ON HOMOTOPY SEVEN-SPHERES THAT ADMIT
DIFFERENTIABLE PSEUDO-FREE CIRCLE ACTIONS

Deane Montgomery and C. T. Yang

1. INTRODUCTION

This paper treats differentiable pseudo-free circle actions on homotopy 7-
spheres. In an earlier paper, we showed how to construct all of these actions, but
left open the question which homotopy 7-spheres can occur [3]. This question is now
answered by the following theorem.

THEOREM A. Each of the 28 homotopy T-spheves admits a diffeventiable
pseudo-free civcle action with exactly one exceptional orbit.

We note that only 10 of 28 homotopy 7-spheres admit differentiable free circle
actions [2].

2. CONSTRUCTION OF SOME ASSOCIATED MANIFOLDS

A differentiable action of the circle group G on a homotopy 7-sphere =7 is said
to be pseudo-free if it is an effective action for which every isotropy group is finite
and the set of exceptional orbits (that is, the set of orbits where the isotropy group is
not trivial) is finite but not void. Suppose that such an action is given, and let

Gbl, Ty, Gbk

be the exceptional orbits in 7. For i =1, **-, k, the isotropy group G,. at b; isa
1
finite cyclic group Zqi of order q;, where q; is an integer greater than 1, and

since =7 has the integral homology of a 7-sphere, we see that the integers
d;, ***, dyx are mutually relatively prime. We let

9 =49 "9k

In the following, C™ denotes the unitary n-space, D%" denotes the-closed unit
(2n)-disk in €™, and S2-1 denotes the boundary of D2", that is, the unit (2n - 1)-
sphere in €®. Then

G = si,
and the orthogonal action of G on S7 given by
g(zl ’ ZZy Z3, 24) = (ngly gZZ’ gZ3, gz4)

is pseudo-free and has exactly one exceptional orbit Gb, where b = (1, 0, 0, 0) and
Gb = Zq .
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Whenever A is a subset of a space on which G acts, we let A* denote the image
of A in the orbit space, that means,

A* = GA/G.

The following has been proved in [3] and [4].
THEOREM B. There exists an equivaviant diffeventiable map

2 - g’
of degvee +1, and this map induces a homotopy equivalence
f: =% — g*,

wheve T* and S* denote the orbit spaces =7/G and S7/G, respectively. Moreover,

we can requive f to have the following additional property: Theve is a slice D at b,
and for i =1, -, k theve is a slice D; at b;, such that

(i) D is a closed 6-disk of center b, and Zq acts orthogonally on D,
(ii) Dy is a closed 6-disk of center bi, and Zq; acts orthogonally on Dj
(' = 1’ e k),
o k
(iii) GDy, -+, GDy ave mutually disjoint, and £-1(GD) = Ui:l GD;,

(iv) £ maps each radius of D; homeomorphically onto a vadius of D
i=1, -, k).

We now use this theorem to construct some related spaces and manifolds.

Let M8 Dbe the mapping cylinder of the projection of =7 onto =*. Then M8 isa
compact differentiable 8-manifold of boundary *7 with singularities b’f, .-, blt.

Similarly, the mapping cylinder N8 of the projection of S7 onto S* is a compact
differentiable 8-manifold of boundary S7 with a singularity b*. Next, let G act on
S9 as follows:

g(zly ZZ; Z37 Z4, 25) = (ng]_’ gz27 gZ3, gZ4, gZS)-

Then we may identify the orbit space S%/G with the space N& U D8 obtained by
pasting together N8 and D® along their common boundary. Therefore

N8 = 89/G - int D8.
Let Zq act on complex projective 4-space CP% as follows:
h(z: 2, 2502, 2;) = (h‘lzlz Z,: Zal Zy4l Zg) .
Clearly, the action is differentiable and semifree, and its set of fixed points consists

of a complex projective 3-space

and an isolated point
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Now the orbit space CP4/Zq can be identified with S?/G as follows. Whenever
(z1: 222 231 24 75) € CP*, we may assume that either z; =0 or z;/|z;]| € Zyg -
Then we have an identification given by

Zq(Zli Zpl Z31 24 Z5) = G(Zl y Z2, Z43, Z4, Z5).
With this identification,
N® = ¢pY/z - int D®.

Since D8 may be any closed 8-disk differentiably imbedded into CP4/Z we lose

q ’
no generality by assuming that

D8 N (cP? U {p*}) = p.
Let
7 CP* — CP4/zq

be the projection. Then
N8 = 7-1(n8)
is a compact connected differentiable 8-manifold with
aN® = ¢S7 (= disjoint union of q copies of S7).
Moreover, there is a differentiable semifree action of Zy on N® such that
N%/z, = N®
and its set of fixed points is CP3 U {b*}. Similarly,
§6 = 7-1(s%)

is a closed differentiable 6-manifold in N8 - Qﬁg diffeomorphic to CP3 , and there
is a differentiable semifree action of Zq on N© such that

=6 — a¥
N°/Zq = S
and its set of fixed points consists of b* and
CP2 = s*ncp3.

