COMPACT FAMILIES OF UNIVALENT FUNCTIONS
AND THEIR SUPPORT POINTS

W. Hengartner and G. Schober

1. INTRODUCTION

Let D be a plane domain and H(D) the space of analytic functions on D en-
dowed with the topology of locally uniform convergence. It is well known that H(D)
is a metrizable, locally convex topological vector space; we denote by H'(D) its
topological dual space and by Hy(D) the set of univalent functions in H(D). We
shall be interested in subsets of H,(D) whose elements are normalized by two con-
tinuous linear functionals, that is, in subsets of the form

(1) F=F[D, (), Lz, P, Q = {f e HuD): £1(f) = P, £2(f) = Q},

where £; and £, denote fixed functionals in H'(D) and P and Q denote points in C.

A number of the standard families of univalent functions are of the form (1). We
single out two:

(i) Let zg € D and 2;(f) = £(z¢), £2(f) =f'(zg), P=0, Q = 1. Then
(2) F(D, zg) = {1f € H (D): f(zg) = 0, £'(zp) = 1}

is of the form (1). For U = {z: |z| < 1}, the set S = #(U, 0) is the familiar nor-
malized schlicht class.

(ii) Let p,g e D (p# q), P, Qe C (P #Q), and £;(f) = £(p), £,(f) = f(g). Then
the family

(3) (D, p, q, P, Q = {f € Hy(D): £(p) = P, (q) = Q},

normalized at two points, is of the form (1).

In order to solve extremal problems over such families &, it is useful to know
whether # is compact. Our first result (Theorem 1) is a characterization of the
nonempty and compact families % in terms of the normalizing functionals £; and
£, and the constants P and Q.

A function f € & is said to be a support point of F if and only if
N L(f) = supg R L, for some L ¢ H'(D) that is not constant on #. Geometrically,
at a support point the family & has a supporting hyperplane. Theorems 2 and 3 (and
3') concern the mapping properties of support points for compact families ¥. Ap-
plications to the families (D, zg) and (D, p, q, P, Q) are contained in Theorems
4 and 5 (and 4' and 5').
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2. REPRESENTING MEASURES FOR (¢ € H'(D)

If ¢ € H'(D), then there exists a finite complex Borel measure u with compact
support K C D such that

(4) o) = SK fdy  for each f € H(D).

Since the support of u is precisely the subset K of D, the integral S fdy can be
K

used to extend the definition of £(f) to functions f integrable on K. Then, for
example, the formulas

(5) £(§}Z) = SK ?“_(i) and () =SK f(‘é‘;—(?)a (f € H(D))

define analytic functions of z € C - K and w € C - £f(K), vanishing at «©. We shall
use the same symbol for £ € H'(D) and its extension to functions integrable on K.

The measure p (and support K) representing £ € H'(D) is not unique, but it
has the following property.

PROPOSITION 1. Suppose £ € H'(D) and K is a compact set in D containing
the support of a vepresenting measuve for L. If L (ﬁ) =0 for each z € C - K,
then £ = 0 on H(D).

For a reference to these well-known facts, see for example [6, p. 377] or [3,
p. 159]. An elementary consequence of Proposition 1 is the following.

PROPOSITION 2. Suppose L € H'(D) and K is a compact set in D containing
the support of a vepresenting measure for L. If g € Hy(D) and ¢ (g_%—\;) =0 for
each w € C - g(K), then £ = 0 on H(D).

Proof. If u is a representing measure for ¢ ¢ H'(D) with support in a compact
set KCD and g € Hy(D), then I = pog-l is a measure supported in the compact
set g(K), and

i® = Sg(K) o

defines a continuous linear functional on H(g(D)). If 7 (-w—}—w) =0 for each

w € C - g(K), then 2(f) = 0 for each T € H(g(D)), by Proposition 1. The assertion
now follows by a change of variables.

3. COMPACT FAMILIES

It is convenient to associate with ¢;, £, € H'(D) and P, Q € C two new func-
tionals
_ 1
£1(Q) - £(P)

(6a) Lo [123(1) £, - Ql(l) f—z];
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_ 1
07 £,(Q - £2(P)

=7

(6b)

[Q-¢,-P-0,],

in case £,(Q) # £2(P). Observe that we do not distinguish between the constants
P, Q, 1 and the corresponding constant functions. Note that

(7) L) =0, L) =1,
and that for f € #(D, ¢, ¢;, P, Q),
(8) 2o(f) = -1,  To(f) = 0.

