PERIODIC SOLUTIONS OF ANALYTIC FUNCTIONAL
DIFFERENTIAL EQUATIONS ARE ANALYTIC

Roger D. Nussbaum

In 1955, E. M. Wright [11] studied the nonlinear differential-difference equation
x'(t) = ~ax(t-1)1 +x(t) (¢>0),

and he proved among many other results that each real solution x(t) of this equation
that is defined, continuously differentiable, and bounded on the real axis has a com-
plex analytic extension on the strip |3 (t)| < (ee®)-!. Wright’s method is based on
the observations that x(t) is necessarily infinitely differentiable and that repeated
differentiation of the defining equation leads to estimates on |x(n)t)|. The esti-
mates on ]x(n)(t)l imply the analyticity of x(t). The same technique works for some
other equations, for example, the equation

x'(t) = -( 27 ozjx(t - 'TJ-))(l + x(t)),

j=1

where aj and 7j denote positive constants; but for more general equations it is by
no means obvious how to obtain the appropriate estimates on |x{n)(t)].

In 1962, G. S. Jones [7] proved that if o > 7/2, then the equation
x'(t) = ~ax(t - 1) (1 + x(t))

has a nontrivial periodic solution; by Wright’s work, this solution is necessarily
analytic on a strip. Jones also proved in [8] that if @ > 7/2, the equation

x'(t) = ~ax(t - 1) (1 - x2(t)) has a nontrivial periodic solution that is analytic on a
strip. These results and a number of other special cases led him to ask the follow-
ing question in [8]: If 7 is a real-valued function of bounded variation, and if

a, a, b, and h ave constants, is each veal-valued peviodic solution x(t) of the equa-
tion

-h

x'(t) = (-a SO x(t + G)dn(B)) (1 + ax(t) + bx2(t))

analytic on a neighbovhood of R in the complex plane ?

The answer is yes. We shall prove a much more general theorem. The proof is
surprisingly straightforward. The idea is simply to apply some abstract methods
that reduce the question to one of analytic solutions of an ordinary differential equa-
tion with values in a complex Banach space. We have enough information about the
ordinary differential equation to prove the result.
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We begin the details of our presentation by recalling some definitions and es-
tablishing some nomenclature. Let Y be a complex Banach space, D an open subset
of the complex plane C, and u: D — Y a continuous mapping. Then u is called
analytic if for every Ay € D,

u(p) - u()\o)
lim ————— = u'(xg)
A—Ap AT Ag

exists. If U is an open subset of Y, if Z is a complex Banach space, and if

f: U — Z is a continuous mapping, then { is called analytic if for all xy€ U and

h € Y, the mapping g(\) = f(x; +Ah) is analytic on some neighborhood of the origin
in €. Expositions of these and related ideas are given in [1, Chapter 9] and [6,
Chapter 3].

Now denote by X the Banach space of bounded, continuous mappings
x: (-, 0] = IR"; as usual, ||x| = sup_, <t <o lx(t)[, where | - | denotes a fixed
norm on R™. Define X to be the complex Banach space of continuous mappings
x: (-, 0] — €™, also in the sup norm. Obviously, Xy can be viewed as a closed
subset of X. Let U denote the open subset

{x € X: sup |Sx(t)|<r}
~0 <t 0

of X. If y: R — IR"™ is a bounded, continuous mapping, then for each t € IR define

yi € X by the formula y(s) = y(t + s). This notation will be fixed from here on; in
particular, the letters X, X, and U will always be used in the sense of this para-

graph. Our goal is to prove the following theorem.

THEOREM 1. Let f: U — C™ be a continuous, analytic mapping such that
f(Xo) CRP, and let y: R — R™ be a bounded, continuously diffeventiable mapping.
Suppose in addition that

(1) £ maps closed, bounded subsets of U into bounded subsets of C" and
(2) if xe Uand s<0, and if s, — s and s < 0, then f(xsn) — f(xg).

Then, if y'(t) = £(y,) for all real t, the function y has a complex analytic extension
that maps an open neighbovhood of R in C inio C™.

Since periodic solutions are bounded, Theorem 1 immediately implies analyt-
icity for periodic solutions. By a simple argument, the periodic solutions are ac-
tually analytic on a strip containing the real line.