The equivariant differentiable mapping {: £7 — S7 can be naturally extended to
a mapping
f: M8 — N8,
which is differentiable except at {b}, -, bf}. Altering f: (M8, =7) — (N8, S7) by

a homotopy, if necessary, we may assume that f is transverse regular at CP2 and
CP3 and that

L% = t-Y¢cP%) and L®=t"Ycpd)

are both connected.
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Imitating the construction of an induced fibre bundle, we shall construct a com-
Ract connected differentiable 8-manifold M8 and a differentiable action of Zq on
M8 such that

M8/Z, = M8

and the mapping f: M8 — N8 is covered by a Zq-equivariant differentiable mapping

~

f: M8 = N8. Thus we have the commutative diagram

~

fis —f 5 8

M8 __f_> N8 .

We may identify N® with the orbit space of the action of G on S’ x D? such that
for each g € G and each (x, y) € S7 X D2,

g(x, y) = (gx, gy).
In fact, the mapping ¢: S7 x [0, 1] — (87 x D2)/G given by
¢(X’ t) = G(X, 1- t)

induces an identification of N® with (S7 x D2)/G. If we identify S7 with 87 x {0} in
S7 X D2 by setting x = (x, 0) for all x € S7, it is clear that the action of G on

S7 X D2 is differentiable and pseudo-free and has Gb as the only exceptional orbit.
Moreover, if D is a slice at b for the action of G on S7 as described in Theorem B
and if D is regarded as the closed 6-disk in €3 of center 0 and radius 1/2, then for
the action of G on S7 X D2,

E = {(x,y) e DxD?| |x|? + |y|? < 1/4}

is a slice at b that constitutes a closed 8-disk of center b contained in int (S7 x D2)
and on which Z, acts orthogonally. Notice that E N S7 = D. Similarly, we may re-
gard M8 as the orbit space of a differentiable pseudo-free action of G on %7 X D2
with exceptional orbits Gb;, .-+, Gby. For i=1, -, k, let E; be a slice at b; for
the action of G on =7 X D2, constructed from D; as E is constructed from D,
where D; is a slice at b; for the action of G on =7 as described in Theorem B.
By Theorem B, we may assume that E¥, .-+, E1’<k are mutually disjoint subsets of
M8 - M8 that

k
-1@e® = U 5y,
i=1

and that for i =1, ---, k, the mapping f: Ef — E* is covered by a Zq.—equivaria.nt
1
differentiable mapping

~

fi: Ei — B

that maps each radius of E; homeomorphically onto a radius of E.

Let
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k

= {(X, y) € (M8— U int El*) X N8| £(x) = ﬂ(y)},

i=1

and let Zq act on X so that
h(z, y) = (x, hy).

Then X is a compact differentiable 8-manifold, and the action of Zq on X is dif-

k
ferentiable and semifree. If we identify X/Zq with M8 - Ui: p int E1* by setting
Z4(x, y) = {x} x Zgy =

then the set of fixed points of Z in X is L®. Let m X — M8 be the prolectmn
and let f X — N8 e the Z —equlvarlant differentiable mapping given by f(x y) =
Then #f = f7.

Clearly, X is the disjoint union of

-1oM8) = =7 (= disjoint union of q copies of 27),
and

1@ES) (=1, -, k).

For i=1, ', k, the set 7-1(0E;") is the disjoint union of q/q; copies of 9E;. Let

M8 be obtamed from X by attaching one copy of E; to each component of w‘l(aE )
(i=1, ---, k), that is, let
k

M8 = x U U (a/a)E
i=1

Then M® isa compact, connected, differentiable 8-manifold with

61\71[8 = qZ)7 .

Since Zq_ leaves each component of rl(aEi*) invariant and Zq/qi permutes the
1

components cyclically, we have a natural differentiable action of Zq on M3 that
constitutes an extension of the action of Zq on X; moreover, for i= 1, =", kK, Zgq,
1

acts orthogonally on each copy of E;. Notice that for each i (i =1, -+, k), the ac-
tion of Z q; On M8 is semifree, and that its set of fixed points consists of L6 and

q/q; isolated points, namely the centers of the slices E; in (q/q;) E;.

Let f: M8 — N8 be the Zq equ1var1ant differentiable mapping such that T l X is
the one we had earlier and f I E; = f (i=1, , k), and let 7 M8 — M8 be the
natural extension of 7: X — M8 . It is clear that 7f = f7 remains valid.

3. USING THE ASSOCIATED MANIFOLDS
By means of the manifolds introduced in the preceding section, we can compute

the modified Eells-Kuiper invariant [2] of 9M8 = q=7 when q is odd. Later, we
shall use this to verify Theorem A.
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It can be seen that Hr(Sg/G) is infinite cyclic for r =0, 2, 4, 6, 8 and that it is
trivial otherwise. Let B; denote the generator of Hr(Sg/G) such that if B is an
oriented closed 2-cell in S? and 8B is the exceptional orbit Gb, then the value of
B, at the fundamental class [B*] of B* is 1; that is, let

B [BY] =
Then, for j =2, 3, 4, there is a generator f; of H2%)(s?/G) such that
B1Bj_1 = aB;.
Since for j =1, 2, 3 the inclusion mapping of N8 into Sg/G induces an isomorphism

of HZJ(Sg/G) onto H2J(N®) we can regard Bj for j = 1 2, 3 as a generator of
H2J(N®) also. We shall let CP3 and CP? (= S* N CP ) be oriented so that

2 3
B[CP]_q’ B3[CP]=q7
where [CP2] and [CP3] denote the fundamental classes on CP2 and CP3, respec-
tively. Since f: M8 — N8 is a homotopy equivalence, o5 = f*(,BJ) is a generator of
H2i(M8) (=1, 2, 3), and
ajo; g =qey (=2,3).
Moreover, we let L% and L® be so oriented that
a,[L¥ = q, a3[L°]=q
and hence the mappings
f: L* - CP2, f:L® — cP3
are of degree 1.
Let B be the generator of H%(N8) such that

77*(61) =
Then, for j = 2, 3, we see that BJ is a generator of HZJ(N8) and
W*(Bj) = qgj .
Hence
p’lep?l =1, B’[cP’]=1.

