THE WHITEHEAD TORSION
OF A FIBER-HOMOTOPY EQUIVALENCE

Douglas R. Anderson

1. INTRODUCTION AND STATEMENTS OF RESULTS

This paper is based on the observation that ¢f & = (E, p, B, F) is a piecewise
linear (PL) fiber bundle, then p induces a homomorphism p*: Whr(B) — Whr(E),
where Wh denotes the Whitehead group of m (see Proposition 2.3).

The definition of a PL fiber bundle is given in [1]. We can also completely de-
termine the homomorphism p* in many cases by using the results of [1].

We describe here the construction of the homomorphism p*; for complete de-
tails we refer the reader to Section 2. Let 7, € Whx[(B) be arbitrary, and let
f: B' = B be a PL homotopy equivalence such that 7 (f) = 74, where 7(f) denotes
the Whitehead torsion of f. Form the induced fiber space with total space

£'(E) = {(b", c) e B'XE| £(b") = ple)},

and notice that the map g: f!(E) — E given by g(b', €) = e is also a homotopy equiv-
alence. Since f is PL, the space f!(E) inherits a PL structure in a natural way,
and g has a Whitehead torsion 7(g). Define p* 75 = 7(g).

The following is our main result.

THEOREM A. Let &; = (E;, p;, By, Fy) (i=1, 2) be PL fiber bundles with
connected base and fiber, and let g: E| — E, be a fiber-homotopy equivalence
coveving f: By — B, and inducing h: ¥ > F,. Then

7(g) = p3 7(f) + x(B3)i,« 7(h),

where j,x: Whr (F;) — Wh (E;,) és induced by the inclusion j,: Fy = E, .

We give the proof in Section 3. As a special case we obtain the following result,
due to K. W. Kwun and R. H. Szczarba [7, Corollary 1.3].

COROLLARY B. Let f: B; — B, and h: E; — E, be homotopy equivalences.
Then

T(E xh) = x(Fa)k,x 7(f) + x(Bp)j, % 7(h),

where K. x is induced by the inclusion kp: B, — By X F;.

Proof. This follows from Theorem A if we set g =f X h and observe that the
Product Theorem of [7] shows that p’é‘ T = X(Fz)kz* 7 for each 7 € Whw(B,),

where p,: B, X F, — B, is projection on the first factor.
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Suppose now that £ = (M7}, p;, By, F;) is a PL fiber bundle whose total space

is a closed manifold of dimension n > 5 and whose base space and fiber are con-

nected. Let W™*! be an h-cobordism with 8W = M; U M, and with torsion

7(W; M) € Whr(M;). Let i: M, — W be the inclusion, and let r: W — M be a

deformation retraction. One sometimes wants to know whether there exists a ho-

motopy equivalence f: B; — B, such that p'=fp;ri is homotopic to a PL bundle
map. (See [5], for example.)

COROLLARY C. If p' is homotopic to a PL bundle map py: M, — By, then
theve exist elements 7, € Whu |(F|) and 7, € Wha(B;) such that
7(W; M) + (-1)ntl T(W; M))* = X(Bl)j* T +p’f T2,

where * denotes the duality involution of Whw(M;).
See [8; p. 373] for the definition of the duality involution.

Proof. Let pp: M — B, be a PL bundle map homotopic to p', and let
f': B, — B) be a homotopy inverse for f. Since f'p, ~f'p' =f'fp;ri~ pl(ri), the
map ri is homotopic to a fiber homotopy equivalence g': M, — M covering {' and
inducing h': F, — F, . Hence, by Theorem A,

7(ri) = 7(g") = X(F i, 7(h") +p} 7(").
Since it is well known that 7(ri) = -[7(W; M) + (- 1) (w; M;)*], the corollary
follows if we set 77 =-7(h') and 7, = -7(f'").

