# THE GREEN FUNCTION OF DOMAINS CONTAINING A FIXED ELLIPSE

# Jan G. Krzyż

# INTRODUCTION AND SUMMARY

Recently, E. Złotkiewicz and the present author [4] showed that domains of hyperbolic type have a property of "uniform local convexity." More precisely, if  $\Omega$  is a domain of hyperbolic type, then any two points  $w_1$ ,  $w_2 \in \Omega$  whose hyperbolic distance  $h(w_1, w_2; \Omega)$  with respect to  $\Omega$  is less than  $\tanh^{-1}(1/\sqrt{2})$  can be joined in  $\Omega$  by a segment  $[w_1, w_2]$ . The constant  $\tanh^{-1}(1/\sqrt{2})$  is the best possible.

The natural question arises whether the segment  $[w_1,w_2]$  can be replaced by a larger set, after a suitable diminution of hyperbolic distance. In fact, if  $0 < r < 1/\sqrt{2}$  and  $h(w_1,w_2;\Omega) = \tanh^{-1}r$ , then  $\Omega$  contains an open ellipse with foci  $w_1$  and  $w_2$  and with eccentricity  $\epsilon(r) = 2r\sqrt{1-r^2}$  (Theorem 3). In order to prove Theorem 3, we first solve an extremal problem involving the Green function  $g(0,1;\Omega)$  of domains  $\Omega$  containing a fixed, maximal ellipse E with foci 0 and 1 (Theorem 1). Next, we consider a related problem for ring domains (Theorem 2). The well-known ring domain of A. Mori turns out to be extremal in this case. As corollaries of Theorem 3, estimates for the Green function  $g(w_1,w_2;\Omega)$  are obtained under the assumption that  $\Omega$  contains a fixed maximal ellipse with foci  $w_1$  and  $w_2$  (Theorem 4). As a consequence of Theorem 3 we also obtain a result that extends to arbitrary univalent majorants a theorem recently proved by Z. Lewandowski and J. Stankiewicz [6] for starlike majorants (Theorem 5).

#### 1. TWO EXTREMAL PROBLEMS IN CONFORMAL MAPPING

We shall be concerned with the maximal value of the Green function  $g(b,c;\Omega)$  for the class of simply connected domains  $\Omega$  in the finite plane  $\mathbb C$ , each  $\Omega$  containing a fixed ellipse E with foci b and c. Obviously, we may assume that b=0 and c=1, and that some boundary points of  $\Omega$  actually lie on the boundary  $\partial E$  of E. We show that the extremal domain is the finite plane minus a ray on the prolongation of the minor axis of E.

THEOREM 1. Let  $\{\Omega\}$  be the class of simply connected domains  $\Omega$  in the finite plane  $\mathbb{C}$ , each  $\Omega$  containing the open ellipse E with foci 0 and 1 and with eccentricity E. Let us also assume that the intersection  $(\mathbb{C}\setminus\Omega)\cap\partial E$  is not empty. Then the Green function  $g(0,1;\Omega)$  is a maximum for  $\Omega=\Omega_0=\mathbb{C}\setminus\ell_0$ , where  $\ell_0$  is one of the two vertical rays that lie outside of E and join the ends of the minor axis of E to the point at infinity. Moreover,

(1.1) 
$$g(0, 1; \Omega_0) = -\frac{1}{2} \log \frac{1}{2} (1 - \sqrt{1 - \varepsilon^2}) = -\log \frac{1}{2} \sqrt{2 - \sqrt{4 - a^{-2}}},$$

where  $2a = 1/\epsilon$  is the major axis of E.

Received December 13, 1971.

Michigan Math. J. 20 (1973).

*Proof.* Let  $\Omega$  be a simply connected domain that contains the points b and c and omits the point w = -b - c. It was shown in [4] that for each w, the Green function  $g(b, c; \Omega)$  is a maximum for  $\Omega_1 = \mathbb{C} \setminus \Gamma_1$ , where  $\Gamma_1$  is the image of the segment [0, 1/2] under the mapping  $\wp(\cdot; 1, \tau_1)$ . The period  $\tau_1$  satisfies the equation

(1.2) 
$$\lambda(\tau_1) = \frac{b-c}{w-c} = \frac{1}{1-w_1}.$$

We assume here that after a suitable similarity transformation the points b, c, w are carried into 0, 1,  $w_1$ ; moreover,  $\tau_1$  lies in the fundamental region B of the modular function  $\lambda$ . By symmetry, we may assume that  $\tau_1$  lies in the right-hand half  $B^+$  of B. Thus

$$w_1 = \frac{\lambda(\tau_1) - 1}{\lambda(\tau_1)} = \lambda\left(\frac{\tau_1 - 1}{\tau_1}\right).$$

Obviously, the function

(1.3) 
$$w = \lambda_1(\tau) = \lambda \left(\frac{\tau - 1}{\tau}\right)$$

maps the region  $B^+$  onto the upper half-plane  $H^+$  so that the points  $0, 1, \infty$  remain invariant. On the other hand, the function