It‘ is an elementary exercise to verify that if g € H, (D), then

(9) T(g) = —E;T]é) [g - EO(g)] € Q'd(F, 'Qla ﬂ2’ P; Q)

Definition. A domain D has a sfrongly dense boundary if for each g in H (D)

the only degenerate (one-point) components of C - g(D) are cluster points of non-
degenerate components.

Examples of domains with strongly dense boundaries are all simply connected
domains with at least two boundary points and all finitely connected domains without

degenerate boundary components (in C). In these examples, C - g(D) has no degen-
erate components, for each g € H (D).

THEOREM 1. Lel £,, £, ¢ H'(D) and P, Q € C. If
(a) £,(Q) # 2,(P)
and

(b) €,(1) 2,(g) # £,(1) £,(g) for each g € H(D), then the family
F(D, £, L2, P, Q) is nonempty and compact,

Conversely, if (D, £, L5, P, Q) is nonempty and compact, then (a) holds. If,
in addition, D has a stvongly dense boundary, then (b) holds.

COROLLARY. Suppose that D is a finitely connected domain without degen-

evate boundary components (in C), that 2y, ¢, € H'(D), and that P, Q € C. Then
F (D, £y, £,, P, Q) is nonempty and compact if and only if (a) and (b) hold.

Proof of Theovem 1. The compactness of the set ¥(D, z() (defined in (2)) is
well known [4]. Indeed, locally uniform boundedness follows if we apply Bieberbach’s
distortion theorem in each simply connected subdomain of D containing z,. Also,
(D, zg) is nonempty since (z - zg) € (D, zg).

If (a) and (b) hold, then the associated functionals £; and 7 are defined, and
2o(g) # 0 for each g € Hy(D). Therefore the transform T defined in (9) is contin-
uous on Hy(D) and maps & (D, zg) onto a nonem%)ty)compact subset of

f-1 Zo
F = F = g
F=9%(D, £,,4,,P, Q). If f e &, then g T e (D, zp), and an elementary
calculation shows that T(g) = f. Therefore T(J (D, zp)) = # is nonempty and com-
pact.

Conversely, assume # # @ and fix an f € # . If (a) does not hold, then the
linear system



208 W. HENGARTNER and G. SCHOBER
0, (Af+B) = A-P+B-£,(1) = P,
0 (Af+B) = A-Q+B-£,(1) = Q
has rank at most one and is consistent, since A =1, B =0 is a solution. Therefore

& cannot be compact.

Suppose now # # ®, D has a strongly dense boundary, and (a) holds, but not
(b). Then there exists a g € Hy(D) such that £p(g) = 0. Let K be the support of a

g } w) =0 for each w € C - g(D), then since
1

C - g(D) has no isolated points, we see that £ (

representing measure for fo. If £y (

) = 0 for each w in some

open neighborhood N of C - g(D) (N C C - g(K)). Now D - g-1(N) is a compact
subset of D containing K. By Proposition 2, £5 = 0. This, however, is not the case
since Lo is -1 on #. Therefore there exists a wg € C - g(D) such that

1
12( )q&O.
0 g-Wqo

If wy belongs to a degenerate component of € - g(D), then by the continuity of

£y ( z } - ) and the strongly-dense-boundary property, we may replace it by a point

on a nondegenerate component of C - g(D). In any case, there is now a point wy on

a nondegenerate component of C - g(D) such that ¢, ( z lw ) # 0.
- Wo

By composing g with the Schiffer boundary variations [8], we obtain functions
g, € H (D) of the form

€n

g€ - Wo

gn = g+ +0(8n),

where £, — 0 and the term o(g,)/e, converges to zero uniformly on compact sub-
sets of D as n — =, Since £p(g) = 0, we have the relation

1
g—.

Lo(gn) = Snﬂo( Wo) +o(e,) # 0

for all sufficiently large n. At the same time, each of the functions

-1

i, = T(gn) = ﬂ.o(_—gl) [gn - zO(gn)] =

[g - Zo(g)] +o(1)
1
Sn QO( g - WO)

belongs to &, but {fn} has no convergent subsequence. Therefore % is not com-
pact.

Remarks. If we know a priori that # = F(D, ¢, £,, P, Q) # @, then we can as-
sert that (b) implies compactness. Indeed, (a) follows from (b) if we substitute an
fe .