Since the inclusion mapping of N& into (N8 8N8) induces an 1somorphlsm of
H2(N8, 3N8) onto HZ(NS), we may regard § as a generator of HZ(N8, 3N8), and thus
£4 is an element of H8(N8, 9N8). We shall let N8 be so oriented that
B4[N8, oN8] = 1.
Let
a = 1%p).

Then, for j =1, 2, 3, &J is an element of H2J(M8) with
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ﬂ'*(aj) = q&'] )

and
a2[L4] =1, @3[Lé]=1.
Moreover, @ is also regarded as an element of H2(1\7I8 , 81\7[8), and M8 is oriented
so that
a*[i®, ofi®] = 1.

LEMMA 1. If q is odd, then the second Stiefel- Whitney class of M8 is the
reduction of an integral cohomology class modulo 2. In fact,

w, (M%) = & (mod 2).

Proof. The action of Zy on M8 induces an action of Zg on H2(1\718; Z,). De-
o~ Z ~
note by H2(M8; Z,) 19 the set of fixed points of Zq in H%(M8; Z,). Then

~ - Z
w, (M%) e HE(M®; z,) 9.
In fact, each h € Zy is a diffeomorphism of M® onto 1\718, so that it maps WZ(I\N/IB)
into itself.

Since ¢ is odd, the projection

7% AWM Z,) — HE(M®; Z,)

2(2i8 . . 218 Zg )
maps H*(M®; Z,) isomorphically onto H*(M®; Z,) 9. Therefore, for some inte-
ger r,

WZ(1\718) = ra (mod 2).

We may let f: M3 — N8 pe transverse regular at the complex projective line
CP! c €P?% such that L2 = £-1(CP!) is connected. Then f: L2 — CP! is of degree

+1. Let v be the normal bundle of CP! in N8. Clearly, T*v is the normal bundle
of L2 in M3, and

wo(E* »)[L?] = wo(v)[CP!] = 1.
Since L2 is orientable, its tangent bundle is stably trivial. Therefore

Hence \vz(ﬁg) = a (mod 2).

From now on, we assume that q ¢s odd. Since the homomorphism
H2J (M8, aM8) — H2I(M8) induced by the inclusion mapping is an isomorphism for
i=1, 2, 3, it follows from Lemma 1 that the modified Eells-Kuiper invariant
v(@M®) can be computed from M®. This is carried out below.

_LEMMA 2. If I(L4) is the index of L%, then the first vational Pontvjagin class
of M8 is given by

p;(M8) = (31(L%) +2)a2.
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Proof. Using the same argument as in the first part of the proof of Lemma 1,
we can show that

p, (M%) e m*HYME; Q).
Therefore pl(ﬁg) is determined by the value p1(1\718) [L4]. In fact,
py(M8) = p,(M8)[L4] - &2,

Let~ v be the normal bundle of CP2 in N8. Then T*v is the normal bundle of
L% in M8, so that

4 2
p,(f*»)[L7] = py(v)[CP"] = 2.
It is well known that if 7 is the tangent bundle of L4, then

py(7)[L?] = 3(LY) .

Hence
p (M%) [L4] = py(r @D*v)[LY] = (p(7) +p (* ) [LY] = 30LH +2.
Let

Mo = w_l(Z*).

Then M° isa closed, differentiable 6-manifold that can be so oriented that
a3[M®] = 1.

Moreover, Z, acts differentiably on M® so that
iM%z, = z*,

and for each i =1, .-+, k, the action of Zqi on M is semifree and has
L4y 71 (b¥) as its set of fixed points.

Now we calculate the Atiyah-Singer invariant Sign(h, M®) (see [1]), where
h € Zq - {1} Whenever h € Zq and r is an integer such that 1 - ht # 0, we let

6.(h) = (1+h%)/(1-n").

Since the action of Z 4 on CP4 is given by

D2y z.) = (h'lzlz Z,% 73t Tyl Zg),

we see that for each h € Zq - {1}, the term in Sign (h, 1\716) associated with L4 is
-6, (h) (L) - 1+ 6,(0)?).

k
Hence, for each h € Zq - Uizl Zqi’

Sign(h, M%) = -6 () QL) - 1+ 6:(0)?).
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Clearly the fixed-point set n‘l(bi*) of Z. contains q/q; points that are per-

1

muted cyclically by Z From the construction of 1\718, it is not hard to see that

q/q-l :

each point of w'l(bi*) has D; = E; N M® as a closed neighborhood in M® on which

Zq_ acts orthogonally. Let (zl y Z2, z3) be complex coordinates on D; such that
1 ~

the orientation of M® is represented by the real coordinate system

(g, +3,, ~V=1(z, - 5), 2, + 35, ~V-1(z, - 5,), 24 + 55, -V -1 (25 - 75)),

and such that for some integers r;,, r;,, r;3 the action of Zq on D; is given by

1

1"1 I"2 r-3
h(z),2,,23) = (h " z;,h *“z,, h 7z3).

