THE WHITEHEAD TORSION OF A FIBER-HOMOTOPY EQUIVALENCE

Douglas R. Anderson

1. INTRODUCTION AND STATEMENTS OF RESULTS

This paper is based on the observation that if $\xi = (E, p, B, F)$ is a piecewise linear (PL) fiber bundle, then p induces a homomorphism $p^*: Wh \pi_1(B) \to Wh \pi_1(E)$, where $Wh \pi$ denotes the Whitehead group of π (see Proposition 2.3).

The definition of a PL fiber bundle is given in [1]. We can also completely determine the homomorphism p* in many cases by using the results of [1].

We describe here the construction of the homomorphism p*; for complete details we refer the reader to Section 2. Let $\tau_0 \in \operatorname{Wh} \pi_1(B)$ be arbitrary, and let $f \colon B' \to B$ be a PL homotopy equivalence such that $\pi(f) = \tau_0$, where $\tau(f)$ denotes the Whitehead torsion of f. Form the induced fiber space with total space

$$f'(E) = \{(b', c) \in B' \times E | f(b') = p(e)\},\$$

and notice that the map $g: f!(E) \to E$ given by g(b', e) = e is also a homotopy equivalence. Since f is PL, the space f!(E) inherits a PL structure in a natural way, and g has a Whitehead torsion $\tau(g)$. Define $p^* \tau_0 = \tau(g)$.

The following is our main result.

THEOREM A. Let $\xi_i = (E_i, p_i, B_i, F_i)$ (i = 1, 2) be PL fiber bundles with connected base and fiber, and let $g: E_1 \to E_2$ be a fiber-homotopy equivalence covering $f: B_1 \to B_2$ and inducing $h: F_1 \to F_2$. Then

$$\tau(g) = p_2^* \tau(f) + \chi(B_2) j_{2*} \tau(h),$$

where j_{2*} : Wh $\pi_1(F_2) \to Wh\pi_1(E_2)$ is induced by the inclusion j_2 : $F_2 \to E_2$.

We give the proof in Section 3. As a special case we obtain the following result, due to K. W. Kwun and R. H. Szczarba [7, Corollary 1.3].

COROLLARY B. Let $f\colon B_1\to B_2$ and $h\colon E_1\to E_2$ be homotopy equivalences. Then

$$\tau(f \times h) = \chi(F_2) k_{2*} \tau(f) + \chi(B_2) j_{2*} \tau(h),$$

where \textbf{k}_2* is induced by the inclusion $~\textbf{k}_2 \colon \textbf{B}_2 \to \textbf{B}_2 \times \textbf{F}_2$.

Proof. This follows from Theorem A if we set $g = f \times h$ and observe that the Product Theorem of [7] shows that $p_2^*\tau = \chi(F_2)k_{2^*}\tau$ for each $\tau \in Wh\pi_1(B_2)$, where $p_2 \colon B_2 \times F_2 \to B_2$ is projection on the first factor.

Received November 7, 1973.

This research was partially supported by the NSF under grants GP29540 and GP31379.

Michigan Math. J. 21 (1974).

Suppose now that $\xi = (M_1^n, p_1, B_1, F_1)$ is a PL fiber bundle whose total space is a closed manifold of dimension $n \geq 5$ and whose base space and fiber are connected. Let W^{n+1} be an h-cobordism with $\partial W = M_1 \cup M_2$ and with torsion $\tau(W; M_1) \in Wh \pi_1(M_1)$. Let i: $M_2 \to W$ be the inclusion, and let $r: W \to M_1$ be a deformation retraction. One sometimes wants to know whether there exists a homotopy equivalence $f: B_1 \to B_2$ such that $p' = fp_1ri$ is homotopic to a PL bundle map. (See [5], for example.)

COROLLARY C. If p' is homotopic to a PL bundle map $p_2: M_2 \to B_2$, then there exist elements $\tau_1 \in Wh \pi_1(F_1)$ and $\tau_2 \in Wh \pi_1(B_1)$ such that

$$\tau(W; M_1) + (-1)^{n+1} \tau(W; M_1)^* = \chi(B_1) j_* \tau_1 + p_1^* \tau_2,$$

where * denotes the duality involution of $Wh \pi_1(M_1)$.

See [8; p. 373] for the definition of the duality involution.