The following five lemmas are elementary in the sense that in the proofs we
only need the Cauchy integral formula for analytic mappings of C into a complex
Banach space (see [1, Theorem 9.9.1] or [6, Theorem 3.11.3]).

LEMMA 1. Let M be a closed, bounded subset of a complex Banach space Y,
let Nog(M) = {x € Y: d(x, M) < 26}, and let f: N25(M) — C be a complex analytic
mapping. Assume |f(x)| <A for x € Np5(M). Then |f(x) - f(y)l < (6A/9) ||x - y||
whenever x, y € M and ||x - y| < 6.

Proof. For A € C and |x| < 36/2, define g(A) = f(x + A(y - x)/|ly - x|). By

definition, g(\) is analytic; moreover, if I'= {h € C: |7\| = 36/2}, then the Cauchy
integral formula implies that
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() = 1 g(£)
g'() = 21 Jp (& - )2 ds

for |>\| < l]x - y“ . Using this formula and the fact that “x - y” < 6, we can easily
see that |g'(A\)| < 6A/5. 1t follows that

Ix-vil
j g0 | < (6A/0)|x-y|. m
0

le(|x - y|) - g0)] = |£y) - £(x)| =

LEMMA 2. Let {f: U — C™ be a continuous, analytic mapping such that
1(Xg) € R™. Assume in addition that conditions 1 and 2 of Theovem 1 on f hold.
Define a mapping F: U — X by (Fx)(s) =1(xg) for x € U and - <s<0. Then F
is a locally Lipschitzian mapping; that is, for each x € U theve exists a neighbov-
hood Ny such that F |N_ is Lipschitzian.

Proof. For each x € U, cl{xg: -0 <5< 0} is a bounded subset of Uj; there-
fore condition 1 on f implies that {f(xg): -« < s <0} is bounded. Condition 2 im-
plies that the mapping s — f(x;) is continuous, so that Fx is really an element of X.

If u is a fixed element of U and sup_,, < t<0 | %u(t)l =rg <r, define
46 =r - ry and define -

M = cl{xg: ||x-uf <6 and -« <s<0}.

Clearly, M is a closed, bounded subset of U, and {x € X: d(x, M) < 25} = N, M)
is a bounded subset of U whose closure lies in U. It follows by condition 1 on f that
there exists a constant A such that lf(v)| < A for all v € Ny5(M).

Now suppose that x and y are elements of U and that ”x - u|l < 6/2 and
|y - ull <6/2. For -» < s<0, it follows that x5 € M, ys € M, and | x5 - y¢|| <.
By Lemma 1, we have the estimate

|£xs) - £y5)| < (6A/0) [[x5 - ys]| < 6a/6]x -y .
This implies that |Fx - Fy|| < (6A/8)||x-y|. =

LEMMA 3. Assume that f: U — C" is a continuous analytic mapping such that
£(Xg) € R™. Suppose in addition that f satisfies conditions 1 and 2 of Theovem 1.
Then, if F: U — X is defined by (Fx)(s) = f(xy) for x € U and -« < s <0, it follows
that F is analytic.

Proof. Because we have already shown that F is locally Lipschitzian, it suf-
fices to show that for each z € U and each h € X, lim, _, , [F(xh +z) - F(z)]/x
exists (A denotes a complex number).

Define w(s) = limy _, o [f(Ahg +z) - £(z)]/; the limit exists for all nonpositive
s, by the assumption that f is analytic. By condition 1 on f, there exist a constant
6> 0 and a constant A such that [f(xhg +2z4)| <A for || <6 and -0 < s < 0. If
r={teC: |§| =°6}, the Cauchy integral formula implies that

1 f(Ehs +ZS)
> d
r 3
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Using this formula, we immediately see that w(s) is bounded, and using Lebesgue’s
dominated-convergence theorem and condition 2 on f, we find that w is continuous.

Our next claim is that limy _, o [F(\h +z) - F(z)]/x = w, and to prove this it suf-
fices to show that

lim ( sup (f(}\hs_l_is) - f(zo) - W(S)) ) = 0.