It has been shown in an earlier paper [3] that
r;) Tz T3 = q/q; (mod 2q;).
Therefore, for each h € Zqi - {1}, the term in Sign(h, M®) associated with each
point of ﬂ‘l(b;k) is
0, ()0, ()0, (h).

Hence, for each h € Zqi - {1},
Sign (b, M) = -6, () ((L*) - 1+ 0,(0)?) +(a/ap) 6, (W) 0, () 0, (h).

Since q is odd, we can have integers r;;, r;,, r;3 such that (a, r;1rip r;3) = 1.

Our results yield the following proposition.
LEMMA 3. For each h € Z - {1},

Sign (h, 8% = -6;(h) (LY - 1+ 6,(h)?)
Kk a/qj G-1)
s
+Z D o e, e, (e, (.
. . i1 iz Ti3
i=1 j=1
LEMMA 4. Up to a congruence modulo q, the integer I(L4) is deteymined by

the equality in Lemma 3.

Proof. By the definition of Sign (h, 1\7[6), there exist integers u,, -, py_; such
that

U’j:—“q_j (j:ly '".’q—l)
and such that for each h € Zq - {1},

qg-1
_E uyhl = Sign (h, M ©)
J=1 k q/qi

-0, MLY - 1+6,m)H+ 22 2 h(j'l)qier_ (h) 6, (h) 6, (h).
i=1 j=1 i1 i2 i3

]
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If I is an integer with the property that there exist integers p, -, “:;-1 such that
Bj = -bgy G=1,"",0q-1),

and such that for each h € Zq - {1},

q-1 k q/qi _
2 psh) = -0 ) (I-1+6(H)+ 2 2 h(J'”qiﬂril(h)er,z(h)er.3(h),
j=1 i=1 j=1 h !

then for each h € Z, - {1},

q-1 q-1
Z (uy-m)hd = 0, (- KLH) = I o(a - 20) @ - (LW,

j=1 j=1
and therefore

G- 20@-1LY) = py-pf G=1, -, K.

Since q is odd, it follows that

I- KL%

0 (mod q) .

LEMMA 5. (L% = 1 (mod 8).

Proof. Altering f: (M8, aM8) — (N8, 9N8) by a homotopy, if necessary, we
may assume that { is transverse regular at CPl and L2 = £-}(CP!) is a 2-sphere
S2 or a torus S! x Sl, according as the associated Arf invariant in connection with
the framed surgery used to alter f vanishes or not, and that L% = f-1(CP2) is simply
connected. Let T be a closed tubular neighborhood of CPl in €P2. Then
CP? - int T is a closed 4-disk, and some closed differentiable 4-disk D% in S7 is
mapped diffeomorphically onto CP2 - int T by the projection of S7 onto S*. Since f
is transverse regular at both CP! and €PZ2, the inverse image f-1(T) is a closed
tubular neighborhood of L2 in L4, and some compact differentiable 4-manifold
K% =£-1(D% in =7 is mapped diffeomorphically onto L% - int £-1(T). Since the
normal bundle of D% in 87 is trivial, so is that of K% in =7. Hence K% is parallel-
izable.

If L2 =82, then 9K% =83, so that the index I(K%) of K% is a multiple of 16.
Hence, in this case,

(L% = (K% +1 = 1 (mod 8).
If L2=slxgl , then oK* may be regarded as the closed differentiable 3-manifold
obtained from [0, 1] x S! x S! by identification of (0, z, z') with (1, z, zz') for all
z, z' € S!. The diffeomorphism of [0, 1]x S1 X S1 onto itself given by

&, 2z,2") —(1-t z1z'"1)

induces an orientation-reversing diffeomorphism ¢ of aK*% onto 8K4, and hence 4
K Ug K% is a closed differentiable 7-manifold of index 2 I(K4). Therefore 2I1(K™)

is a multiple of 16, and hence
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(LY = (KH +1 = 1 (mod 8).

LEMMA 6. Let =7 =F U K, wheve F is a free G-manifold and K is a com-
posite G-manifold. (For details of this decomposition, see [3).) Then I(L*) (mod 8q)
depends only on X; that means, it is independent of the pasting of F to K. More-
over, any integeyr in this vesidue class can be vealized as I(L4), provided that the
pasting of F to K is appropriately altered.

Proof. By Lemma 4, I(L#) (mod q) depends only on K, and by Lemma 5,
I(L4) = 1 (mod 8). Since q is odd, it follows that I(L#) (mod 8q) depends only on K,
and hence it is independent of the pasting of F to K.

