THE REGULAR RING AND THE MAXIMAL RING OF
QUOTIENTS OF A FINITE BAER *-RING

Izidor Hafner

In the first section of this paper we extend the construction of the regular ring
C, which was defined in the work of S. K. Berberian [1], [2, Chapter 8]. The follow-
ing theorem, the central result of this article, can be found in the second section. If
A is a finite Baer *-ving satisfying the condition LP ~ RP and containing suffi-
ciently many projections, then the involution of A is extendible to the maximal ving
of right quotients Q of A. Next we show that the matrix ring C, is also a Baer *-
ring. In the last section we discuss the connection with Berberian’s construction.

Because of the considerable overlap with the work of E. S. Pyle, Jr. (of which
the author was informed after submission of the paper), some of the proofs that can
be found in [6] are omitted.

1. CONSTRUCTION OF THE RING C

In this section we follow [2, Chapter 8], where the reader will find the missing
definitions and proofs. We assume that A is a finite Baer *-ring satisfying the con-
dition LP ~ RP; that is, the statement LP(x) ~ RP(x) is valid for all x € A. Then
A satisfies the parallelogram law (P) and generalized comparability (GC). The lat-
tice of projections in A is a continuous geometry: if D is a directed index set and
¥ <0 (7, 6 € D) implies e, < ep (e, e5 are projections in A), and f is a projec-
tion in A, then

fN sup {eﬁ} = sup {fN 66}.
6€D 0eD

LEMMA 1. Let {eg} be a set of projections in A, let D be a divected index
set, and let y < 6 imply e, < eg. If e5 S forall & € D, then sup{es} < f.

Proof. See [5, p. 115, Hilfssatz 1.5], [2, Section 33, Exercises 1 and 4; Section
34, Exercise 3].

In this section, D denotes a fixed directed index set.

A strongly dense domain (SDD) in A is a family of projections {eg} such that
7 <6 (7, 6 € D) implies e, < es and supgep {eg} = 1.

LEMMA 2 [2, p. 213, Lemma 1]. If {eg} and {f5} are SDD, then {e5n f5}
s an SDD.

Let {eé} be an SDD, and let x € A. Then it can be shown that if egxeg5=0
for all 6 € D, then x = 0. Similarly, if esxeg is self-adjoint for all 6, then x is
self-adjoint [2, p. 218, Exercise 2].

An operator with closure (OWC) is a pair of sequences (xg, eg), where x5 € A

and {95} is an SDD, such that y < & implies xg €y =X, ey and xg e, = x;",e.y.
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If (x5, €5 and (yg, f5) are OWC, then so are (x}, e;5) and (x5 +yg, e5N 5).

If x € A and e is a projection in A, we write x~1(e) for the largest projection
g such that (1 - e)xg = 0, that is, exg = xg; thus x-1(e) = 1 - RP((1 - e)x). We can
also show that e < x~1(e).

LEMMA 3. Let {es}, {x5}, and {f5} be families such that v < & implies
ey Lesg, X5€y = Xy €y, fy_<_ Is5. If g8 =eg N xgl(fﬁ), then y < 6 implies gyg g5-

Proof. See [2, p. 214, Lemma 5].

LEMMA 4. In the notation of Lemma 3, let {eg5} and {f5} both be SDD.
Then {gs} is an SDD.

For a proof, see [2, p. 214, Lemma 5].
If (x5, e5) and (yg, £5) are OWC, and if

(1) ks = (f5 Ny5lleg) N(eg N (x5 1(Ey),

then we can show, by means of the preceding lemma, that (xgyg, kg) is an OWC.

We say that the OWC (x5, eg) and (yg5, fg) are equivalent (and we write
(x5, eg) = (y5, £5)) if there exists an SDD {gg} such that xg5g5 = y58¢5 and
xggﬁ = y’g gg for all 6. The equivalence is said to be implemented via the
SDD {gﬁ}. The relation = is an equivalence relation in the set of all OWC. If has
also the following properties:

If (x5, eg) is an OWC and {gg} is an SDD, then (x5, e5 N gg) is also an OWC
and (x5, eg) = (x5, €5 N g5).

