THEORY

R. Kannan

1. INTRODUCTION
In this paper we study the nonlinear boundary value problem
Au +g(x, y, u) = 0, (x,y) € A ={x2+y2<1},

(1)
0, (x,y) € 0A = {x2+y2 =1}

u

under various hypotheses on g. We denote by N the Nemitsky operator defined by
Nu = -g(x, y, u(x, y)), and we assume that N: S — S maps the space S = L,(A) into
itself. We obtain the following results:

I. If N: S — S is monotone and continuous, then the nonlinear problem (1) has
a unique solution.

II. If -N: S — S is monotone, continuous, and bounded, and if the Gateaux de-
rivative of N “lies between two consecutive eigenvalues” of the associated linear
problem

Au+Au=0 in A, u=0 on 0A,

then the problem (1) has a unique solution.

II. If Nu=2x_u-+h(x,y, u), where A is an eigenvalue of the associated
linear problem (the resonance case), and the Nemitsky operator M: S — S defined
by Mu = h(X, y, u) is continuous and bounded in S, then under suitable hypotheses
the nonlinear problem (1) has at least one solution.

This paper was motivated by a paper of L. Cesari [3] concerning problem (1),
where use is made of the alternative method by means of which the problem is re-
duced to an equivalent system of two operator equations. This method, which has its
origin in Lyapunov and Schmidt’s work, was formulated by Cesari [2] in functional-
analytic terms. The method was then applied by Cesari and several other authors to
a wide variety of situations (see J. K. Hale [6]). In this paper we follow this method,
but we appeal to several concepts of nonlinear functional analysis, namely maximal
monotone operators, nonlinear Hammerstein equations, and Schauder’s principle of
invariance of domain.

The chief feature of this method is that one can handle problems of the type (1)
where the linear operator has a nontrivial nullspace (which is the case if for exam-
ple g(x, y, u) =xu + h(x, y, u), where X is an eigenvalue of the associated linear
problem Au-+2Xu =0 in A and u=0 on 28A). As will be obvious from the proofs,
the nonlinear problem (1) could be stated in a more general form for elliptic prob-
lems in more general domains. However, for the sake of simplicity, we shall
restrict ourselves to problem (1).
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In [3], Cesari proved that problem (1) has a solution if g is locally Lipschitzian
and satisfies suitable growth hypotheses. Problems of type (1) have been studied
for the existence of solutions under various hypotheses on g by A. Hammerstein [7]
and C. L. Dolph [4]. In particular, Dolph obtains results similar to II. The case
when N is monotone was also studied by H. Brézis, M. G. Crandall, and A. Pazy [1].
We give different proofs, so that it becomes easy to see the natural extension of our
method to the case of perturbation at resonance (which was not studied by the auth-
ors mentioned above). The resonance case, in particular situations, has recently
been the subject of study by several authors. The first results in this direction, for
elliptic problems, was obtained by E. M. Landesman and A. C. Lazer [11] (this was
a generalization of a corresponding result for ordinary differential equations by A.
C. Lazer and D. E. Leach [12]). More recently, M. Nakao [15], M. Schatzman [16],
and S. Fucik [5] have also studied the resonance situation. In this paper we illus-
trate, by giving separate proofs for the nonresonance situations, how the alternative
method adapts itself to the resonance situation.

2. THE PROJECTION METHOD OF CESARI

Let S be the Hilbert space L,(A), that is, the space of all functions u(x, y) that
are measurable and LZ-integrable in A. Let ( ) > and “ . || denote the usual in-

ner product and the norm in S, respectively. The linear problem

Au+iu=0 ((x, y) € A),

(2)
u=0 ((x,y) € 3A)

has fundamental systems {x;} and {qb,}} of eigenvalues and orthonormal eigenfunc-

tions with 0 <Xx; <A, <---. Also, {¢i is a complete orthonormal system in
L,(A). Thus every element u € S has a Fourier series

ulx, y) = Zreyé; (e = <u7 ¢’i>)'

Let Sy = {cpl s Ut c,bm} (m>1), and let P: S — S be the projection operator de-
fined by
m
Pu = 2J Cc; ¢;

Let S' be the subset of S of all functions u(x, y) that are essentially bounded in A.
Also, let X be the set of all functions u(x, y) such that u(x, y) is continuous in

A U 9A with u =0 on 9A, u has continuous first-order partial derivatives in A,

and u (computed in the sense of distributions) is a measurable, essentially bounded
function defined a.e. in A. Then it can be seen that

Xc§', ArX—8'CS, and H: S' = X,

where H is the linear operator defined by

o 0
_ -1 =
Hu = - Zl) c; Ao for each u = Zl> c;9; € S.
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We now have the relations

AHu = u for all u e S',
(3) HI-P)Au=(1- P)u,
APu = PAu for all u € X.