The following example illustrates the use of Corollary C. Let
g — (M%n'l‘l’ pl! B%k, SZ.Q'}‘].)

be a PL fiber bundle whose total space is a PL manifold, whose base space has
71 (By) = Z/pZ, where p is an odd prime, and whose fiber is a sphere of dimension
20+ 1, where £ > 1. Let W be an h-cobordism with oW =M U M, and such that
7(W, M) # 0. Then there is no homotopy equivalence f: B; — B, for which the
homotopy class of fp;ri contains a PL bundle map.

To see this, we recall that every element of Wh(Z /pZ) is self-conjugate, by [8,
Lemma 6.7]. Hence, if there is a PL bundle map p; homotopic to fp;ri, then

27 (W, M) = 7(W, M) + 7(W, M}) = 7(W, M)) + (-1)27"2 r(w, M))*

= X(B)jixT1+pI 72 =PI T2

for some T, € Wh(Z/pZ). Since | Wh7 (M) = Wh7(B;) is an isomorphism,

Corollary B of [1] shows that p% 7, = x(S28+1y 75, = 0. Hence 27(W, M;) = 0. Since
Wh(Z/pZ) is free abelian [8, p. 362], we conclude that 7(W, M) =0. Thisisa
contradiction.

In atterhpting to construct new examples of homeomorphic but combinatorially
distinct polyhedra by a refinement of Stallings’ method of infinite repetition [10], the
author was led to the following result.

COROLLARY D. Let & = (M?, p;, B;, Fy) (i =1, 2) be PL fiber bundles
whose fotal spaces M? are manifolds of dimension n > 5, and whose base spaces
and fibers are connected. Lel C; denote the open mapping cylindey of p;. If theve
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is a homeomovrphism g: C; — C, such that g(B1) = Bz, then theve exist a PL mani-
fold M| homeomorphic to Mj, an h-cobordism W with 8W =M U M, and an
element 7o € Wha(F,) such that

7(W, M) + (-1)*"! 7 (W, M,)* = x(B)j* 70,

wheve j: F, — M; is the inclusion.

The open mapping cylinder C of a map f: X — Y is the space obtained from the
disjoint union X X [0, ©) U Y by the identification of (x, 0) with f(x). To points of C
we assign coordinates (x, t) for x € X and t € [0, ) in the obvious way.

Proof. Observing that M, X (0, ©) € C2 has a PL structure and that
g(M; X 1) C M3 X (0, «) is topologically bicollared, and using the Product Structure
Theorem of R. C. Kirby and L. C. Siebenmann [6, Corollary 7.2], we may assume
that Mj = h(M; X 1) is a PL submanifold of M, X (0, »). Let 0 < s <t be such
that M) C M5 X (s, t), set

w

1!

CZ - sz(ta oo) - g(Cl - Ml X(ly oo)),

w' g(Cl-Mlx(la oo))— [CZ-MZX(Sa oo)]’
and notice that W U W' =M, X [s, t] while WN W' =M

Let g, = g| M; X 1: My X 1 — M, X [s, t]. From the observations above, it fol-
lows that g; is a homotopy equivalence whose torsion 'r(gl) equals

7(My X [s, t], M}) = 7(W, M}) + 7(W', M}).
But now
T(W, M)) = (-1)"7(W, M,)* and 7(W,M,)+7(W',M}) = 7(WUW', M,) = 0.
Hence 7(g)) = -[7(W, M,) + (-1)™"1 7(W, M,)*].

On the other hand, a consideration of the diagram

g1

M;x1 > M, X [s, t]
; \
P C,
r)
k)
Y f1=g]|B1
B,

[where j; and k; (i = 1, 2) are the inclusions, r; and r, are the obvious retrac-
tions, and pj is the composite of p,: M, — B, with the projection of M, X [s, t] on
the first factor] shows that

P28 = rzj281 = rz2gj)1 ~ rag(kiry)jr = (rak2)f1(r1j1) ~ f1p1,

where ~ means “is homotopic to”. Since p'2 is a bundle map, this implies that g,
is homotopic to a fiber-homotopy equivalence g;. By Theorem A and the topological
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invariance of torsions (see [3] or [4]), 7(gy) = 7(g}) = x(B,).« 7(h;), where
h; =g} | F;. We complete the proof of the corollary by equating the two computa-
tions of 7(g;) and setting 74 = -7(h;).