Suppose (x5, eg) = (yg5, £5) via an SDD {gg}. Set hs=eg5n f5N g5. Then
(x5, hg) and (y5, hg) are OWC, and (x5, hg) = (y5, hg) via {hs}.

Definition. We write [x5, es] for the equivalence class of the OWC (x5, ep)
with respect to the equivalence relation defined above. The set of all equivalence
classes is denoted by C, and its elements are called closed operators (CO). We
denote the elements of C by letters x, y, z, ---. If x € A, we write X = [x, 1] for
the CO determined by the pair (x, 1) of constant sequences, and we write
A={xxe A}.

In the set C we can introduce operations that make C a *-ring. If
x = [x5, eg] and y = [y, f5], we define
x+y = [X§+Y6’eﬁﬂf6]7 x* = [sz eﬁ]; Xy = [X6Y57 kﬁ];

where {kﬁ} is an SDD defined by (1).
With operations so defined, € is a *-ring with unity i, and the mapping x — X
is a *-isomorphism of A onto a *-subring A of C.
. LEMMA 5. If x € C and x = [xg, egl, then x8g5=X5€5 and egX = €5Xg for
all & € D.

The proof is the same as in [2, p. 219, Proposition 1], except that an SDD {fg}
is defined so that f5=0 for 8 2y, and f5 =1 for 6> y, where y is a fixed index.

LEMMA 6. If x =[x, eg) and y = [y, £5l, and if 1g5) is an SDD such that
X586 = V585 Jor all 6, then x =y. In fact, it suffices to assume that
hsX5€5 = hsyegs for a pair of SDD {gs}, {hs}.
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LEMMA 7. If x € C, then theve exists a projection f € A such that
(a) fx= x and
(b) yx =0 if and only if yi=0.

If x=[xg, esl, then £ =sup {LP(x5fg)}.

As a consequence of this lemma, we see that C has no new projections; that is,
if e € C is a projection, then e = €, where e is a projection in A. Therefore C is
a Baer *-ring. See also [6, p. 61, Theorem 4.14].

We can also show that if x e C, then LP(x) ~ RP(x), via a partial isometry of
the form w, where w is a partial isometry in A [2, p. 220, Theorem 2]. As a con-
sequence of this we see that

(i) € is finite, and yx = 1 implies xy = 1, and

(ii) if e and f are projections in C, say e =€ and f =f, then e ~ f in C if
and only if e ~ f in A.

2. MAXIMAL RING OF QUOTIENTS OF THE RING A

In the first part of this section, A denotes a finite Baer *-ring satisfying the
condition LP ~ RP; later we shall add another hypothesis.

Let 8 denote a cardinal number that is at least as great as the cardinal number
of any family of pairwise orthogonal, nonzero projections in A. Let D be the set of
all finite subsets of the set 8. If a € 8, we write {a} for the set having a as its
only element; thus {a} € D. If v, 6 € D, then Yy U 6 € D. Therefore D, ordered by
inclusion, is a directed set.

A semioperator with closure (SOWC) is a pair of sequences (x5, e5} with
6 € D, where x5 € A and {eg} is an SDD, such that y < & implies Xpey = Xy €y
(Pyle calls it a vight operator).

We say that the SOWC (x5, e5} and (yg, fé} are equivalent (=) if there exists
an SDD {ga} such that x5g5 = y5g5 for all 6. This relation is an equivalence re-
lation in the set of all SOWC. In the set S§ of equivalence classes of SOWC’s we in-
troduce operations in the same way as in the set C (multiplication is defined by
projections k5 =fg Ny-1(es)). The set S then becomes an associative ring with
unit, containing a subring that is isomorphic to the ring A.

LEMMA 1. If (x5, eg} is an SOWC, then theve exists an SOWC (yg, f5} such
that supgy ¢ {f{a}} =1, whevre the f{a} are paivwise ovthogonal, and

(x5, €5} = (v5, £of. Furthermore, ygis=7ys.