Now, if u = 27 c; ¢; , then
HI- P)u=- 2 c;ajle,.

Also, for u(x, y) € S, we have the relation

oC o
@) (-H@- Py, uy = 2 ;A >, 2 e, A% =a,,, [-HA - P)uf?.

m+]1 m+1
Let N be the Nemitsky operator defined by

Nu = -g(x, y, u(x, y))

for all (x, y) in A and all u in S. Also, let N: S — S'. If u(x, y) € S is a solution
of the nonlinear problem (1), then, by applying the operator H(I - P) to both sides of

the equation Au = Nu and using (3), we see that (I - P)u = H(I - P)Nu, in other
words, that

(5) u-H(I- P)Nu = Pu.

Now, if u € X is a solution of (5), then by applying A to both sides of (5), we obtain
the equation

Au - (I -P)Nu = APu = PAu.

Thus P(Au - Nu) = Au - Nu. Hence a solution u € X of (5) is a solution of (1) if and
only if

(6) P(Au - Nu) = 0.

Thus we have reduced the problem of solving (1) to that of solving the system of
equations (5) and (6), respectively. If however the equation

(7) u - H(I - P)Nu = x*

has a unique solution u for each x* € S, then Pu = x* and the operator

[I - HI - P)N]-! is a single-valued operator over Sy. Equation (6) could then be
rewritten in the form

PN[I - H(I - P)N]-1x* - PAu = 0.

By virtue of (3), this reduces to
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(8) PN[I- HI- P)N]-lx* - ax* = 0.

We can now state the following result: If there exists an x* € S for which (7)
is uniquely solvable and (8) is solvable, then the corresponding solution u of (7) is a
solution of (1).

Hence, in order to obtain existence results for problem (1), it is sufficient to
consider the system of equations (7) and (8) respectively. Equations (7) and (8) are
called the auxiliary and bifurcalion equations, respectively.

3. EXISTENCE THEOREMS

We first consider the case when the nonlinear operator N is monotone. As we
mentioned in the introduction, even though the results of this case are known, we
give a proof, which is later naturally extended to the case of perturbations at reso-
nance. We recall the following definitions.

An operator N: S — S is said to be monofone if <Nu - Nv, u - v> > 0 for all
u, v €S,

An operator N: S — S is said to be strictly monotone if there exists ¢ >0
such that {(Nu - Nv,u-v) >cllu-v[2 forall u, ves.

An operator N: S — S is said to be maximal monotone if it is monotone and is
maximal in the family of monotone mappings from S into 25 in terms of ordering
by inclusion of graphs.

THEOREM 1. If the nonlinear opevator N: S — S, defined by Nu = -g(x, y, u),
is such that

(i) N is continuous,
(ii) <Nu-Nv,u—v>ZO (u, v € S),
then the nonlinear prvoblem (1) has a unique solution.

Proof. It follows from (4) that the operator -H(I - P) is linear and monotone.
Hence, by a result of P. Hess [8], the auxiliary equation (5) has a unique solution
u € S for each x* € Sy. We now consider the bifurcation equation (6). First we
show that the operator

T = PN[I - HI - P)N]-1: 5, — 8,

is maximal monotone. Let x* and y* be any two elements of Sy, and let u and v
be the corresponding unique solutions of the auxiliary equation. Then

u-H{I-P)Nu =x*¥ and v - H(I - P)Nv = y*,

Proceeding as in [12], and using the fact that N and -H(I - P) are monotone, we see
that

<Tx*-Ty*, X*—y*> = <PNu— PNv, x*-y*> = <Nu-Nv, x*-y*>

I

(Nu-Nv,u-v)+{Nu-Nv, -H( - P) (Nu - Nv)) > 0.
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Thus T: Sy — S is monotone. In order to show that T is maximal monotone,
it suffices (by the theorem of G. J. Minty [13]) to show that the equation x + Tx = x*
has a solution x € Sy for each x* € S;. By the theorem of Hess [11] quoted above,
the equation u - H(I - P) Nu + PNu = x* has a unique solution u € S for each
x* € Sg. Hence

u-H({I - P)Nu = x* - PNu € §,.
Let y* =u - HI - P)Nu. Then
u-H{I- P)Nu+ PNu = x* implies y* + PN[I - HI - P)N]|-ly* = x*,

that is, y* is a solution of the equation x + Tx = x*. Hence T is maximal monotone.

Finally, since the eigenvalues A; are such that 0 <x; <x, <-.--, it follows that
-A is maximal monotone over S; and <—Ax*, x*> > |x*[|2. Hence T - A is

maximal monotone and coercive over Sy. Thus the bifurcation equation (6) is
uniquely solvable. This completes the proof.