That (a) alone is not sufficient for compactness is evident from the family
9 = {g € Hy(U): g(0) =0, g"(0) =2},

which satisfies (a), but is not compact since nz + z2 € @ for every n > 2.
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In the following sections we shall use as examples the families (2) and (3). Both
are well known to be compact and, in fact, the former was used in the proof of
Theorem 1. However, it is instructive to see how Theorem 1 applies in these two
cases.

(i) For #(D, zy), (a) is the statement that 1 # 0 and (b) that 0 # g'(z,) for each
g € H,(D). Both are obviously true.

(ii) For (D, p, q, P, Q), (a) is the statement that Q # P and (b) that
g(p) # glq) for each g € H, (D). Again both are obviously true.

Another familiar compact family of the form (1) is the family

T = {fe Ho(0 < |z| < 1): f(z) =z~ + 2J b_zn %

n=1

For this family one easily verifies that condition (a) is satisfied, but that condition
(b) is violated. The family Z' is not a counterexample to the necessity part of
Theorem 1, but rather shows that the assumption of a strongly dense boundary is
not superfluous.

4. THE FUNCTIONS U(w; f) AND U(w; f)

Suppose ¥ =F(D, ¢;, {5, P, Q) is nonempty and compact. Then, by Theorem
1, the functionals ¢y and Eo in (6) are defined. Let K and K be the supports of

representing measures for £, and £, respectively. Then, following (5), we may
consider for each f € H(D) the functions

1~
f-w

and INI(w; f) = Eo( 1 )

(10 ulw; 1) = 20 —

to an analytic in © = C - £(K) and Q = C - £(K), respectively.

Writing
1 o1t 2 1
f“W W wZ 1-——];'f W3’
w
we see from (7) and (8) that
L - L (_1_ =P § (_1_)
(11) Ulw; ) = =540 w3) and  Bw ) = - 7+0( 5

as w — o, for f € 7.
We consider our examples:

(i) For f € #(D, zy), we have the functions

(12) U(w;f)=—Wl—2 and I~I(W;f)=;wl forwe 2=8=c- {0}.
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We note for later reference that the trajectories of the vector field

gradl: N S VU(w; 1) dw] are the rays emanating from the origin.
(ii) For f € (D, p, q, P, Q), we have the functions

. _ 1 ~ _ P+Q-w
Vwd =g pw-a ™ ") m hHe-9

(13)
forweQ=§=C—{P,Q}.

For future use we observe that the trajectories of the vector field

grad[ N S v U(w; ) dw:l are the hyperbolae with foci P and Q.

It will be important to know that U(w; f) does not vanish on nondegenerate com-
ponents of C - f(D).

LEMMA 1. Assume & = %D, £,, £, P, Q) is compact and { € F.

(a) If D has a strongly dense boundary, then U(w; f) # 0 for each w € C - f(D).

(b) If y is a nondegenerate component of C - (D), then either U(w; f) # 0 for
each w € y or U(w; f) = 0 on y.

(¢) If vy is an unbounded nondegenevate component of € - £(D), then U(w; ) # 0
for each w € .

(d) If y is a nondegenevate component of C - £(D) and the support of some
rvepresenting measure for Lo does not sepavate vy from «,then Ulw; f) # 0 for
each W € y.

Proof. (a): If D has a strongly dense boundary, then

Uw; ) = (== ) # 0

1
v € H,(D).

(b): Suppose U(wg; f) = 0 for some wqg € v, but U(w; f) # 0 on y. Then for
some & > 0 we can assert that U(w; f) # 0 whenever 0 < |w - wg| <&. The in-

for each w € C - f(D), by Theorem 1 and since

version t = - maps ¥ onto a nondegenerate continuum I' containing <, and

U(w0+—1-;f) £ 0 for%< [t] < .

Let g = —1W0 . Then g € Hy(D) and £o(g) = U(wg; f) = 0. For

t; € Fﬂ{é—<|t|<°°%

we have the relations
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1 1 1 1 1 1
ﬂ( )=-—ﬁ 1—-—ﬂ( )=-—U( +—;f)¢0.
"Ng-t t oD 2 ONE - (wo +1/t)) té Yoy

Therefore, from the function g we may construct variations g, =g+ t + o(e )

such that f, = T(g,) €  and the sequence {f } contradicts the compactness of ¥
just as in the proof of Theorem 1.

(c) is a special case of (d).
(d): From (11) we see that the analytic function U(w; ) = £, ( f—_l-;v-) has a

zero of finite order at «. Since the support of some representing measure for £,
does not separate y from «, the function U(w; f) does not vanish identically on y.
The result now follows from part (b).