Proof, Let {fﬁ} be a maximal family of pairwise orthogonal nonzero projec-
tions such that for each B there exists 6(8) € D such that fﬁ < es(3)- By maximal-
ity, we see that sup {fg} = 1; indeed, if f = sup {fg}, then (1 - ) N e5 =0 for all
6 € D implies 1 - f = 0, by continuity. The indices 8 are from 8. Since
|[{tg}] <8 (] | denotes cardinality), we assign the projection 0 to the remaining
indices (if there are any). Set f{a} =fy, V{a} = X5(a) f{a} , O y{a} = 0 when
f{a} =0 (@ e 8, {a} € D). Here 6(a) € D denotes an index for which fo <epay-
If V{a} = Xﬁ(a)f{a} and y > 6(a), then

@ ¥{a} = %s@) H{a} = %) %) H{a} = i) [{a} = Xpi{a}-
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The function 6(B) is not uniquely determined. Let 6;(8) and 5,(8) be functions
such that the relations fg < e5,(3) and fg < €5,(8) hold for all 8. If we set

Y(B) = 61(B) U 62(B), then it follows from (2) that
V{a} = %s1(a){a} = Xyla) H{a} = X6,(@)H{a};

thus {y{a}} is uniquely determined.

Define
Hay,an} = Ha bt ian}ls Voo, Z Vo3 T Y {a,}-

Let v ={ay, -, an} < {ay, -+, @y, =, o} = 6. Since a; # a; implies
Y{ai}f{aj} = Xa(ai)f{ai}f{aj} = 0, we see that

vof, = (Y{al} Tt yla,} o +Y{am})(f{a1} +e il 1)
= (y{al} +---+y{an})(f{al} +---+f{an}) = Yy iy .

Therefore (yg, fé} is an SOWC. From the relation y{a}f{a} =y{a} we deduce
that y5f5 = yg for all 6 € D.

Let 6 = {a;, -, an}, and let 6(a), -, 6{a,) denote indices for which
V{a;} = Xﬁ(ai)f{ai} or 8(a;) = {a;} when f{ai} = 0. Let y denote an index that

is larger than any of 6, &(a,), 6(a,), -+, &(e@,). From (2) we obtain the relations
xg5les N f5) = x5egles Nf5) = x\(e5 N fp),

voles N f5) = (y{al} + ot Y{an}) (eg N )
= (x,},f{al} + eee +x,yf{an}) (65 N fﬁ) = X),fﬁ(eé N fa);

Therefore (x5, egf = (yg5, f5) via the SDD {egnN fg5}.
LEMMA 2. If g, <e, (a € 1) and the e, are paivwise orthogonal, then
sup {gq | < sup {eq}.

Proof., The statement clearly holds if I is a finite index set and the projections
gy are also pairwise orthogonal. Let us take I = {1, 2}. Then, by the parallelo-
gram law, we have the relations

m

(g1Ug)-g2~8g1-(g1Nnga) <ey.
When we add this to g, < e, we see that g, U g <ejte;.

If 1 is an infinite set, then

B | U .- Ugan < eO[I+emz+----|-eozn < sup {ea'}
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for each finite subset {al , T, an} of the set I. The finite unions 8a, U ... U 8o,

form an increasing family. Therefore, by Lemma 1 of the first section, we see that
sup {gyt < sup{eqt.
LEMMA 3. In each equivalence class of SOWC, theve exists an OWC.

Proof. Let (xﬁ, e5} be an SOWC with the following properties:
sup {e{a} = 1, where the e{a} are pairwise orthogonal, and xg5e5 = X5 . By

Lemma 1, there exists such an SOWC in each equivalence class. Set

fo = LP(X{Q}) = LP(X{a} e{a}). The equality xfglefq} =X{q} tells us that
ty = LP(X{a}) ~ RP(X{Q}) <efa}l-

Therefore f, < efa}- Set

(3) f(’j =1- sup {fc'y} (6= {ala Ty Oln} € D).
ae 8\

It follows immediately from (3) that y < 6 implies f, <fs. By Lemma 2, we see
that

{ P> {t,1,
gesio | 10 F Lo

and from this that

fs = 1- f' >1— = = 4 e .
o=1- s Afg} z1- sw efa}} = s = efa)} ¥ telay)

