FINITELY GENERATED FUCHSIAN GROUPS AND CHARACTER-AUTOMORPHIC NORMAL FUNCTIONS

E. Röding

Ch. Pommerenke [4] (Corollary 2) has shown that for every infinitely generated Fuchsian group there exists a character-automorphic function f(z) in $D=\left\{\left|z\right|<1\right\}$ with

$$1 \le \sup_{z \in D} (1 - |z|^2) f^{\#}(z) \le K_0 < \infty,$$

where K_0 is an absolute constant. Here we use the notation

$$f^{\#}(z) = |f'(z)|/(1 + |f(z)|^2)$$

for the spherical derivative. We prove the following supplementary result.

THEOREM. For every finitely generated Fuchsian group Γ there exists a non-constant character-automorphic function g(z) with

(1)
$$\sup_{z \in D} (1 - |z|^2) g^{\#}(z) \leq K_0 < \infty,$$

where K_0 is an absolute constant.

Proof. The case where Γ is finitely generated and of the second kind has been treated by Pommerenke in Section 3 of his paper [4]. Clearly, it suffices to consider the case where D/Γ is a compact Riemann surface. According to A. Marden [2], one can choose a conjugate group $\Gamma^* = \psi \circ \Gamma \circ \psi^{-1}$ such that there exists a fundamental region of Γ^* in D whose interior contains a circle K around 0 with radius $\rho > 0$ independent of Γ^* . There exists a single-valued potential function u on $R = D/\Gamma^*$ that has the singular behavior of $\log |z/(z-z_0)|$ near the points on R corresponding to 0 and some fixed point $z_0 \in K$ ($z_0 \neq 0$), and is harmonic elsewhere. If \tilde{u} denotes a conjugate harmonic of u, then the function $f = \exp(u + i\tilde{u})$ is a nonconstant character-automorphic function in D with respect to Γ^* .

Let ρ_1 denote a positive number such that $|z_0| < \rho_1 < \rho$, let

$$\mathbf{B} = \{ \left| \mathbf{z} \right| < \rho \}, \quad \beta = \{ \left| \mathbf{z} \right| = \rho \}, \quad \mathbf{B}_1 = \{ \left| \mathbf{z} \right| < \rho_1 \}, \quad \alpha = \{ \left| \mathbf{z} \right| = \rho_1 \},$$

let A denote the complement of B_1 on R, and let $u_0 = \log |z/(z-z_0)|$. The alternating method of Schwarz (see R. Nevanlinna [3, pp. 151-153]) requires the construction of functions u_n and v_n , harmonic in A and B, respectively, and with the boundary values

(2)
$$u_n = v_{n-1} + u_0$$
 on α $(v_0 = 0)$, $v_n = u_n - u_0$ on β .

Received July 31, 1974.

Let K_i denote positive constants independent of Γ^* . With $q = 2\rho_1/(\rho_1 + \rho)$, we obtain from (2) (see Nevanlinna [3, p. 153]) the inequalities

$$|v_{n+1} - v_n| \le 2 \, K_1 \, q^n \quad \text{in B}, \quad |u_{n+1} - u_n| \le 2 \, K_1 \, q^n \quad \text{in A} \, .$$

From the relations $v = \sum_{\nu=1}^{\infty} (v_{\nu} - v_{\nu-1})$ in B and $u = u_0 + \sum_{\nu=1}^{\infty} (u_{\nu} - u_{\nu-1})$ in A and (3) we obtain bounds

(4)
$$|v| \le K_2$$
 in B, $|u| \le K_3$ in A; therefore $|f| \le K_4$ in A.

On the other hand, (4) implies that

$$\big| \, f(z) \, \big| \, = \, \exp \left(u_0 + v \right) \, \geq \, \exp \, u_0 \, \exp \left(- K_2 \right) \, \geq \, K_5 \exp \, u_0 \qquad \text{in B_1} \, .$$

Thus, writing $F = \exp(u_0 + i\tilde{u}_0)$ and $G = \exp(v + i\tilde{v})$ in B_1 , we get the inequalities

$$f^{\#}(z) \leq \frac{\left|\mathbf{F'}\right| \left|\mathbf{G}\right| + \left|\mathbf{G}\right| \left|\mathbf{F'}\right|}{1 + \mathbf{K}_{5}^{2} \exp 2u_{0}} \leq \frac{\left|\mathbf{z}_{0}\right| \left|\mathbf{G}\right|}{\left|\mathbf{z} - \mathbf{z}_{0}\right|^{2} \left(1 + \left|\frac{\mathbf{z}}{\mathbf{z} - \mathbf{z}_{0}}\right|^{2} \mathbf{K}_{5}^{2}\right)} + \frac{\left|\mathbf{G'}\right| \left|\mathbf{F}\right|}{1 + \left|\mathbf{F}\right|^{2} \mathbf{K}_{5}^{2}}$$

$$< \left|\mathbf{z}_{0}\right| \left|\mathbf{G}\right| \mathbf{K}_{6} + \left|\mathbf{G'}\right| \mathbf{K}_{7} < \mathbf{K}_{8} \quad \text{in } \mathbf{B}_{1},$$

where $K_6^{-1}=|z_0/2|^2K_5^2$; to see this, observe that $|G|\leq K_9$ in B_1 , by (4), and that $|G'|\leq K_{10}$ in B_1 , by (4) and the Cauchy integral formula. Now let $E=\{|w|>K_4+1\}$. Then $f^{-1}(E)\subset \bigcup_{\phi\in\Gamma^*}\phi(B_1)$, by (4). From (5) and the equation

$$(1 - |\phi(z)|^2) |f'(\phi(z))| = (1 - |z|^2) |f'(z)|$$

for $\phi \in \Gamma^*$ we obtain a bound

$$(1 - |z|^2) f^{\#}(z) \le K_{11}$$
 for all $z \in f^{-1}(E)$.

From this we conclude by Theorem 2 in a paper by A. J. Lohwater and Ch. Pommerenke [1] that the nonconstant character-automorphic function $g(z) = f(\psi(z))$ with respect to $\Gamma = \psi^{-1} \circ \Gamma^* \circ \psi$ satisfies (1), because this supremum is invariant under ψ .

REFERENCES

- 1. A. J. Lohwater and Ch. Pommerenke, *On normal meromorphic functions*. Ann. Acad. Sci. Fenn. Ser. A I No. 550 (1973), 11 pp.
- 2. A. Marden, *Universal properties of Fuchsian groups in the Poincaré metric*. Discontinuous Groups and Riemann Surfaces. Proc. of the 1973 Conference at the University of Maryland; Annals of Mathematics Studies 79, Princeton, 1974; 315-339.
- 3. R. Nevanlinna, *Uniformisierung*. 2. Auflage. Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- 4. Ch. Pommerenke, On normal and automorphic functions. Michigan Math. J. 21 (1974), 193-202.

Technische Universität Berlin, Germany, Fachbereich Mathematik