2. THE HOMOMORPHISM p*

Let p: E — B be a PL fiber bundle with fiber F. It is the object of this section
to construct a homomorphism p*: Whn(B) — Wha(E) and to derive its main
properties.

To define p*, let 79 € Whr 1(B) be an arbitrary element. Then there exist a
polyhedron B; and a PL homotopy equivalence f: B; — B such that 7(f) = 7,. Let
p;: E; — B; be a PL bundle with fiber F such that there is a PL bundle map
g: E; = E covering f. (For example, take p;: E; — B; to be the induced bundle.)
Then g is also a homotopy equivalence, and we define p* To = 7(g).

LEMMA 2.1. p* 7 is well-defined.

Proof. Let f;: B; — B be PL homotopy equivalences (i = 1, 2) such that
7(f;) = 7(f2). Let p;: E; — B; (i =1, 2) be PL bundles with fiber F for which
there exist PL bundle maps g;: E; — E covering f; (i =1, 2). We shall show that
7(g1) = 7(g2)-

Let s: By — B, be a simple homotopy equivalence such that f; is homotopic to
f, s. (For example, take s to be the composite of f; and a homotopy inverse for
f,.) By [12, Section 13] and [11, Theorem 5], there exists a polyhedron B; contain-
ing B; and B, such that B} expands to B3 and B3 collapses to B, and such that
ri is homotopic to s, where i: B; C B3 is the inclusion and r: B3 — B, is a de-
formation retraction associated with the collapse B3 \ B; in the sense of [12, Sec-
tion 13]. Letting f3 = f,r, we obtain a diagram

in which the upper triangle homotopy commutes and the lower triangle commutes.
Let p3: E3 — B3 be induced from py: E; — B, by r, and let g3 =gor': E3 — E,
where r': E3 — E, is the usual bundle map covering r. Since r: B; — B, is asso-
ciated with a collapse, 7(r) = 0, and the arguments of [1, Section 2] show that
7(r') =0. Hence 7(g3) = 7(gor") =g,% 7(r") + 7(g;) = 7(g,).

Similarly, since f;i is homotopic to f;, there exists a PL bundle map

i'* E; — E3 covering i such that g3i’' is homotopic to g; . Hence
7(g)) =g+ 7(i) + 7(g3). But 7(i') =0 by [1, Lemma 2.1]. Hence

7(g,) = 7(g3) = 7(g,), and the lemma is established.
A PL homotopy equivalence f: B; — B 7epresents the element 7¢ € Whn‘l(B)

if 7(f) = To . Before proving that p* is a homomorphism, we show how to construct
a representative for 7; + 7,, given representatives for 7; and 7,.
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Let f;: B; — B represent 7; € Wh7(B) for i =1, 2; let h;: B — B; be a PL
homotopy inverse for f;; and let F;: B XI — B be a homotopy with F; l BX0=1g
and F; | B X1=f;h; for i =1, 2. Let B3 be the double mapping cylinder
B x[-1, 1] U By U B, with (b, -1) identified with hj(b) and (b, 1) identified with
hp(b). Then B3 may be given a PL structure via the simplicial mapping cylinder.
Define a map k': B3 = B X [-1, 1] by

k'(x) = (f,(x), -1) if x € By,
(Fi(x, -t),t) if xe Band -1<t<0,
k'(x, t) =
(F,(x, t), t) if xe Band 0<t <1,
k'(x) = (f,(x), 1) if x € B,.

Let k be a PL approximation to k' suchthat k| BX 0 =1g and k| B; = f;
(i =1, 2); set f3 = gk: B3 — B, where q: B X [-1, 1] — B is projection on the first
factor.