5. AN ELEMENTARY VARIATION

In this section we begin to study the problem

max "L,
g’(D;«QI,‘QZrPyQ)

where L € H'(D). It will be convenient to associate with L. ¢ H'(D) and
F(D, £;, £, P, Q) the functional

(14) Li= L+ L) £y - L) 7.
Observe that
Le( 2

LEMMA 2. Suppose ¥ =F(D, £, £,, P, Q) is compact, f € F, and L. € H'(D).
If % L(f) = max g R L, then

f 1
(15) % {U(w; (1 w)} 20

for each w € C - £f(D) such that Ulw; ) # 0.
Proof. Fix f € & and w € C - (D), and assume U(w; f) # 0. Then

) (f ) + Ulw; £) L(f) - Uw; £) L(1).

=iy e B a1 =g | iy w0 |e s

¥ RL{) = max gz % L, then

: -, 1 1
0 < RL(f - T(g)) = sh{U(w; ) Lf(f_w)}.

The condition (15) carries information only if Ly ( 7 _lw) # 0 on C - f(D). The

next two lemmas show that the latter is the case when L is not trivial on %.
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LEMMA 3. Suppose C - D has no isolated points, F =F(D, 81, £,, P, Q) is
compact, and £ € F. If L € H'(D) is linearly independent of £, and L, (for exam-
ple, if L # constant on %), then

Lf(ffw) 40 on C- (D).

Proof. If L _1 )= 0 on C - f(D), then, since C - (D) has no isolated
INT-w

points, Lf( : } w) = 0 on an open neighborhood of C - £f(D). From Proposition 2 it

follows that L¢= 0 on H(D). Therefore L is a linear combination of £, and {,
hence of £, and £,.
The conclusion of Lemma 3 still allows Lf( f—.l"“—;) to vanish identically on

some nondegenerate components. In the following lemma, we eliminate this possi-
bility.

LEMMA 4. Suppose F=F(D, £,, 42, P, Q) is compact, £ € F, and L € H'(D)
is linearly independent of L) and L. If the support of some vepresenting measuve
Jor the functional Ly does not sepavale the components of C - D, then

Li(fow) 70

on each nondegenerate component of C - £(D).
Proof. If Lf(f'}_w) = 0 on a nondegenerate component of C - f(D), then
1

Lf(m) = 0 on C - f(K), where K supports a representing measure for L; and

does not separate the components of C -D. Again by Proposition 2, L¢= 0 on H(D),
and L is a linear combination of ¢, and ¢,.

6. SCHIFFER’S BOUNDARY VARIATION

Let f belong to a compact family # = (D, £:, £, P, Q), and let w be a point
of a nondegenerate component y of C - £(D). Then, according to a theorem of M.
Schiffer [8], there exist variations of f of the form

_ £
g =i+ W-%-o(.s)
that are univalent in D. We may normalize these variations by the transformation
-1 ~ 1 ~
* — = ee—— - —_ ———— . - - .
P= 1) = oy e - Do) = 1+e| g Ut -1 - Dm0 |+ole),

so that f* € #. If now L € H'(D) and % L(f) = maxgz % L, then

RN L(f* - f) =9t{aLf(f_1w)}‘+o(s) < 0.
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If the analytic function Lf( ﬁ) does not vanish identically on 7, then by Schif-

fer’s fundamental lemma [8], ¥ consists of finitely many analytic arcs satisfying the
differential equation

(16) Le( =) (@w? > 0.

In fact, if Lf(f—_l-\;) # 0 on 7, then y is a single analytic arc:

LEMMA 5. Suppose F =% (D, £,, L5, P, Q) is compact, f € F, L € H'(D), and
9% L(f) = max g B L. If v is a nondegenevate component of € - (D) on which

Lf(f —1w) # 0 and U(w; £f) Z 0, then v is a single analytic arc. Moreover, v

1
satisfies the diffevential equation Lf(ﬁ) (dw)? > 0 as long as Ly (f - W) # 0.
1

f-w

t
+—————:t € (-0, ) » .
{WO VU(wg; 1)

Remark. The functional Ly is defined in (14). Criteria under which

Furthermore, if Lf( ) has a zevo wq € v, then y lies on the straight line

L¢ (f_iW) # 0 are given in Lemmas 3 and 4. Similarly, criteria under which
U(w; f) # 0 are given in Lemma 1.