Let & be the group of all equivariant diffeomorphisms ¢: oF — 0F such that
¢: Hy(0F) — H,(0F) is the identity, and let & be the group of equivariant pseudo-
isotopy classes [¢] (¢ € &). It is known [3] that there exists an isomorphism

A Y — Z

such that each ¢ € ® is equivariant homotopic to the identity if and only if A [¢#] is an
even integer. ’

Let S2 be a differentiable 2-sphere in =* - {b¥, -+, b¥} representing a gener-
ator of HZ(E* - {b*, e blt})' Then the intersection number of S2 with L% is equal
to q, so that we may assume that S2 N L% contains exactly g points and that S% and
L4 intersect transversally at each of the q points. Since we may use a small closed
tubular neighborhood of S% as F* (see [3] for details), we lose no generality by as-
suming that F* N L% contains q closed 4-disks. It is known that if ¢ € & is such
that A [¢] is even, say A[¢] = 2m, then each 3-sphere in ¢-1(@F* N L%) bounds in F*
a parallelizable compact differentiable 4-manifold of index 16m. Therefore, for the
circle action on the homotopy 7-sphere F U, K, the index I(L4) is increased by
16m. Conversely, if ¢ € & is such that for the circle action on F Ug K, the value of
I(L*) is increased by 16m, then A[¢] = 2m. Hence, for each ¥ € & with odd X [¢],
the value of I(L4) for the circle action on ¥ y,, K is changed by an odd multiple of
8q, and each odd multiple of 8q can actually occur as the change, provided that an
appropriate { is used. Combining these results, we have established our assertion.

LEMMA 7. The Atiyah-Singev invariant for the action of Zqy on M8 is given
as follows: Fov each h e Zg - {1},

sign (b, %) = (L% + 0 (h) Sign (h, M%) = LY + 0,03 (1 - 0,()?)
Kk 9/9

.
+2 D a Mo me, o, mo,
i=1 j=1 i

(h) .

i2 i

Moreover, if vy, ***, vq_ are inlegers such that

Y37 Va-

and such that for each h € Zq - {1}

(j:1; ¢ 1)’

g-1
sign(h, 1% = 1+ 2 »;nd,
j=1
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then the index of M8 is given by
M%) =1+ 20 v, .

Proof. As in the proof of Lemma 3, it can be shown that for each h € Z, - {1},
the term in Sign (h, M8) associated with L° is

(MLY + 6,(0)?) (1 - 6,(0)?)

and that for each h e Zg - {1}, the term in Sign(h, M®) associated with each point
of 7 l(b ) is
6,(h)6 h) 6 h) 6 h).
(0 6, ()0, (W6, (h)

3

Hence the first part of Lemma 7 follows.

In order to prove the second part of LLemma 17, let us first recall the definition
of Sign(h, M®). Let V be the real vector space

i me; r) = 5*mi8, aMi R).

Clearly, V is finite-dimensional and Z acts linearly on V. Let < > be a Zg-

invariant positive definile inner product on V; this means that with respect to < >
Z q acts orthogonally on V. Let B be the symmetric bilinear form on V defined by

B(u, v) = (uv)[M8, aM®],
and let A be the self-adjoint linear operator on V defined by
B(u, v) = <u, Av> .

Then the eigenvalues of A are real numbers different from 0, so that there exists a
decomposition

vV = V+@V—’

where V, and V_ are the positive and negative eigenspaces of A. Since B is Zg-
invariant, A commutes with the action of Zq, so that V, and V are Zq—mvarlant.
For each h € Zq - {1}, the Atiyah-Singer invariant Sign (h, M®) is defined by

Sign (h, 1\718) = trace (h ! V,) - trace (h | V.).

Using the action of Zq, one can find a decomposition of V, into a number of
invariant linear subspaces. In fact,

vy = Vo@ViVl@"'@qu-l)/zv(q—l)/z’
where
Vo = v e v | qu=v},
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where for each j =1, -+, (q - 1)/2, V; denotes a 2-dimensional invariant linear
space on which the action of exp 27V -1/q may be represented by the matrix

(COS 2jm/q -sin 2ju/q )
sin 2jm/q  cos 2jn/q

where ij is an integer (u:!l > 0), and where v} V; denotes the direct sum of Vj
copies of V;. Since 7*: H4(M8 ; R) —» H¥(M8; R) is 2 monomorphism having V, as
its image, we infer that Vg is 1-dimensional. Hence, for each h € Zq - {1},
(q-1)/2
trace(h|V,) = 1+ 2 vi ([ +h17).
j=1

1"

Similarly, there are nonnegative integers vy, *-, V(g-1)/2 such that

vV = V'I‘Vl @@ Vé!q_l)/zv(q-l)/2

and
(q-1)/2
trace(n| V) = 2 v(n+nad).
j=1

Hence, for each h e Zq - {1},

q-1

Sign(h, M%) = 1+ 22 v W,

j=1

where
vi=vg-j=vj-vy (=1, (-1)/2).

Notice that the integers v, ---, Vg-1 are completely determined by the equality
above.

There exists an orthonormal basis {vj, **-, vn} of V such that each vj is an
eigenvector of A, and such that for some integer m, V. is generated by
{v{, v, v;n} and V_ is generated by {v,,,, ***, v,f- Then, for each pair i, j
(i,j=1, --,n), viv;# 0 if and only if i =j, and for i =1, -, n, (vivy) M8, am8]
is positive if and only if i < m. Hence

M3 =m-(-m)=dimV, - dim V_

(a-1)/2 (a-1)/2 q-1
1+ 2 2vi- 2 2w =1+2 vy
i=1 j=1 j=1

This completes the proof of Lemma 7.

Now we are in a position to describe the idea of the calculation to be carried out
later. As was seen in [3], we can obtain each differentiable pseudo-free action of the
circle group G on a homotopy 7-sphere =7 , up to an equivariant diffeomorphism, by
pasting a free G-manifold F to a composite G-manifold K. Let
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Kidp, "5 A, @3 Typ, Typs Tygs 775 T, Tpop, Tpg
be as before. Then
(i) k > 1,
(ii) q; > 1 for i=1, *-, k, and the integers q;, **, q, are mutually relatively
prime, and

(iii) g =q; "' dx, and for i =1, >, k,
I T, Ty = q/qi (mod 2qi).