LEMMA 2.2. The map f3: B3 — B vepresents 7; + 7,.
Proof. Consider k: B3 — B X I, and note that B3 = Zh1 U th, where
Zhl n th =B X 0 and Zhi is the mapping cylinder of h; . Furthermore, the

restrictions
k, = kIZhI:Zhl - Bx[-1,0], k,-= k]ZhZ: Zy, = Bx[0, 1],
ky =k|BX0:BxX0—-BX0

are all homotopy equivalences. By the Sum Theorem ([7] or [9, Theorem 6.9]), k is
a homotopy equivalence and

7(k) = Jp* T(k;) T3, 7(k,) - Jo* 7(ko) ,

where j,, j;, j, are the inclusions of B X 0, B x [-1, 0], and B x [0, 1] into
B x[-1, 1], respectively. Since kg =k|B X 0 = 1p, we see that 7(kg) = 0; also,

7(f3) = 7(gk) = q, 7(k) + 7(q) = Ay d 7(ky) + 0y % 7(k>),

since q is simple. Finally, since the diagram

k; i1
Zhl ——> Bx[-1, 0] € Bx[-1, 1]
U q
i Y
Bl > B

commutes, and the inclusions and q are simple, q*jl* T(k,) = 7(f;) = 7, . Similarly,

SIS 7(k,) = 7(f,) = 7,. Hence 7(f3) = 7|+ 7,. This completes the proof.

PROPOSITION 2.3. The function p*: Whr (B) — Whw (E) is a homomorphism.
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Pyroof. For i =1, 2 let f;: B; — B represent 7; € Whn{(B), and let f3: B; — B
be the map representing 7; + 7, constructed above. Let p3: E3 — B3 be the bundle
induced from p: E — B by f3, and let g3: E; — E be a PL bundle map covering f3.
Let

E; = p3'(Zn ), E3=p3(Zn,), e =es3|E5, o3 =e3|ES.

An application of the Sum Theorem similar to the one above shows that
7(g3) = 7(g5) + 7{(g}). Since the argument above shows that

f3]2y, = aiiky: 2, — B

represents T, we see by Lemma 2.1 that 7(g3) = p* 7). Similarly, 7(g3) =p*75.
Hence p*(7, + 7,) = p*7(f3) = 7(g3) = p* 7, + p* 7, and p* is a homomorphism.

LEMMA 2.4. Letp;: E;, — B; (i =1, 2) be PL bundles with fiber F, and let
k: E; — E, be a PL bundle map coveving the PL homotopy equivalence h: B — By.
Then k, p’i‘ =p3h,.

Proof. Let f: By — B represent 7 € Wh,(B;), and let g: f'E, - E; bea PL
bundle map covering f. Then g represents p’f 7. Now the equations

py7(h) +pih, 7 = pi(r(h) +h, 7(f) = p37(hf) = 7(kg)

k, 7(g) + 7(k) = k,p}7 +p37(h)

show that p3h, =k, p%; this completes the proof.

Let p: E —» B be a PL bundle, and consider the PL bundle q: E X I* — B,
where In =[-1, 1]" is the n-cube, q = p7, and 7: E X I® — E is projection on the
first factor. Let k: E — E X I™ be the inclusion k{e) = (e, 0).

LEMMA 2.5. gq* =k, p*.

Proof. Let f: By — B represent 7 € Wha7(B), and let g: f'E — E be a PL
bundle map covering f. Since g X 1: f'E XI"— E X I? is also a PL bundle map
covering f, we see that q* 7 = 7(g X 1). But since the diagram

'R g > E
iN Nk
X1
HE XD —2 5 ExI®

commutes and j and k are simple,
T(gx1) = 1gx 1) +(gx 1), 7G) = 7(([gx 1j) = 7(kg) = k, 7(g) + 7(k) = k, 7(g).