Proof. Let &, f, L, v, L, U be as in the hypothesis. By Schiffer’s fundamental
lemma, the only possible points of nonanalyticity or branching of v are points where

Lf( 1 ) vanishes. However, we shall show that if Lf(ﬁ‘) has a zero, then

f-w
v lies on a straight line, hence is an analytic arc.
Assume therefore that Lf( 1 ) =0 for some w, € y. Then Lf( L ) #0
f - WO f -Ww

for all w # w; in a neighborhood of w, since Lf( 1 w) # 0 on y. Furthermore,

£ -
since U(w; f) # 0 on 7, by Lemma 1(b) the function U(w; f) never vanishes on 7.

belongs to H (D) and

Since w, € 7, the function - wg

~ 1 "'1 1 ~
f= T(___) - - Ulwg; £
f-w, U(wo;f)[f-wo two )]
belongs to #. At the same time, the mapping

PR 1 N
W_W(W)—U(wo;f)l:w—wo_U(wo’f):i

takes y onto a nondegenerate continuum 7 C C - f(D) containing e = \ﬁ(wo). We
note for future use that

(17) dw 1

AW Ulwg; ) (w - w)?
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Observe that

L) U(Wo,f)[ f_W) U(wo,f)L(l):I

U(wo, f)[ (f - L(f) U(wo; f)] = L(f),

so that f is also an extremal function for the problem maxg % L. Since L) = L(),
the functionals Lf and Ly are identical, and by direct computation

1 1 f-wo
1(52=) = Le(32=) = - wo Ulwos HLe(7>)
\7_w f\7_4 0 0 f\T-w
(18) .
= - 2 M —_—
(W WO) U(W03 f)Lf(f—W)’
since L¢(1) = 0. Now, since f is extremal and Lf(-f—l—:) # 0 on 5/, we may again
-w

apply Schiffer’s fundamental lemma [8], this time to 7, to learn that 7 consists of
finitely many analytic arcs satisfying the differential equation

(19) L;(%TIWT) (aw)? > 0.

For all w € ¥ (w # wp) in a sufficiently small neighborhood of wg, the quotient
of (19) and (16) together with the relations (18) and (17), yields the relations

1 ~ {
f-w 1
0 < = 2U(wg; £ = .
Lg (ﬁ) (dw)? v = wo)"Utwo3 D (dw Ulwo; 1) (w - wo)?

_t
v U(wg; 1)

lar, v is an analytic arc in a neighborhood of wg.

That is, w must be on the straight line {Wo + it e (-, ) } . In particu-

We have shown in any case that y is a single analytic arc. Furthermore, if

Lf ( R _lw) has a zero on v, then v lies locally, and hence globally (by its analyt-

icity), on the indicated line.

7. THE 7/4-THEOREM

THEOREM 2. Suppose F =F (D, ¢,, £,, P, Q) is compact, f ¢ #, L € H'(D),
and % L(f) = maxg R L. If y is a nondegenevate component of C - f(D) on which
1

Lf(-f_—w) # 0 and U(w; f) # 0, then v is an analytic avc whose tangent makes an

angle at most 1/4 with vespect to the vector field grad[ N S v U(w; f) dw :I
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Proof. The analyticity of y is a consequence of Lemma 5. Fix wog € y. If

L ( - _1W0 ) = 0, then by Lemma 5, y lies on the line

t : -c0, ©0
§W°+mm'“‘ ’ )}’

which has the same direction as the vector field gradl: N S VU(w; f) dw] at wg. If

1
Lf(f - Wo) # 0, then by Lemma 2

i 1 1
(20) 9l{U(W0;f)Lf(f-WO)}ZO'

Note that U(wg; f) # 0, by Lemma 1(b), since U(w; f) # 0 on y. Also, by Lemma 5,

(21) Lf( O) (dw)> > 0

1
f-w
at wgy. Dividing (20) by (21), we find that

1
i >0
" Ulwg ; £) (aw)2 =

Iy

at wo. Therefore |arg[VUlwo; f) dw]zl < w/2. We choose first a branch of
v U(w; f) on v and then the tangent direction so that

larg [VU(wo: D) dw]| < w/4

at wg. The conclusion then follows immediately.

Inserting into Theorem 2 conditions from Lemmas 1(d) and 4 that guarantee

U(w; f) # 0 and Lf(f}W

) # 0, we have the following consequence.