Moreover, up to an equivariant diffeomorphism the composite G-manifold K is de-
termined by these integers, and conversely. Furthermore, if there are such integers
satisfying (i), (ii), (iii) above, and if K is the determined composite G-manifold, then
we can have a differentiable pseudo-free circle action on a homotopy 7-sphere ob-
tained by pasting a free G-manifold F to K. By varying the pasting of F to K, we
actually have a collection 9 of such actions that depends only on the integers k;

d1, ***» Ok, d; r11, T2, r13, *°°, '}, Tk2, k3 - If q is relatively prime to 28,
then the homotopy 7-spheres that appear in ¥ can be determined as follows.

Suppose that in &, we have a differentiable pseudo-free action of the circle
group G on a homotopy 7-sphere. Let L* and M® be the associated manifolds con-
structed earlier. We first assert that the index I(L4) can be found. Since q is odd,
we lose no generality by assuming that (q, r;; r;, r;3) =1 (i=1, .-, k). Therefore
we have an integer I such that

(a) I=1 (mod 8) and
(b) there exist integers u;, -, “(ll-l such that

“J = -uq_j (] = 1) e, a - 1)7

and for each h e Zg - {1},

q-1 k a/q;

(1 2 pinl= o, ma-1+0,mH+2 T n

j=1 i=1 j=1

(j-1)q;
37094 6., () 0, 06, ().
1

In fact, the existence of I is guaranteed by Lemmas 3 and 5. By Lemma 6, there
exists an integer m such that

(2) IL%) = I+ 8mq.
By Lemma 3, there exist integers p;, *--, Mg-1 such that
-uJ = ”uq._j (J = 1; ., q - 1),

and such that for each h € Z - {1},

q-1 k-1 /93
(3 2 = -0 ,mawh - 1+ 0,02 + L D pH 0z, () 0, () 0, (n).

j=1 i=1l j=1

Then, by Lemma 7, there exist integers v, ---, Vq-1 such that
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Vj = Vq-j (j=17 '“:q—l);
and such that

q-1 q-1
(4) 1+ 27 v;h) = (LY + o) 20 pyh.
j:]_ j:l
Since @, **°, Mq-1 are determined by (3) and Vi, ", Vq.1 are then determined
by (4), 1t follows from Lemma 7T that
q-1
(5) (M%) = 1+ 27 v
j=1

is determined.

As we remarked before Lemma 2, we can use M8 to compute the modified
Eells-Kuiper invariant v(oM ). In fact, we know from Lemma 2 that

p,(M8) = (31(L* +2) &2

Therefore

1

o8
384 ~ 324 I(M®) (mod 1).

L3114 +2)% - 1 (3HLY) + 2) +5ng

(6) v(M®8) = To3

896

We have seen that

sM® = +qx”,
so that
(7) p(@M®) = +qu(z).

Since V(Z) ) = £/28 (mod 1) for some integer ¢, and since (q, 28) = 1, the modified
Eells-Kuiper invariant V(Z ) of =' is determined.

By Lemma 6, the number m in (2) can be any integer. By varying m in (2), we
find the Eells-Kuiper invariant for homotopy 7-spheres appearing in &.

4. A SPECIAL CASE

The computation described above is in general very complicated. Therefore we
carry it out only for certain special cases.

Let q be an integer such that
q>1, (g, 28) =1.
Then there is an orthogonal pseudo-free action of G on s? given by

g(zl, ZZa 2'33 Z4) = (ngl ’ gZZs gz3, gz4) .
Let

s’ = FUK,
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where F is a free G-manifold and K is a composite G-manifold, and let & be the
collection of differentiable pseudo-free circle actions on homotopy 7-spheres ob-
tained by pasting F to K. Then, for the actions in &,

k=1 q =q 1) =r,=1,=1

Suppose that in &, we have a differentiable pseudo-free circle action on a
homotopy 7-sphere 27, and let L4 and M8 be as before. By (1), we may let

I=1.
Then it follows from (2) that for some integer m,
4 _
(L% = 1+ 8mq.

Using (3) and (4), we see that

q-1 q-1

1+ 20 th (LY + 6, h)EthJ
j=1 j=1

i1

1+ 8mq - 8mq 6 (h)?

q-1
1 -8m 2 (2jq - 2i9)nd.
j=1

i

Therefore, by (5),
q-1

1-8m 2 (2jq - 2j2) = 1-§mq(q2- 1).
j=1

I

1(M8)

Hence, by (6) and (7),

} 7 9 1 1 2
+qu(zf) = 14m q? +omq+2rmq(q” - 1) (mod 1).

I

If q is not divisible by 3, then

(8) () = [ m q+ m + m(q - 1)] (mod 1) ;
otherwise,
(9) p(=7) = [:-——-m q+= m+@-m(q2+27)] (mod 1) .

LEMMA 8. Let & be as above, and let 07 be the group of homotopy T-
spheves. Then each homotopy T-spheve that appears in & is in the subgroup 267
of g7 of index 2. Moreover, every homotlopy T-sphere in 267 appears in &
either for q =5 or for q = 11.