Hence q*7 = 7(g x 1) =k, 7(g) =k, p* 7; this completes the proof.
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3. THE PROOF OF THEOREM A

The proof is based on an analysis of the commutative diagram

kp

h
F, —> F, = F, C F, xI"
jll J2 is 3'41
g Y i Y kq
E, ——>E, C E, xI™ C E, x1™xI"
pll o) (ple) p3l
£ Y iz Y

where the two left-hand squares come from the hypothesis of Theorem A; i;, iy,
k), kp are all the zero-section inclusions; and p3 = (p2 X 1)7, where
7 Ep XI™M XIM — E, X I™ is the projection on the first factor.

LEMMA 3.1. If 7(k;ijg) =p37(i,f) + X(Bz)j4* 7(k, h), then Theovem A holds.
Proof. Since iy, iy, k;, and k, are all simple equivalences, we have the rela-
tions

k) xi)x7() = 7k i) = p3 70, 0) + x(B,) i« Tk, )

]

k;#(p2 X D* 7(12 1) + X(B2) iy k% 7(h)
= Ky 03 TO) + X (B2) Ky wdywpu T(O) = K iy (0% () + X (BR) 1,4 T(R)),

by Lemmas 2.4 and 2.5 and the commutativity of the diagram. Since k;xi;x is an
isomorphism, the lemma follows.

THEOREM 3.2. If m > 2dim B; +1 and n > 2dim E) + 1, then

(ki1 g) = p3 7(ix 1) + x(By) i« 7(kyh).

The proof of Theorem 3.2 depends on several lemmas.

LEMMA 3.3. Let m > 2dim B] + 1, and let by € B be a base point. Then
i, f is homotopic, velative to bg, to a PL embedding f': B — B, X I'™.

Proof. Let F: B} XI — B, be a homotopy between f and a PL: map f; approx-
imating f, and note that F may be taken to be relative to by . Similarly, let
G: B) XI —I™ be a homotopy relative to by between the constant map to the or1g1n
and a PL embedding f,: B; — I"™. Then H(x, t) = (F(x, t), G(x, t)) gives the needed
homotopy.

‘

By the Covering Homotopy Theorem, the homotopy between i, f and f' may be
covered by a homotopy H': E; XI — E, X I that starts at i; g and is stationary
with H. In particular, if by € B; is the base point and F| = pil(bo), then
H'| F; Xt=h for all t. Setting g; =H' | E; X 1, we obtain the commutative
diagram
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h
——.)
F, F,

‘ |

El i——)‘szpn

| |

B, — > B, xI™

in which f' and g; are homotopic to if and i; g, respectively, and where f' is a
PL embedding.

LEMMA 3.4. The map gy is fibevwise homotopic to a PL map
gt E; — Ep, X I™,

We defer the proof to the end of this section.

LEMMA 3.5. If n> 2dim E| + 1, ther kg, is fibevwise homotopic to a PL
embedding g': E| = E; X I™ X I7.

Proof. The proof is an obvious modification of the proof of Lemma 3.3.

By combining Lemmas 3.3, 3.4, and 3.5, we obtain a commutative diagram

]
SO V-

j1 j4l

Y ,

E, —& > E, xI™xI®
P P3l

Y £

B, — > B, xI™

in which f', g', h' are all PL embeddings and are homotopic to i, f, k;i; g, and
ko h, respectively.

We are now ready for the proof of Lemma 3.2. By the remarks above, it suf-
fices to prove that 7(g') = p* 7(f') + x(BZ)j4* 7(h'). To prove this, consider the
commutative diagram

Fl L) F2X1n —__‘1——_>-F2><In

]ll ]l 14
. -~ \]
E, > B, & > E,xI™XI?
pll« Ql P3
1 ' Y
B, > B, > B, xI'™

where E3 =f'(E; X I'™® X I?), § and q are the usual maps, and i(x) = (p;(x), g'(x)).
Since g = gi, we see that 7(g) = g, 7(i) + 7(g). But 7(g) = p} 7(f'), by the definition
of p}; also, 7(i) = x(B,)j, 7(h'), by [2], and x(B)) = x(B,), since B, and B, have
the same homotopy type. Hence
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7(g) = gy 7() + 7(8) = p37E) + &, Xx(B i, 7} = pY7(E) + X(B,)jxT(h),

and the proof of Lemma 3.2 is complete.