Proof. Let $p_2: M_2 \to B_2$ be a PL bundle map homotopic to p', and let $f': B_2 \to B_1$ be a homotopy inverse for f. Since $f'p_2 \simeq f'p' = f'fp_1ri \simeq p_1(ri)$, the map ri is homotopic to a fiber homotopy equivalence $g': M_2 \to M_1$ covering f' and inducing $h': F_2 \to F_1$. Hence, by Theorem A,

$$\tau(\mathbf{r}\mathbf{i}) \,=\, \tau(\mathbf{g}^{\,\prime}) \,=\, \chi(\mathbf{F}_{\,l})\,\mathbf{j}_{\,\boldsymbol{\ast}}\,\tau(\mathbf{h}^{\,\prime}) + \mathbf{p}_{\,l}^{\,\boldsymbol{\ast}}\,\tau(\mathbf{f}^{\,\prime})\,.$$

Since it is well known that $\tau(ri) = -[\tau(W; M_1) + (-1)^{n+1} \tau(W; M_1)^*]$, the corollary follows if we set $\tau_1 = -\tau(h')$ and $\tau_2 = -\tau(f')$.

The following example illustrates the use of Corollary C. Let

$$\xi = (M_1^{2n+1}, p_1, B_1^{2k}, S^{2\ell+1})$$

be a PL fiber bundle whose total space is a PL manifold, whose base space has $\pi_1(B_1) = \mathbb{Z}/p\mathbb{Z}$, where p is an odd prime, and whose fiber is a sphere of dimension $2\ell+1$, where $\ell \geq 1$. Let W be an h-cobordism with $\partial W = M_1 \cup M_2$ and such that $\tau(W, M_1) \neq 0$. Then there is no homotopy equivalence f: $B_1 \to B_2$ for which the homotopy class of fp_1 ri contains a PL bundle map.

To see this, we recall that every element of Wh(Z/pZ) is self-conjugate, by [8, Lemma 6.7]. Hence, if there is a PL bundle map p_2 homotopic to fp_1ri , then

$$2\tau(W, M_1) = \tau(W, M_1) + \tau(W, M_1) = \tau(W, M_1) + (-1)^{2n+2} \tau(W, M_1)^*$$
$$= \chi(B_1) j_{1*} \tau_1 + p_1^* \tau_2 = p_1^* \tau_2$$

for some $\tau_2 \in Wh(\mathbb{Z}/p\mathbb{Z})$. Since $p_1^*: Wh\pi_1(M_1) \to Wh\pi_1(B_1)$ is an isomorphism, Corollary B of [1] shows that $p_1^*\tau_2 = \chi(S^{2\ell+1})\tau_2 = 0$. Hence $2\tau(W, M_1) = 0$. Since $Wh(\mathbb{Z}/p\mathbb{Z})$ is free abelian [8, p. 362], we conclude that $\tau(W, M_1) = 0$. This is a contradiction.

In attempting to construct new examples of homeomorphic but combinatorially distinct polyhedra by a refinement of Stallings' method of infinite repetition [10], the author was led to the following result.

COROLLARY D. Let $\xi_i = (M_i^n, p_i, B_i, F_i)$ (i = 1, 2) be PL fiber bundles whose total spaces M_i^n are manifolds of dimension $n \geq 5$, and whose base spaces and fibers are connected. Let C_i denote the open mapping cylinder of p_i . If there

is a homeomorphism $g: C_1 \to C_2$ such that $g(B_1) = B_2$, then there exist a PL manifold M_1' homeomorphic to M_1 , an h-cobordism W with $\partial W = M_1' \cup M_2$, and an element $\tau_0 \in Wh\pi_1(F_2)$ such that

$$\tau(W, M_2) + (-1)^{n+1} \tau(W, M_2)^* = \chi(B) j^* \tau_0$$

where j: $F_2 \rightarrow M_2$ is the inclusion.

The open mapping cylinder C of a map $f: X \to Y$ is the space obtained from the disjoint union $X \times [0, \infty) \cup Y$ by the identification of (x, 0) with f(x). To points of C we assign coordinates (x, t) for $x \in X$ and $t \in [0, \infty)$ in the obvious way.

Proof. Observing that $M_2 \times (0, \infty) \subset C_2$ has a PL structure and that $g(M_1 \times 1) \subset M_2 \times (0, \infty)$ is topologically bicollared, and using the Product Structure Theorem of R. C. Kirby and L. C. Siebenmann [6, Corollary 7.2], we may assume that $M_1' = h(M_1 \times 1)$ is a PL submanifold of $M_2 \times (0, \infty)$. Let 0 < s < t be such that $M_1' \subset M_2 \times (s, t)$, set

$$W = C_2 - M_2 \times (t, \infty) - g(C_1 - M_1 \times (1, \infty)),$$

$$W' = g(C_1 - M_1 \times (1, \infty)) - [C_2 - M_2 \times (s, \infty)],$$

and notice that $W \cup W' = M_2 \times [s, t]$ while $W \cap W' = M_1'$.