A—0 \ —0<s<0

If |x] < 6, the Cauchy integral formula implies

flh g +zg) - f(zg) 1 f(¢hg+2zg) f(th 4+ zg)
by = omi SI‘ AE - Q) dg—j‘r AE d

Using this formula and the Cauchy integral formula for w(s) and simplifying, we
obtain the relation

fQ\hg +2zg) - f(zg) A f(¢hg + zg)
A - wis) = 27i 5 2
r (E-M¢
fxh, +2z.) - £(z )
It follows that for || < 8/2, — > - w(s)| < K|r|, where K isa

constant independent of s. W

LEMMA 4. Assume that f: U — C" is a continuous, analytic mapping such that
f(Xo) € R™ and such that { satisfies conditions 1 and 2 of Theovem 1. Suppose
that y: R — IR™ is a bounded, continuously diffeventiable mapping such that
y'(t) = f(yy) for all t. Then if Z: R — Xq is defined by Z(t) =y, the function Z is
continuously diffeventiable and Z'(t) = (y'); that is, (Z'(t)) (s) =y' (t + s) for
-0 < 8<L0.

Proof. Since y'(t +s) = f(y;;s) for -0 <5< 0 and cl{yts: ~0 <s<0} isa
closed, bounded subset of U, the derivative y'(t + s) is bounded and the mapping
s — y'(t + s) gives an element of Xg. To prove the lemma, it therefore suffices to
show that

lim sup y(t+6+s?§—y(t+s)_y,(t+s) = 0.
0—0| ~0<s <0

Making the obvious substitution, we see that

6
Y(t + 6+ S(; - y(t + S) - y' (t + S) = % ‘S;) (f(yt+s+p) - f(yt+s)) dp :

Since SUP_, < g <o |y'(0)| =B <=, |Iyt+s+5 - Yt+s+p” <B|6| for 0<p< 5, and
it follows by Lemma 2 that there exists a constant K such that

£ 41040 = T0s) | < KllYgraup - Vel

whenever 6 is small enough. Applying once again the fact that
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sup Iy'(o)l =B <o,
~0 <o <o

we see that " Yits+p = Vi+s ” < Bp. Using these estimates, we find that

0

kB (%  KBo
STSOpdp‘ 5

y(t+6 +s) - ylt +s)
0

-y'(t+s)

Since K and B are independent of s, for -« < s < 0, the last inequality implies the
result. M

If assumptions and notation are as in Lemma 4, then for - <t < and
-0 < 5 < 0 we have the relations

y'(t+s) = (Z'®)(s) = flyges) = (Fly)(s) = (F(Z(t)(s),

or equivalently, Z'(t) = F(Z(t)).

Our next lemma comprises the heart of our proof. Essentially, the lemma is
Theorem 10.4.5 of [1]. Some work is to be done, since one must show that our defini-
tion of analyticity, which is apparently weaker than that given by Dieudonné, is ac-
tually equivalent to his. However, this (and the continuity of the Fréchet derivative)
follows by arguments with the Cauchy integral formula such as we have already
used, and we omit it.

LEMMA 5 (Theorem 10.4.5 of [1]). Let Y be a complex Banach space,V an
open subset of Y, and F: V — Y a continuous, analytic mapping. Then, if Wg € V
and ty € C, theve exist a & > 0 and a unique analytic mapping

W:{teC:|t-ty| <6} -V

such that W(tg) = Wo and W'({t) = F(W(t)) for |t-to] <5o.

Proof of Theorem 1. Define the function Z: R — X as in Lemma 4 and the
mapping F: U — X as in Lemma 3. We have already shown that Z is continuously
differentiable, that F is analytic, and that Z'(t) = F(Z(t)) for all real t. Given
tg € R, define Zg = Z(tg). Since F is analytic, Lemma 5 implies that there exist
6 > 0 and a unique analytic mapping W: {t € C: lt - tol < 5} — U such that
W(tg) = Zg and W'(t) = F(W(t)) for |t - tol < 6. By the uniqueness of local solu-
tions of Y'(t) = F(Y(t)) and Y(tg) = Zo when t is real, we see that W(t) = Z(t) for
t e R and |t - ty] < 6. Using standard arguments and the uniqueness part of
Lemma 5, we see that if Wy and W are local analytic solutions as above, defined
on {t: lt - to‘ <69} and {t: ]t - tll < 61}, respectively, they must agree on the
intersection of their domains. It follows that Z(t) has an analytic extension W(t)
defined on a neighborhood of the real line in C. Consequently, y(t) = (Z(t)) (0) has
the analytic extension (W(t))(0). m

Remark 1. With somewhat more care concerning the size of 6 in Lemma 5,
one can actually prove that the solution y in Theorem 1 has an analytic extension
defined on a strip {tecC: IS (t)l < c}, where c is an appropriate positive constant.