We return now to the proof of Lemma 3.4, which requires two lemmas. To set
notation, let A™ denote the standard n-simplex.

LEMMA 3.6. Let g': A X F — F' be any map, and let G': A X FXxI—F' bea
homotopy of g l A X F such that G' | A" X 1 is PL. Then G' extends to a homotopy .
of g, H': AMX F X1 — F', such that H' | A" X F X 1 is PL.

Proof. Let h: A" XI — A® X1 be a PL homeomorphism such that
n(A" X0 UARXI) = ABX0 and h(ARXx1) = Anx0,
Let 7: FXI—1IXF be the switching map. Then
f=(uUuG)Ax7)(hIx1)(1X7)APXFX0— F'

is a continuous map that is PL on A" X F X 0. By [13], there exists a homotopy
H: AR X F XI— F' relative to A®X F such that H| ARXFx 0=f and H| AX F x 1
is PL. Let

H' =H1x7)(hx1)(1 %X 7).

Then, for each point (x, z, t) ¢ A X F X 0 U A" X F X I, we have the relation
H'(x, 2, t) = (g' U G')(x, 2, t), and therefore H' | AP X F X 1 is PL.
LEMMA 3.7. Let p;: E; — B; be a PL fiber bundle with fiber F; (i =1, 2), and

let g: E) — E, be a fiberwise map covering a PL embedding f: B| — B> . Then g
is fibevwise homotopic to a PL map.

Lemma 3.4 is an obvious consequence of Lemma 3.7.

Proof. The proof is by induction on the dimension of B;. Suppose the lemma
holds when dim By <n - 1, and let dim B; =n. Let K; and K, be triangulations of
B; and B;, respectively, such that f: K; — K, is simplicial. Let Ky be the
(n - 1)-skeleton of K, let Bg = [Kol, and let Eg = pl‘I(BO). By the induction hy-
pothesis, g ] Eg: Eg — E, is fiberwise homotopic to a PL map. Let G: Eg XI — E,
be a fiberwise homotopy. We shall establish the lemma by extending G.

Let AT € K; be an n-simplex, and set A5 =£(A]) € K, . Let
hi: ARXF; — pj (AD)  (i=1,2)

be PL homeomorphisms such that p; h;{x, y) = x for all (%, y) € A} X F;, and set
g'= ﬂhil gh,: A‘i‘ XF, —»F,, where m: A% X F, —» F, is projection on the second
factor. Consider the commutative diagram

. hix1 h , :
Al F i x1 —F > Ex1 — & >E, «—2  AlxF, —" >F,

l l(pllEo)Xl lpz
: Y

A%x1 i1 > B X I L B, <« A%
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where i and j are the inclusions and f'(x, t) = f(x) for all t. The map

G' =7'h; G((h; | A}x F) x 1) is a homotopy from g' | A®X F; to a PL map. Let
H': A] XF; XI — F, be the homotopy of g' extending the map G' given by Lemma
3.6, and define G;: (B, U p;1(A%)) XI - E, by

G(x, t) if (x,t) € Eg X1,
Gi(x, t) = i
h,(i-1fp, (%), H'(hil(x), 1))  if (x, 1) € p7 (A}) X1I.

Then G is well-defined and gives a fiberwise homotopy of g | Eg U pil(AIf) to a
PL map covering f.

An obvious inductive argument over the n-simplices of K; shows that G; ex-
tends to a fiberwise homotopy of g; this completes the proof.
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