Let $g_1 = g \mid M_1 \times 1$: $M_1 \times 1 \rightarrow M_2 \times [s, t]$. From the observations above, it follows that g_1 is a homotopy equivalence whose torsion $\tau(g_1)$ equals

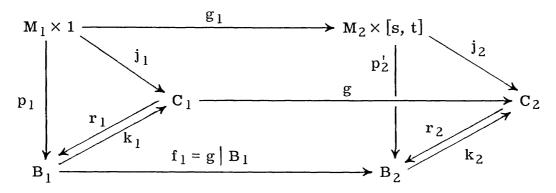
$$\tau(M_2 \times [s, t], M_1') = \tau(W, M_1') + \tau(W', M_1').$$

But now

$$\tau(W, M_1') = (-1)^n \tau(W, M_2)^*$$
 and $\tau(W, M_2) + \tau(W', M_1') = \tau(W \cup W', M_2) = 0$.

Hence
$$\tau(g_1) = -[\tau(W, M_2) + (-1)^{n+1} \tau(W, M_2)^*].$$

On the other hand, a consideration of the diagram



[where j_i and k_i (i = 1, 2) are the inclusions, r_1 and r_2 are the obvious retractions, and p_2' is the composite of p_2 : $M_2 \rightarrow B_2$ with the projection of $M_2 \times [s, t]$ on the first factor] shows that

$$p_2'g_1 = r_2j_2g_1 = r_2gj_1 \sim r_2g(k_1r_1)j_1 = (r_2k_2)f_1(r_1j_1) \sim f_1p_1$$

where \simeq means "is homotopic to". Since p_2' is a bundle map, this implies that g_1 is homotopic to a fiber-homotopy equivalence g_1' . By Theorem A and the topological

invariance of torsions (see [3] or [4]), $\tau(g_1) = \tau(g_1') = \chi(B_2)_{j*} \tau(h_1)$, where $h_1 = g_1' \mid F_1$. We complete the proof of the corollary by equating the two computations of $\tau(g_1)$ and setting $\tau_0 = -\tau(h_1)$.

2. THE HOMOMORPHISM p*

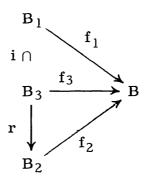
Let p: E \to B be a PL fiber bundle with fiber F. It is the object of this section to construct a homomorphism p*: Wh $\pi_1(B) \to Wh \, \pi_1(E)$ and to derive its main properties.

To define p^* , let $\tau_0 \in Wh \pi_1(B)$ be an arbitrary element. Then there exist a polyhedron B_1 and a PL homotopy equivalence $f\colon B_1 \to B$ such that $\tau(f) = \tau_0$. Let $p_1\colon E_1 \to B_1$ be a PL bundle with fiber F such that there is a PL bundle map $g\colon E_1 \to E$ covering f. (For example, take $p_1\colon E_1 \to B_1$ to be the induced bundle.) Then g is also a homotopy equivalence, and we define $p^*\tau_0 = \tau(g)$.

LEMMA 2.1. $p^* \tau_0$ is well-defined.

Proof. Let $f_i \colon B_i \to B$ be PL homotopy equivalences (i = 1, 2) such that $\tau(f_1) = \tau(f_2)$. Let $p_i \colon E_i \to B_i$ (i = 1, 2) be PL bundles with fiber F for which there exist PL bundle maps $g_i \colon E_i \to E$ covering f_i (i = 1, 2). We shall show that $\tau(g_1) = \tau(g_2)$.

Let s: $B_1 \to B_2$ be a simple homotopy equivalence such that f_1 is homotopic to f_2 s. (For example, take s to be the composite of f_1 and a homotopy inverse for f_2 .) By [12, Section 13] and [11, Theorem 5], there exists a polyhedron B_3 containing B_1 and B_2 such that B_1 expands to B_3 and B_3 collapses to B_2 , and such that ri is homotopic to s, where i: $B_1 \subset B_3$ is the inclusion and r: $B_3 \to B_2$ is a deformation retraction associated with the collapse $B_3 \setminus B_1$ in the sense of [12, Section 13]. Letting $f_3 = f_2 r$, we obtain a diagram



in which the upper triangle homotopy commutes and the lower triangle commutes. Let $p_3\colon E_3\to B_3$ be induced from $p_2\colon E_2\to B_2$ by r, and let $g_3=g_2r'\colon E_3\to E$, where $r'\colon E_3\to E_2$ is the usual bundle map covering r. Since $r\colon B_3\to B_2$ is associated with a collapse, $\tau(r)=0$, and the arguments of [1, Section 2] show that $\tau(r')=0$. Hence $\tau(g_3)=\tau(g_2r')=g_{2*}\tau(r')+\tau(g_2)=\tau(g_2)$.