Remavrk 2. For equations less general than ours, we can reduce the problem to
that of an ordinary differential equation in the complex Banach space {™(C™) (the
space of bounded sequences (xg, X1, ***, X3, »-+) with x; € € and with the sup
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norm). For instance, suppose f: C™" — C™ is complex analytic and f(R™") c R™.
Assume that y: R — IR™ is a bounded C!-function such that

yi(t) = £(y(t), yt - ay), -, ylt - am_1))

for all t. Assume that the a;j are commensurable constants, in other words, that
aj k d, where each kJ is a positive integer and d is a positive number. Define a
mappmg F: £°(C™) — £°(C™ by the formula

F(YO: y]_; T, yr’ '") = (uO: uly .“, ury -“))

where u_ = i(y,., Vig+rs " Ykm_1+r)° Then, if we take y;(t) = y(t - jd) and define

Y: R — £°(C™) by the equation Y(t) = (yo(t), yi(t), -+, y(t), ---), it is not hard to
show that Y'(t) = F(Y(t)).

Remark 3. If under the assumptions of Remark 2, the function y is periodic of
period p > max {aJ 1<j<m- 1} and p is commensurable with the a;, so that
p = Nd for some integer N, then the infinite system of differential equat1ons above
reduces to a finite system involving yg, y;, **-, yny-1 - This remark has actually
proved useful in the study of periodic solutions of the differential equation
y'(t) = £(y(t - 1)), where f is an odd function (see [9, Section 6]). Unfortunately, even
for simple equations such as x'(t) = ~ax(t - 1) (1 + x(t)) (e > 7/2), it seems likely
that the period of a periodic solution may be irrational.

COROLLARY 1. Let a, a, b, and h be constants (h > 0), and let
n:[-h, 0] = R be a real- valued functzon of bounded variation. Then, if x: R — R

is a bounded C1- function such that

0
x'(t) = —aS x(t + 0)dn(8) | [1 +ax(t) + b(x(t)2],
h

x has an extension to a complex analytic map defined on an open neighbovhood of R.

Proof. Let X denote the Banach space of bounded, continuous, complex-valued
mappings x: (-«, 0] — C, and define f: X — € by

0
i(y) = ( - S y(8)dn(6) :] [1 +ay(0) + b(y(0))?] .
-h
In this notation, x'(t) = f(x;) for all real t. Thus it suffices to show that { satisfies
the hypotheses of Theorem 1. It is easy to see that f is continuous and satisfies
conditions 1 and 2 of Theorem 1. To prove analyticity, let y and h be any fixed
functions in X, and consider the mapping A — f(y +Ah) (A € C). Clearly, this map-
ping is determined by a cubic polynomial in A; hence it is certainly analytic. B

The proof of the next corollary is even more straightforward, and we omit it.

COROLLARY 2. Let aj (1 <j < m) be positive constants, and let
g: C(mtln — ¢n pe gy cmalytzc mapping such that g(R(Mt1n) c R2, [f y: R —» R
is a bounded, continuously diffeventiable mapping such that

y'(t) = gly(®), yt - ay), ==+, y{t - a))
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for all t, then y has a complex analytic extension defined on a neighbovhood of R.

COROLLARY 3. Suppose that £ and g ave complex analytic mappings of the
strip {t e C: |S@)| <c} into € (c denotes a positive constant) such that
g(IR) C R and f(R) C R. Then each bounded, continuously differentiable solution of
the genevalized Liénard equations

x'(t) = y@) - #x(0), y'{) = -gx(t-1)) (>0

that is defined for all t has a complex analylic extension defined on a neighborhood
of R.

R. B. Grafton [2], [3] has shown that under certain hypotheses on f and g, these
equations have nonconstant periodic solutions, and this author [10] has also proved
the existence of periodic solutions under different hypotheseson f and g. If f and g
are analytic, Corollary 3 implies that these periodic solutions are analytic on a strip
containing IR. Of course, in the case where no time lag is involved (r = 0), these
equations have been extensively studied, for example, in [5, Chapter 7, Section 10].
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