Therefore supyeD{ f } 2 €eg, and SUPsen {fé} P SUP§e D {eﬁ} = 1.
Define the OWC (x5, g5) so that g5 =eg N f5. Let

Y= {als Tty an} C {al: ety Oyt am} =90.
Then

X58y = Xpy8y T XyCy8y T Xy8y,
* = . * LR ] *
X58, = X3 f,8y = (X{a } +X{ozn} + +x{am})f7,g), .
But «; ¢ vy implies

X?ai} f.}, { }(1 - sup {fa}) = 0

a€eRr\y
i = = f! ' % — X
since RP(X”{‘ai}) = LP(x{ai}) = fai < sup, . 8\y {fy}. Therefore X5 8,y = Xy8y.

THEOREM 1. There exists a natuval ving isomovphism of C onto S; in par-
ticular, S has an involution extending that of A.

Proof. Since every OWC is also SOWC, and the equivalence between OWC im-
plies the equivalence of SOWC, there exists a natural mapping of the set C into the
set S, defined by

(x5, e)] — [(x4, 95}]
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The brackets denote the corresponding equivalence classes. By Lemma 6 of the
preceding section, we see that the equivalence between OWC as SOWC implies
equivalence as OWC; thus the mapping is injective, and by the preceding lemma it
is also surjective. It is obvious that the mapping preserves the ring operations and
leaves fixed the elements of A. Since C possesses a natural involution (extending
that of A), the isomorphism induces an involution of S (extending that of A).

LEMMA 4. Each SOWC (x5, e5} defines a homomovphism of the right ideal N
(as vight A-module) genevated by projections {eg} into the ring A.

For a proof, see [6, p. 45, proof of Theorem 3.35].

Till the end of this section, let the ring A satisfy also the condition that each
nonzero right ideal contains a nonzero projection. In such a case we say that A has
sufficiently many projections (see [7], [6, p. 24]).

A right ideal N is called essential if NN N' # {0} for each nonzero right
ideal N'.

LEMMA 5. A vight ideal N of A is essential if and only if theve exisis in N a
set of pairvwise ovthogonal projections with the supremum 1.

For a proof, see [6, p. 44, Proposition 3.34, and p. 49, proof of Corollary 3.37].

The singular ideal of a Baer *-ring is zero [7], [3]. When the singular ideal of a

ring R is zero, we may characterize the maximal ring of (right) quotients in the fol-
lowing way [4, Section 4.3]: The maximal ring of quotients Q of a ring R is

U Hompg (N, R)/6,
N

where N runs over the set of all essential right ideals, and where 6 denotes the
relation defined by the rule that two homomorphisms are equivalent provided they
coincide on the intersection of their domains. The operations are defined by the
formulas }

(4’1 +¢5)d = ¢,(d) + ¢,(d) for d € @qbl N @¢2,
(p1d2)d = ¢(d2(d)) for d € @y, such that ¢,(d) € Dy .

THEOREM 2. If A is a finite Baer *-ving satisfying the condition LP ~ RP
and having sufficiently many projections, and if D is a dirvecied set, defined as at
the beginning of this section, then C is isomorphic to the maximal ving of quotients
of A. Since the singular ideal of the ring A is zevo, C is a vegular ving; thus C is
a regular Baev *-ving with the same projection lattice as A.

Proof. Using Lemmas 4 and 5, we can show that the ring S is isomorphic to
the ring Q [6, p. 49, Corollary 3.37]. Then we apply Theorem 1 [6, p. 62, Theorem
4.17]. See also [7].

Let A satisfy also the condition

(@) X x}++x X% =0 implies x;=--=x,=0.

LEMMA 6. C also satisfies condition (4) [2, Section 50, Proposition 1], and
the matvix ving C_ is *-vegular [2, Section 56, Proposition 2].
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COROLLARY. Under the assumption (4), C_ is a vegular Baer *-ving.