Proof. 1t is easily seen that the right side of (8) and (9) can be reduced to
£/14 (mod 1), for some integer . Hence the first part follows. To prove the second
part, we have only to show that for q =5,
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m | 0 4 3 6 1 5
7 2 3 4 2 x
v(27) (mod 1) l 0 I3t Fp fim tn
and that for q = 11,
m | 9 2
7 1 6
v(Z') (mod 1) l 17 *ig

This is so because m can be any integer, by Lemma 6.

5. A RESULT ON I(L%)

We shall need the following result.

THEOREM C. Let q, vy, ry be integers such that

q>1, (q, ryry) = 1.

209

Let Z.q be the group of complex numbers h with h% = 1, and for each h € Zq - {1}

and each integey r relatively prime to q, let

0.(h) = (1 +h")/(1 -

Then theve exist integers Xy, ***, hq-l such that
’ A

and such that for each h € Zq - {1},

ryrp (0, ()0, (1) - 0y x ()0

Movreover,

jth-j (j:]-; tt,q -

h').

1),

q-1 _
h)) = E ?\jh’] .

2= 3@%- D02 - DEE-1) (modq).

Proof. Let r be an integer with (q, r) =1. For j=1, ---, q - 1, let a(j) and

b(j) be integers such that

jr = a@)a+b(G), 0 <b(G) <q.

Then

a(j) +tal@g-j) =r-1 and b(j)+blq-j) =q,

and
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( 1 ees q - 1 )
b(1) -+ blg - 1)

r-1-2a(j) =alg-j-a) @G=1, -,q-1),

is a permutation. Therefore

so that
q-1
27 (r-1-2a3) =0.
j=1
For m=0, -, q- 1, let
b = Z La-20@-1-2aG))
i+b{(j)=m (mod q)
0<i<q
= 2 lg-emrm@e-1-2a6)+ 2 L(-q-2m+20() @ - 1 - 2aG)
b(j)<m 3 b(j)>m 3
q-1
- Y -1-22))- 2 (r-1-2a6)-22 (m-b{) -1 - 2a0i) .
b(j)<m b(j)>m 45

Then for £=1, -, q - 1, the number

q-1
ho-to = 2 (r-1-2a()+ 27 (r- 1_za<j)>-?-q£ 2 (r - 1- 2a())
b(j)< £ b(j)< ¢ j=1

27 (r-1-2aG)+ 22 (r-1-2a()
b(j) < 4L b(j)< ¢

is an integer. Moreover,

q-1 q-1
27 (g - o) = 27 (2q - 1 - 2b() (r - 1 - 2a(j))
£=1 j=1
qg-1
= 27 (-2b() (r - 1 - 2a(j))
j=1

-1

q
2 27 b(j) (a() - ala - )
J

q-1

2 27 a() (bG) - blg - i)

j=1
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q-1
=2 27 a(j) 2b() - q)
j=1
q-1
= 4 _El a(()bG) - ala- D - 1),
i
Since
q-1 q-1
r? 27 j% = 27 (a(j)q +b(j)?
j=1 j=1
q-1 q-1 q-1
= q% 27 a(j)®> +2q 27 a(§)b() + 27 b)?,
j=1 j=1 j=1
we infer that
q-1 q-1 q-1
4 20 a@)b) = 22 - 1) 2 2 -2q 2 a(j)?
j=1 a j=1 j=1
q-1
= @~ D@q- D@E2- 1) -2 2 af)?
j=1
q-1
= -3@ - D% -D+ala- DEZ- 1) -2 Z ).
=
Hence
q-1
QE (g - o) = -3 - D(Z- 1) (modq).
=1

Similar to a(j), b(j), u,, for r, let

a1(3), b1(), Hm1s az(), b2G), Lmz; a12G), b12G), Lmi2

be the corresponding numbers for ry, r,, r;r,, respectively. Then, modulo q,
g-1

é;i [(ugr - mor) +(kga - vo2) - (g12 - Bo12)]

I

- -%(q2 - D2 - 1)+ (2 - 1) - (021 - 1))

N

3@ - De2-D6E- 1.
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For m=0, -, q - 1, let

T 2 (r) - 1-22,() (r, - 1 - 2a,(K).
by (j)+bz(k)=m (mod q)
Then pgg, -, Bq-1,0 are integers, and
q-1 q-1 q-1
20 fo = 20 (v - 1-2a,(3) - 20 (r, - 1 - 2a,(k) = 0,
m=0 j=1 k=1
so that
q-1
27 (pgo - 1oo) = -algo = 0 (modq).
£=1

For each h € Z - {1},

g-1
6,(h) = (1+h)/(1-h) = 2 %(q - 2i) hi,
i=1
so that
q-1
ro (h) =r 2 i(q-2)n"
., g
J
q-1
=2 %(rq - 2a(j)q - 2b(})) h°Y
j=1
q-1 gq-1
= 20 (r-1-2aG)n"P 4+ 2 1 CE 2b(j)) h >
j=1 j= 1
q-1

(r-1- 2a(]))h )y 61(h).