Similarly, since f_3i is homotopic to f_1 , there exists a PL bundle map $i'\colon E_1\to E_3$ covering i such that g_3i' is homotopic to g_1 . Hence $\tau(g_1)=g_3*\tau(i')+\tau(g_3)$. But $\tau(i')=0$ by [1, Lemma 2.1]. Hence $\tau(g_1)=\tau(g_3)=\tau(g_2)$, and the lemma is established.

A PL homotopy equivalence $f: B_1 \to B$ represents the element $\tau_0 \in Wh \pi_1(B)$ if $\tau(f) = \tau_0$. Before proving that p^* is a homomorphism, we show how to construct a representative for $\tau_1 + \tau_2$, given representatives for τ_1 and τ_2 .

Let $f_i \colon B_i \to B$ represent $\tau_i \in Wh \pi_1(B)$ for i = 1, 2; let $h_i \colon B \to B_i$ be a PL homotopy inverse for f_i ; and let $F_i \colon B \times I \to B$ be a homotopy with $F_i \mid B \times 0 = 1_B$ and $F_i \mid B \times 1 = f_i h_i$ for i = 1, 2. Let B_3 be the double mapping cylinder $B \times [-1, 1] \cup B_1 \cup B_2$ with (b, -1) identified with $h_1(b)$ and (b, 1) identified with $h_2(b)$. Then B_3 may be given a PL structure via the simplicial mapping cylinder. Define a map $k' \colon B_3 \to B \times [-1, 1]$ by

Let k be a PL approximation to k' such that $k \mid B \times 0 = 1_B$ and $k \mid B_i = f_i$ (i = 1, 2); set $f_3 = qk$: $B_3 \rightarrow B$, where q: $B \times [-1, 1] \rightarrow B$ is projection on the first factor.

LEMMA 2.2. The map $f_3: B_3 \to B$ represents $\tau_1 + \tau_2$.

Proof. Consider k: $B_3 \to B \times I$, and note that $B_3 = Z_{h_1} \cup Z_{h_2}$, where $Z_{h_1} \cap Z_{h_2} = B \times 0$ and Z_{h_i} is the mapping cylinder of h_i . Furthermore, the restrictions

$$k_1 = k \mid Z_{h_1} : Z_{h_1} \rightarrow B \times [-1, 0], \quad k_2 = k \mid Z_{h_2} : Z_{h_2} \rightarrow B \times [0, 1],$$

$$k_0 = k \mid B \times 0 : B \times 0 \rightarrow B \times 0$$

are all homotopy equivalences. By the Sum Theorem ([7] or [9, Theorem 6.9]), k is a homotopy equivalence and

$$\tau(k) = j_{1*} \tau(k_1) + j_{2*} \tau(k_2) - j_{0*} \tau(k_0),$$

where j_0 , j_1 , j_2 are the inclusions of $B \times 0$, $B \times [-1, 0]$, and $B \times [0, 1]$ into $B \times [-1, 1]$, respectively. Since $k_0 = k \mid B \times 0 = 1_B$, we see that $\tau(k_0) = 0$; also,

$$\tau(f_3) = \tau(qk) = q_* \tau(k) + \tau(q) = q_* j_{1*} \tau(k_1) + q_* j_{2*} \tau(k_2),$$

since q is simple. Finally, since the diagram

$$Z_{h_1} \xrightarrow{k_1} B \times [-1, 0] \subset B \times [-1, 1]$$

$$\cup \qquad \qquad \downarrow q$$

$$B_1 \xrightarrow{f_1} B$$

commutes, and the inclusions and q are simple, $q_*j_{1*}\tau(k_1) = \tau(f_1) = \tau_1$. Similarly, $q_*j_{2*}\tau(k_2) = \tau(f_2) = \tau_2$. Hence $\tau(f_3) = \tau_1 + \tau_2$. This completes the proof.

PROPOSITION 2.3. The function p^* : Wh $\pi_1(B) \to Wh\pi_1(E)$ is a homomorphism.