We now apply the ideas in the proof of Theorem 1 to the case where -N is
monotone.

THEOREM 2. Let N: S — S (Nu = -g(x, y, u)) be such that
(i) N ¢s continuous and bounded,

(ii) there exists p > 0 such that p <X, and
<Nu1—Nu2, ul-u2>_>_-p"ul-u2"2 fO’rall ul,uZES,

(iii) there exists q > \,, such that <Nu1 - Nuy, u”l‘ - u"2‘> < -q " u"l‘ - u’é” 2
whenever u}, ub € Sy, Pu, =u}, and Pu, =u}.

Then the nonlineay problem (1) has a unique solution.

Proof. Since the operator N is continuous and bounded and -H(I - P) is linear
and compact, it follows that -H(I - P) N is compact. In order to solve the auxiliary
equation (5), we use the following variant of the Schauder principle of invariance of
domain (see M. Nagumo [14]): If T: S — S is compact, I + T is one-to-one, and
(I+T)-1 is bounded, then the equation u + Tu = v has a unique solution for each
v € S. By the methods of [9, Proposition 1] it can be shown that the auxiliary equa-
tion (5) has a unique solution for each x* € S and the operator [I - H(I - P)N]-1 is
continuous and bounded. The bifurcation equation (6) can be rewritten as

(M) x*+ P[PN(I - H(I - P)N)-1 - P - A]x* = 0;

this is again of the form (I + T)x* = 0, where T is compact. A repeated application
of the Schauder principle as stated above gives a unique solution for the bifurcation
equation. This proves the theorem.

We now extend the ideas of the earlier theorems to the case of nonlinear per-
turbations at resonance. As we remarked in the introduction, the first result in this
direction for elliptic boundary value problems was obtained by Landesman and
Lazer [11], who generalized the earlier results of Lazer and Leach [12] for ordinary
differential equations. Thus, for example, they consider the nonlinear problem over
Al = [Oa 1] x [0, 1];
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Au+ru+g(u) =0 in Ay,

u=0 ondA,

where lim,_, ., g(s) = g(-«) < g(u) < gl+e) =lim  _, , g(s), the two limits being as-
sumed to be finite (for example g(u) = arctan u).

THEOREM 3. Let the nonlinear opevator M: S — S defined by Mu = h(x, y, u)
be such that

(i) M is continuous and bounded,
(i) (Muj - Mup, uy - uz Y <pfluy - uzf|2 for some p <Appq - Am,

(iii) there exists R > 0 such that <Mu, x*> > 0 for each x* satisfying the
conditions |x*|| =R and Pu = x*,

Then the nonlinear problem

Au+ru+h(x,y,u) =0 ((x,y) € A),
(8)

u=20 ((x, y) € 0A)

has at least one solution.

Proof. It is easy to see that the operator N: S — S defined by
Nu = -3, u(x, y) - h(x, y, u)

satisfies hypothesis (ii) of Theorem 2; thus the auxiliary equation corresponding to
(8) is uniquely solvable for each x* € Sg, and the operator (I - H(I - P)N)-! is con-
tinuous and bounded. We now consider the solvability of the bifurcation equation (7),
and we apply the following result from [11]: Let T be a continuous and bounded
mapping of S into itself. Also, let there exist R > 0 such that

(T, x4 > - ||x*]2

for all x* satisfying the condition |x*| = R. Then the equation (I +T)x* =0 has
at least one solution.

Now, in our situation it follows from (7) that T = A - PN[I - H(I - P)N]-! - P,
Thus

<TX*, x*> = <Ax*, X*) - <PN[I- H(I - P)N]-lx* x*> -<Px*, x*>
> A [x*]2 - x*]2 - (g, x*),

where u is the unique solution of the auxiliary equation corresponding to x*. Thus
(Tx%, 5% ) > -ap lx*)2 - 4|2 - (v, x* )
But Nu = -2, u - h(x, y, u). Thus
{Tx*, x*) > A |x*]|2 - [x%)2 +2, {u, x* ) + {n(x, v, w), x*)

= - ”x*"2+ (h(x, y, u), x*>.
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Hence, if there exists R > 0 such that (h(x, y, u), x*) > 0 for all " x* || = R, then
<Tx*, x*> > - ||x*||?; therefore the bifurcation equation (7) is solvable.

Remark, In a forthcoming paper [11], existence for nonlinear Hammerstein
equations of the type (7) have been obtained when the linear operator -H(I - P)
possesses a decomposition of the type J*J and the nonlinear operator N is such
that D(N) D D(J*). In view of these results, it is possible to extend the methods of

this paper to obtain existence results for problem (1) where g involves derivatives
of u.
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