(3
]
—

Using this equality, we see that

r1 (0, () - 0, (h) - 6, 1, (h) 6;(h))
q-1 q-1
= ﬂ
= (oo Flng ¥ g = By 0™ = 2 Aph
m=0 =1

where

Ap = (Ugo - uoo)+(u£1 - o) t (g2 - 1op) - (Mﬂz - Ko12)
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q-1

is an integer. Since h is any root of Eizo hi = 0, the numbers Ay, ***, Aq_] are
uniquely determined. Moreover,
q-1

2 ag = %(qz - 1) (% - 1)(r¢ - 1) (mod q).
£=1

If h is replaced by h™! , the equality we have proved remains unchanged. Hence
Ap =Xgg (¢=1, -, q-1).
This completes the proof.

LEMMA 9. Suppose that we have a diffeventiable pseudo-free action of the civcle
group G on a homotopy 1-sphere =7 with exactly one exceptional ovbit Gb such

that Gy, = Zq, wheve q is an odd integer (q > 1) and theve is a slice D at b that

may be regavded as the closed unit 6-disk in €3 such that for some integers r]
and rpy with

ryr, = 1 (mod 2q),

the action of Zy on D is given by

hz,, z,, z3) = (hrlz1 , hrzzz, hzs) .
If L* is one of the associated manifolds constructed in Section 2, then
LY = 1 +%(q2 - 1) @2 - )% - 1) (mod 8q).

Proof. Let &p, -, £q-1 be the real numbers such that for each h € Zg - {1},

q-1
> .
6,00, () - 0,02 = 20 g0,
j=1
Since r;r = 1 (mod q), it follows from Theorem C that rjrp&;, -, ryrpéq_y are
integers and
q-1
1
2 (e 158 = 2(@® - D¢ - )2 - 1) (modq).
j=1

Therefore £, -+, £4_1 are integers and

q-1

Z 5= 3@ - 06 - D6F- 1) (modg).
-

By Lemma 3,
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\ q-1

0,(h) Sign(h, F1%) = -1(LH +1+ 2 g0,
j=1

gqg-1 P ~ g-1 .
Since Ql(h)'1 = Ej:l (-1)Yh), and since Sign (h, Mé) = Ejzl uth for some inte-
gers Uy, *°t, hq-1, We infer that

q-1
~hH+1+ 2 £, = 0 (modq).
j=1

By Lemma 5, we know also that (L% = 1 (mod 8). Hence our assertion follows
from the fact that q is odd.

6. ANOTHER SPECIAL CASE

Suppose that we have a differentiable pseudo-free action of the circle group G
on a homotopy 7-sphere =7 with exactly one exceptional orbit Gb such that
Gp = Z g, where q is an integer greater than 1 and relatively prime to 28, and that
some slice D at b may be regarded as the closed unit 6-disk in €3 such that for
some integers r; and r, with

n

ryr; 1 (mOd 2Q) ’

the action of Zq on D is given by

T
h(Zl, Zz, Z3) = (h lzl, hrZZZ, hZ3).

Let Z'=F U K, where F is a free G-manifold and K is a composite G-manifold,
and let & be the collection of differentiable pseudo-free circle actions on homotopy
7T-spheres obtained by pasting F to K.

Let h € Zq - {1}. As we saw in the proof of Lemma 9, there are integers

£)5 s £,y such that
gJ =‘§q-j (j=1, “.)q_l)
and
q-1
0, ()0, (h) - 0,(n% = 27 g1,
j=1

Therefore, by Lemma 7,
Sign (h, M%) = (LY + 0, (0P (LY + 1+ 0, (0) 0, (0) - 0 L (0)?)

q-1 q-1

(L) + 2 %((Zj - 1)q- 290 - (KLY + 1+ 2 gbd)
j=1 j=1
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qg-1 q-1
=1L+ 2 L ((23 - Dq- 22§+ 2 ’th
=14 j=1

where 7,, =, Ng-1 are numbers such that

q-1 q-1 q-1 q-1
n; = 2 L - Dq - 2j2)<-I(L4)+1 + 2 gj) -2 Y- 1)q - 2j%) &; .
j=1 j=1 4 j=1 =11
Hence
q-1 q-1
(018 = 1-(q- Dawh -1+ 2 L 3@ - Da-2)) + 20
=114 j=1
(10)
q-1 q-1
= 1-3@ - DAY - Dr3- Dig-2) B g5~ D (@ - Da - 22)E; -
i=1 j=1

Assume now that

By Lemma 9,
(LY = -7 (mod 40),

so that for some integer m,
(LY = -7+ 40m.

It is easily seen that for each h € Z; - {1},
65(h) 0_5(h) - 6,(W)% = -2h - 2n? - 203 - 20,
sothat &, = £, = £5 = £, = -2. By (10),
I(M®) = 73 - 320m.
Hence, by (6) and (7),

L 19+120m)+i L (73 - 320m) (mod 1)

7y =L i}
+5v(=f) = 396 (- 19 + 120m)? 199 364 224

and consequently

(=) = +l:—+—m(3m +2):| (mod 1) .

This shows
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m I 0 5 3 9 1 7
. 1 3 5 .9 .11 13
v(27) (mod 1) l tog  *3g  fag  tag i3y g

Assume next that
q =11, ry = 3, r, = -T.
Then, for some integer m,

(L% = -39 +88m, I(M®) = 1881 - 3520m,
so that

(=) = il:—z%+1—i m(m+2):l (mod 1).

Hence, for m = 3, v(=7) = +7/28 (mod 1).

With these results and Lemma 8, the proof of Theorem A is completed.
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