Pyoof. By Theorem 2, the ring C is isomorphic to Q. Since Q as a right Q-
module is injective [4, Section 4.3, Proposition 3], the right Q-module Q™ of n-
dimensional rows is also injective [4, Section 4.2, Proposition 2]. Let M be an in-
jective submodule of Q™. Since M is direct summand of Q™ [4, Section 4.2, Propo-
sition 6], we can write M + N = Q™, where M N N = {0}. Then there exist elements
a; € M and b; € N such that a; +b;=(0, ---, 1, -+, 0), where i =1, -+, n. Let M'
and N' denote the submodules of M and N generated by {a.i} and {bi}. Then we
can write

X = (Xl, ey, Xn) = E(O, teey, 1, 0y O)Xl = Z)(ai+bi)xi
1

i

21 agx;+ 2 bix; € M'+N'.

1 1

Therefore M'+N'=Q"™ and M'=M, N'=N. Consequently, M and N are finitely
generated.

Let M be a finitely generated submodule of Q™. Then it has a complement in
Q™ [8, p. 15, Lemma]. By [4, Section 4.2, Proposition 2], M is injective. Therefore
the injective submodules of Q™ form a laitice [8, p. 16, Theorem 4] that is iso-
morphic to the lattice of projections in Q,, by *-regularity.

Let {M,} be a family of injective submodules of Q™, and let M denote a
minimal injective extension of the submodule that is generated by the elements of
My [4, Section 4.2, Proposition 10]. Since the injective submodules form a lattice,
M is unique, and M = sup {M,, }. Thus the projection lattice of C,, = Q, is com-
plete; therefore C, is a Baer *-ring. See also [9].

3. THE CONNECTION WITH THE CONSTRUCTION OF BERBERIAN

The construction of Berberian [1], [2, Chapter 8] is a special case of our con-
struction if for D we take the set N of natural numbers or the set of all finite sub-
sets of the set N,

Let 8, and 8, be the cardinal numbers, and let D“l and D&2 be the corre-
sponding sets of all finite subsets. With these directed sets we construct rings *C&l

and C, .
82
THEOREM 1. If 8; <R, then C&l is *-isomorphically imbedded in CNZ'

Proof. Corresponding to each OWC (x5, e5) in the construction of CRl we
assign an OWC in the construction of sz in the following way: Write 6 U y as an

index in DNZ’ where 6 C 8, and ¥ C 8, \ 8, and set

€Uy = €55,  XpUuy T X5
If (x5, ep) =5, (v5, f5) and {gg} implies the equivalence for D, , then
{g6Uy = g5} implies the equivalence for D&2 . Conversely, let
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(X5Uy> €5U7) =x, (ysuy» f5U,) via {gauy}, where [xg, e5] and [yg, £5] are in
C&I . Thus X5Uy 86Uy = YoUy8oUry - Since X5Uy = X§ and Y5Uy = V5 for all
Y C 8, \ 8; we see that :

(x5 - Yo)8ouy = 0-
Therefore (x5 - y5) g5 =0 if g5 = sup,, {gﬁu.},}. Since {gs} is an SDD, we conclude
that (x5, eg) =x, (v5, £5) via {g5}. This means that the function from C&1 to
C 8, thus defined is well-defined. We can also prove that it is a *-monomorphism.
We can extend the study of Cyg by taking & to be the cardinal number we fixed

in the preceding section, with the additional hypotheses (10), (20), (39), (49) from [2,
Section 51]. The hypothesis (50) [2, Section 52] is not necessary.

THEOREM 2. If A satisfies the (US)-axiom, then C is *-isomorphic to Cy
(that is, to the ving constructed by Bevberian).

Indeed, each x € Cy with x = x* can be written in the form

1l

x=i(l+u)(1-u)!.

Since (1 - u)-l € Cy with 1 - v =1 - §, it follows that x € Cy [2, Section 52,
Proposition 2].

To extend [2, Section 54], we must instead of (6°) in [2, Section 54] take the fol-
lowing axiom. If {fy} is a set of pairwise ovthogonal projections with
sup {fy} =1, and if ay € £, AL, (0 <ay < 1), then theve exists an a € A such that
afy =agy for all o.

The author wishes to express his thanks to his mentor, Professor Ivan Vidav,
for valuable advice and help.
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