Proof. For i = 1, 2 let f_i : $B_i \to B$ represent $\tau_i \in Wh\pi_1(B)$, and let f_3 : $B_3 \to B$ be the map representing $\tau_1 + \tau_2$ constructed above. Let p_3 : $E_3 \to B_3$ be the bundle induced from p: $E \to B$ by f_3 , and let g_3 : $E_3 \to E$ be a PL bundle map covering f_3 . Let

$$\mathbf{E}_{3}' = \mathbf{p}_{3}^{-1}(\mathbf{Z}_{h_{1}}), \quad \mathbf{E}_{3}'' = \mathbf{p}_{3}^{-1}(\mathbf{Z}_{h_{2}}), \quad \mathbf{g}_{3}' = \mathbf{g}_{3} \mid \mathbf{E}_{3}', \quad \mathbf{g}_{3}'' = \mathbf{g}_{3} \mid \mathbf{E}_{3}''.$$

An application of the Sum Theorem similar to the one above shows that $\tau(g_3) = \tau(g_3') + \tau(g_3'')$. Since the argument above shows that

$$f_3 \mid Z_{h_1} = q j_1 k_1 \colon Z_{h_1} \to B$$

represents τ_1 , we see by Lemma 2.1 that $\tau(g_3') = p^* \tau_1$. Similarly, $\tau(g_3'') = p^* \tau_2$. Hence $p^*(\tau_1 + \tau_2) = p^* \tau(f_3) = \tau(g_3) = p^* \tau_1 + p^* \tau_2$ and p^* is a homomorphism.

LEMMA 2.4. Let $p_i\colon E_i\to B_i$ (i = 1, 2) be PL bundles with fiber F, and let $k\colon E_1\to E_2$ be a PL bundle map covering the PL homotopy equivalence $h\colon B_1\to B_2$. Then $k_*\,p_1^*=p_2^*\,h_*$.

Proof. Let $f: B_0 \to B_1$ represent $\tau \in Wh \pi_1(B_1)$, and let $g: f^! E_1 \to E_1$ be a PL bundle map covering f. Then g represents $p_1^* \tau$. Now the equations

$$p_2^* \tau(h) + p_2^* h_* \tau = p_2^* (\tau(h) + h_* \tau(f)) = p_2^* \tau(hf) = \tau(kg)$$

= $k_* \tau(g) + \tau(k) = k_* p_1^* \tau + p_2^* \tau(h)$

show that $p_2^*h_* = k_*p_1^*$; this completes the proof.

Let p: $E \to B$ be a PL bundle, and consider the PL bundle q: $E \times I^n \to B$, where $I^n = [-1, 1]^n$ is the n-cube, $q = p\pi$, and $\pi \colon E \times I^n \to E$ is projection on the first factor. Let k: $E \to E \times I^n$ be the inclusion k(e) = (e, 0).

LEMMA 2.5.
$$q^* = k_* p^*$$
.

Proof. Let $f: B_1 \to B$ represent $\tau \in Wh \pi_1(B)$, and let $g: f'E \to E$ be a PL bundle map covering f. Since $g \times 1: f^!E \times I^n \to E \times I^n$ is also a PL bundle map covering f, we see that $q^*\tau = \tau(g \times 1)$. But since the diagram

$$f^{!}E \xrightarrow{g} E$$

$$j \cap \qquad \cap k$$

$$f^{!}E \times I^{n} \xrightarrow{g \times 1} E \times I^{n}$$

commutes and j and k are simple,

$$\tau(g \times 1) = \tau(g \times 1) + (g \times 1)_* \tau(j) = \tau((g \times 1)j) = \tau(kg) = k_* \tau(g) + \tau(k) = k_* \tau(g)$$
.

Hence $q^* \tau = \tau(g \times 1) = k_* \tau(g) = k_* p^* \tau$; this completes the proof.

3. THE PROOF OF THEOREM A

The proof is based on an analysis of the commutative diagram

$$F_{1} \xrightarrow{h} F_{2} = F_{2} \subset F_{2} \times I^{n}$$

$$\downarrow_{1} \downarrow \qquad \downarrow_{2} \downarrow \qquad \downarrow_{1} \qquad \downarrow_{3} \downarrow \qquad \downarrow_{4} \downarrow$$

$$\downarrow_{1} \xrightarrow{g} E_{2} \subset E_{2} \times I^{m} \subset E_{2} \times I^{m} \times I^{n}$$

$$\downarrow_{1} \downarrow \qquad \downarrow_{2} \downarrow \qquad \downarrow_{2} \qquad \downarrow_{2} \qquad \downarrow_{2} \qquad \downarrow_{2} \qquad \downarrow_{3} \downarrow$$

$$\downarrow_{1} \xrightarrow{f} B_{2} \subset B_{2} \times I^{m} = B_{2} \times I^{m}$$

where the two left-hand squares come from the hypothesis of Theorem A; i_1 , i_2 , k_1 , k_2 are all the zero-section inclusions; and $p_3 = (p_2 \times 1)\pi$, where $\pi \colon E_2 \times I^m \times I^n \to E_2 \times I^m$ is the projection on the first factor.