THEOREM 3. Suppose ¥ =F (D, £,, £,, P, Q) is compact, f € #, L € H'(D)
is linearly independent of £, and L, and RNL(f) = max g R L. Assume furthermore
that the supports of some vepresenting measuves for Ly and L¢ do not separvate the
components of C - D. Then each nondegenevate component of C - £f(D) is a single
analytic avc whose tangent makes an angle at most w/4 with the vector field

grad[ RN S v U(w; ) dw] .

The following is a notable special case:

THEOREM 3'. Suppose D # C is simply connected, # = F (D, 2;, £, P, Q)
is compact, f € #, L € H'(D) is linearly independent of ¢, and {,, and
R L(f) = max g RL. Then each component of C - f(D) is an analytic arvc whose tan-

gent makes an angle at most /4 with the vector field gradl: 9N S VU(w; 1) dw :I .
We now apply Theorem 3 to the important families ¥(D, zg) and
g(D’ p’ q’ P’ Q):

THEOREM 4. Suppose f € (D, zg), L € H'(D) is not of the form
L(g) = aglzg) +Bg'(z0) (for example, suppose L # constant on ¥(D, zy)),
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R L(f) = max g RL, and the support of some vepresenting measure for L does not
separate the components of C - D. Then each nondegenevate component of C - £f(D)
is a single analytic avc whose tangent makes an angle at most 1 /4 with the radial
divection. At most one component is unbounded.

THEOREM 5. Suppose fe (D, p, q, P, Q), L € H'(D) is not of the form
L(g) = aglp) +Bglq) (for example, suppose L # constant on ), RL(f) = maxg RL,
and the support of some rvepresenting measuve for L does not separate the com-
ponents of C - D. Then each nondegenevate component of C - £(D) is an analytic
arc whose tangent makes an angle at most w/4 with respect to the family of hyper-
bolae with foci P and Q. At most one component is unbounded.

Pyoof of Theovems 4 and 5. The assertions are special cases of Theorem 3 for
the examples (i) and (ii) (see (12) and (13)) except for the statement that branching
does not occur at . To see the latter, we use an idea of L. Brickman and D. Wilken
[2]. If indeed two components of C - (D) were unbounded, they would belong to a
single component of C - f(D) with at least two distinct points on all sufficiently large
circles about the origin and on all sufficiently large ellipses with foci P and Q. In
this situation, we have constructed a decomposition f =xf; + (1 - A)f,, where
X € (0, 1) and f; and f, are in the family, but are not slit mappings (see [5, Theo-
rems 1 and 2]). Since this is a convex decomposition, both f; and f, also maxi-
mize 9L over the family. This contradicts the assertion that extremal functions
must be (analytic) slit mappings.

For simply connected domains, we may phrase Theorems 4 and 5 in terms of
support points:

THEOREM 4'. Suppose D # C is simply connected and f is a support point of
F D, zg). Then C - {(D) consists of a single analytic avc whose tangent makes an
angle at most n/4 with the vadial divection.

THEOREM 5'. Suppose D # C is simply connected and { is a support point of
I, p, a, P, Q). Then C - (D) consists of a single analytic arc whose tangent
makes an angle at most w/4 with vespect to the family of hyperbolae with foci P
and Q.

Remarks. A special case of Theorem 4' is contained in the book by G. Goluzin
[4, p. 147]. A Pfluger [7] and L. Brickman and D. Wilken [2] proved Theorem 4' in
its general form. Theorem 5' appears to be a geometrically pleasing extension of
their result, because as P, Q — 0, the hyperbolae degenerate into rays.

L. Brickman [1] and the present authors [5] have considered the extreme
points, in the sense of convexity, of the families (D, zg) and 9(D, p, q, P, Q). By
definition, f is an exiveme point of ¥ if f belongs to # and there do not exist dis-
tinct £,,f, € & and X € (0, 1) such that £f=Xf; + (1 - A)f,. It was shown in [5]
that the extreme points of #(D, zg) and (D, p, q, P, Q) have the weaker, but simi-
lar, properties that the boundary components are slits monotone relative to the
family of circles about the origin and family of ellipses with foci P and Q, respec-
tively.

Added in proof. In Theorems 4 and 5 it is proved that at most one component of
C - f(D) is unbounded. The authors have recently shown that this conclusion holds,
more generally, under the hypothesis of Theorem 3. The proof will appear shortly
in C. R. Acad. Sci. Paris Sér. A.
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