LEMMA 3.1. If $\tau(\mathbf{k}_1 \, \mathbf{i}_1 \, \mathbf{g}) = \mathbf{p}_3^* \, \tau(\mathbf{i}_2 \, \mathbf{f}) + \chi(\mathbf{B}_2) \, \mathbf{j}_{4^*} \, \tau(\mathbf{k}_2 \, \mathbf{h})$, then Theorem A holds.

Proof. Since i_1 , i_2 , k_1 , and k_2 are all simple equivalences, we have the relations

$$\begin{aligned} k_{1*}i_{1*}\tau(g) &= \tau(k_{1}i_{1}g) = p_{3}^{*}\tau(i_{2}f) + \chi(B_{2})j_{4*}\tau(k_{2}h) \\ &= k_{1*}(p_{2} \times 1)^{*}\tau(i_{2}f) + \chi(B_{2})j_{4*}k_{2*}\tau(h) \\ &= k_{1*}i_{1*}p_{2}^{*}\tau(f) + \chi(B_{2})k_{1*}i_{1*}j_{2*}\tau(h) = k_{1*}i_{1*}(p_{2}^{*}\tau(f) + \chi(B_{2})j_{2*}\tau(h)), \end{aligned}$$

by Lemmas 2.4 and 2.5 and the commutativity of the diagram. Since $k_{l}*i_{l}*$ is an isomorphism, the lemma follows.

THEOREM 3.2. If $m \ge 2 \dim B_1 + 1$ and $n \ge 2 \dim E_1 + 1$, then

$$\tau(k_1 i_1 g) = p_3^* \tau(i_2 f) + \chi(B_2) j_{4*} \tau(k_2 h).$$

The proof of Theorem 3.2 depends on several lemmas.

LEMMA 3.3. Let $m\geq 2\dim\,B_1+1,$ and let $b_0\in B_1$ be a base point. Then i_2f is homotopic, relative to b_0 , to a PL embedding $f'\colon B_1\to B_2\times I^m$.

Proof. Let $F: B_1 \times I \to B_2$ be a homotopy between f and a PL map f_1 approximating f, and note that F may be taken to be relative to b_0 . Similarly, let $G: B_1 \times I \to I^m$ be a homotopy relative to b_0 between the constant map to the origin and a PL embedding $f_2: B_1 \to I^m$. Then H(x, t) = (F(x, t), G(x, t)) gives the needed homotopy.

By the Covering Homotopy Theorem, the homotopy between $i_2 f$ and f' may be covered by a homotopy $H': E_1 \times I \to E_2 \times I^m$ that starts at $i_1 g$ and is stationary with H. In particular, if $b_0 \in B_1$ is the base point and $F_1 = p_1^{-1}(b_0)$, then $H' \mid F_1 \times t = h$ for all t. Setting $g_1 = H' \mid E_1 \times 1$, we obtain the commutative diagram

$$F_{1} \xrightarrow{h} F_{2}$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_{1} \xrightarrow{g_{1}} E_{2} \times I^{m}$$

$$\downarrow \qquad \qquad \downarrow$$

$$B_{1} \xrightarrow{f'} B_{2} \times I^{m}$$

in which f' and g_1 are homotopic to i_2f and i_1g , respectively, and where f' is a PL embedding.

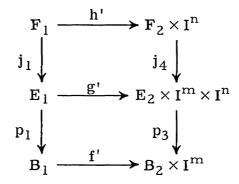
LEMMA 3.4. The map g_1 is fiberwise homotopic to a PL map $g_2: E_1 \to E_2 \times I^m$.

We defer the proof to the end of this section.

LEMMA 3.5. If $n \ge 2 \dim E_1 + 1$, then $k_1 g_2$ is fiberwise homotopic to a PL embedding $g': E_1 \to E_2 \times I^m \times I^n$.

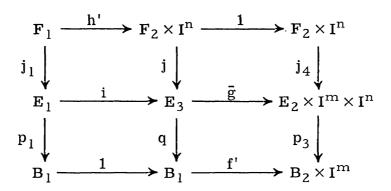
Proof. The proof is an obvious modification of the proof of Lemma 3.3.

By combining Lemmas 3.3, 3.4, and 3.5, we obtain a commutative diagram



in which f', g', h' are all PL embeddings and are homotopic to $i_2 f$, $k_1 i_1 g$, and $k_2 h$, respectively.

We are now ready for the proof of Lemma 3.2. By the remarks above, it suffices to prove that $\tau(g') = p^* \tau(f') + \chi(B_2) j_{4^*} \tau(h')$. To prove this, consider the commutative diagram



where $E_3 = f'^!(E_2 \times I^m \times I^n)$, \bar{g} and q are the usual maps, and $i(x) = (p_1(x), g'(x))$. Since $g = \bar{g}i$, we see that $\tau(g) = \bar{g}_* \tau(i) + \tau(\bar{g})$. But $\tau(\bar{g}) = p_3^* \tau(f')$, by the definition of p_3^* ; also, $\tau(i) = \chi(B_1)j_*\tau(h')$, by [2], and $\chi(B_1) = \chi(B_2)$, since B_1 and B_2 have the same homotopy type. Hence

$$\tau({\rm g}) \; = \; \bar{\rm g}_* \; \tau({\rm i}) \; + \; \tau(\bar{\rm g}) \; = \; {\rm p}_3^* \; \tau({\rm f}^{\, \prime}) \; + \; \bar{\rm g}_* \; \chi({\rm B}_1) \; {\rm j}_* \; \tau({\rm h}^{\, \prime}) \; = \; {\rm p}_3^* \; \tau({\rm f}^{\, \prime}) \; + \; \chi({\rm B}_2) \; {\rm j}_{4^*} \; \tau({\rm h}^{\, \prime}) \; , \label{eq:tau_spectrum}$$

and the proof of Lemma 3.2 is complete.

We return now to the proof of Lemma 3.4, which requires two lemmas. To set notation, let Δ^n denote the standard n-simplex.

LEMMA 3.6. Let $g': \Delta^n \times F \to F'$ be any map, and let $G': \dot{\Delta}^n \times F \times I \to F'$ be a homotopy of $g' \mid \dot{\Delta}^n \times F$ such that $G' \mid \dot{\Delta}^n \times I$ is PL. Then G' extends to a homotopy of g', $H': \Delta^n \times F \times I \to F'$, such that $H' \mid \Delta^n \times F \times I$ is PL.

Proof. Let h: $\Delta^n \times I \to \Delta^n \times I$ be a PL homeomorphism such that

$$h(\Delta^n \times 0 \cup \dot{\Delta}^n \times I) = \Delta^n \times 0$$
 and $h(\dot{\Delta}^n \times 1) = \dot{\Delta}^n \times 0$.

Let $\tau: \mathbf{F} \times \mathbf{I} \to \mathbf{I} \times \mathbf{F}$ be the switching map. Then

$$f = (g' \cup G') (1 \times \tau) (h^{-1} \times 1) (1 \times \tau); \Delta^n \times F \times 0 \rightarrow F'$$

is a continuous map that is PL on $\dot{\Delta}^n \times F \times 0$. By [13], there exists a homotopy H: $\Delta^n \times F \times I \to F'$ relative to $\dot{\Delta}^n \times F$ such that H $\mid \Delta^n \times F \times 0 = f$ and H $\mid \Delta^n \times F \times 1$ is PL. Let

$$H' = H(1 \times \tau) (h \times 1) (1 \times \tau)$$
.

Then, for each point $(x, z, t) \in \Delta^n \times F \times 0 \cup \dot{\Delta}^n \times F \times I$, we have the relation $H'(x, z, t) = (g' \cup G')(x, z, t)$, and therefore $H' \mid \Delta^n \times F \times 1$ is PL.

LEMMA 3.7. Let $p_i \colon E_i \to B_i$ be a PL fiber bundle with fiber F_i (i = 1, 2), and let $g \colon E_1 \to E_2$ be a fiberwise map covering a PL embedding $f \colon B_1 \to B_2$. Then g is fiberwise homotopic to a PL map.

Lemma 3.4 is an obvious consequence of Lemma 3.7.

Proof. The proof is by induction on the dimension of B_1 . Suppose the lemma holds when dim $B_1 \leq n$ - 1, and let dim B_1 = n. Let K_1 and K_2 be triangulations of B_1 and B_2 , respectively, such that $f\colon K_1 \to K_2$ is simplicial. Let K_0 be the (n-1)-skeleton of K_1 , let $B_0 = \left|K_0\right|$, and let $E_0 = p_1^{-1}(B_0)$. By the induction hypothesis, $g \mid E_0 \colon E_0 \to E_2$ is fiberwise homotopic to a PL map. Let $G\colon E_0 \times I \to E_2$ be a fiberwise homotopy. We shall establish the lemma by extending G.

Let $\Delta_1^n \in K_1$ be an n-simplex, and set $\Delta_2^n = f(\Delta_1^n) \in K_2$. Let

$$h_i$$
: $\Delta_i^n \times F_i \rightarrow p_i^{-1}(\Delta_i^n)$ (i = 1, 2)

be PL homeomorphisms such that $p_i h_i(x, y) = x$ for all $(x, y) \in \Delta_i^n \times F_i$, and set $g' = \pi h_2^{-1} g h_1$: $\Delta_1^n \times F_1 \to F_2$, where π : $\Delta_2^n \times F_2 \to F_2$ is projection on the second factor. Consider the commutative diagram

$$\dot{\Delta}_{1}^{n} \times F_{1} \times I \xrightarrow{h_{1} \times 1} E_{0} \times I \xrightarrow{G} E_{2} \xrightarrow{h_{2}} \dot{\Delta}_{2}^{n} \times F_{2} \xrightarrow{\pi'} F_{2}$$

$$\downarrow \qquad \qquad \downarrow (p_{1} | E_{0}) \times 1 \qquad \downarrow p_{2} \qquad \downarrow$$

$$\dot{\Delta}_{1}^{n} \times I \xrightarrow{i \times 1} B_{0} \times I \xrightarrow{f'} B_{2} \xrightarrow{j} \Delta_{2}^{n}$$

where i and j are the inclusions and f'(x, t) = f(x) for all t. The map $G' = \pi' h_2^{-1} G((h_1 | \dot{\Delta}_1^n \times F) \times 1)$ is a homotopy from $g' | \dot{\Delta}_1^n \times F_1$ to a PL map. Let $H' \colon \Delta_1^n \times F_1 \times I \to F_2$ be the homotopy of g' extending the map G' given by Lemma 3.6, and define $G_1 \colon (E_0 \cup p_1^{-1}(\Delta_1^n)) \times I \to E_2$ by

$$G_1(x,\,t) \,=\, \left\{ \begin{array}{ll} G(x,\,t) & \text{if } (x,\,t) \,\in\, E_0 \times I\,, \\ \\ h_2(j^{-1}\,f\,p_1(x),\,H'(h_1^{-1}(x),\,t)) & \text{if } (x,\,t) \,\in\, p_1^{-1}(\dot{\Delta}_1^n) \times I\,. \end{array} \right.$$

Then G_I is well-defined and gives a fiberwise homotopy of $g \mid E_0 \cup p_1^{-1}(\Delta_1^n)$ to a PL map covering f.

An obvious inductive argument over the n-simplices of K_1 shows that G_1 extends to a fiberwise homotopy of g; this completes the proof.

REFERENCES

- 1. D. R. Anderson, The Whitehead torsion of the total space of a fiber bundle. Topology 11 (1972), 179-194.
- 2. ——, A note on the Whitehead torsion of a bundle modulo a subbundle. Proc. Amer. Math. Soc. 32 (1972), 593-595.
- 3. T. A. Chapman, Compact Hilbert cube manifolds and the invariance of Whitehead torsion. Bull. Amer. Math. Soc. 79 (1973), 52-56.
- 4. R. D. Edwards, The topological invariance of simple homotopy type for polyhedra. Mimeographed preprint, U. C. L. A., 1972.
- 5. F. T. Farrell and W. C. Hsiang, H-cobordant manifolds are not necessarily homeomorphic, Bull. Amer. Math. Soc. 73 (1967), 741-744.
- 6. R. C. Kirby, Lectures on triangulations of manifolds. Mimeographed notes, U. C. L. A., 1969.
- 7. K. W. Kwun and R. H. Szczarba, Product and sum theorems for Whitehead torsion. Ann. of Math. (2) 82 (1965), 183-190.
- 8. J. Milnor, Whitehead torsion. Bull. Amer. Math. Soc. 72 (1966), 358-426.
- 9. L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five. Dissertation, Princeton University, 1965.
- 10. J. R. Stallings, On infinite processes leading to differentiability in the complement of a point. Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse. S. S. Cairns, general editor), pp. 245-254. Princeton Univ. Press, Princeton, N. J., 1965.
- 11. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups. Proc. London Math. Soc. (2) 45 (1939), 243-327.
- 12. ——, Simple homotopy types. Amer. J. Math. 72 (1950), 1-57.
- 13. E. C. Zeeman, Relative simplicial approximation. Proc. Cambridge Philos. Soc. 60 (1964), 39-43.

Syracuse University Syracuse, New York 13210