(1.4) 
$$w = \frac{1}{2} \left[ 1 + \sin \frac{\pi}{2} (2\zeta - 1) \right]$$

maps the upper half  $S^+$  of the strip  $0 < \Re \zeta < 1$  onto the upper half-plane  $H^+$  so that the segments  $\Im \zeta = \text{constant correspond to arcs of ellipses in } H^+$  with foci 0 and 1. Consider now the compound transformation

(1.5) 
$$\tau = \Phi(\zeta) \colon S^+ \to B^+$$

defined by (1.3) and (1.4). Again, the points 0, 1, and  $\infty$  remain invariant under  $\Phi$ . By symmetry, the image of the ray  $\Re \zeta = 1/2$ ,  $\Im \zeta > 0$  is the ray  $\Re \tau = 1/2$ ,  $\Im \tau > 1/2$ . As we showed in [4], the maximal value of  $g(0, 1; \Omega)$  for domains  $\Omega$  omitting the point  $w_1$  is equal to

(1.6) 
$$g(0, 1; \Omega_1) = -\log \nu^{-1} \left(\frac{1}{2} \Im \tau_1\right),$$

where  $w_1$  and  $\tau_1$  satisfy (1.2), that is,

$$(1.7) w_1 = \lambda_1(\tau_1),$$

and where  $\nu(\mathbf{r}) = \frac{1}{4} \, \mathrm{K}(\sqrt{1-\mathbf{r}^2})/\mathrm{K}(\mathbf{r})$  denotes the modulus of the ring domain  $\Delta_1 \setminus [0, \mathbf{r}]$ . Because under (1.4) the points  $\mathbf{w} \in \mathbf{H}^+$  on ellipses with foci 0 and 1 correspond to the points  $\zeta$  on segments  $\Im \zeta = \mathrm{constant}$ , it follows from (1.6) that the maximal value of  $\mathrm{g}(0, 1; \Omega)$  corresponds to the maximal value of  $\Im \tau_1 = \Im \Phi(\zeta)$  for  $\zeta$  moving on the segment  $\Im \zeta = \mathrm{constant}$  in  $\mathrm{S}^+$  that corresponds to  $\partial \mathrm{E}$ .

We next prove that  $\Im \Phi(\zeta)$  attains its maximal value at the center of the segment. To this end, consider the mapping  $\tau = \Phi(\zeta)$  in the left-hand half  $S_1$  of  $S^+$ , that is, in the domain  $0 < \Re \zeta < 1/2$ ,  $\Im \zeta > 0$ . The function  $u(\zeta) = \Im \log \Phi'(\zeta)$  is harmonic and bounded in  $S_1$ . Its boundary values are zero on vertical boundary rays of  $S_1$ , and they do not surpass  $\pi/2$  on (0, 1/2). Hence  $0 < \arg \phi'(\zeta) < \pi/2$  in  $S_1$ . This implies that the local rotation of infinitesimal segments in  $S_1$  under the mapping  $\phi$  is contained between 0 and  $\pi/2$ . Consequently,  $\Im \Phi(t+i\eta_0)$  is a strictly increasing function of t in (0, 1/2), for each fixed  $\eta_0 > 0$ . By symmetry,  $\Im \Phi(t+i\eta_0)$  is a strictly decreasing function of t in (1/2, 1), and therefore  $\Im \Phi(t+i\eta_0)$  has an absolute maximum for t=1/2.

Since the line of symmetry  $\Re \zeta = 1/2$  in S<sup>+</sup> remains unchanged under (1.4), we see that the extremal continuum emanates from a point  $w_1$  with  $\Re w_1 = 1/2$  on  $\partial E$ . Moreover, the value  $\tau_1$  associated with  $w_1$  satisfies the conditions  $\Re \tau_1 = 1/2$  and  $\Im \tau_1 > 1/2$ . In order to obtain the extremal domain  $\Omega_0$ , note that in our case ( $\Re \tau_1 = 1/2$ ) the pair 1 and  $\tau_1$  of periods of  $\wp$  may be replaced by another pair  $\tau_1$  and  $\overline{\tau}_1$  of periods. Hence the image line of [0, 1/2] under  $\wp(\cdot; 1, \tau_1)$  and also under  $\wp(\cdot; \tau_1; \overline{\tau}_1)$  is a half-line on the real axis. Moreover,  $\wp(1/2) = e_1$  is real, while  $e_2 = \wp(\tau_1/2) = \overline{e}_3$ . Since the points  $e_1$ ,  $e_2$ , and  $e_3$  become  $w_1$ , 0, and 1 after a suitable similarity transformation, the extremal domain is the finite plane  $\mathbb{C}$  minus a ray  $\ell_0$  on the perpendicular bisector of the segment [0, 1]. By Lindelöf's principle,  $\ell_0$  does not intersect the segment; hence it must lie on the prolongation of the minor axis of the ellipse E. In order to evaluate  $g(0, 1; \mathbb{C} \setminus \ell_0)$ , we map  $\mathbb{C} \setminus \ell_0$ conformally onto the unit disc  $\Delta_1$  so that 0 and 1 correspond to 0 and r (0 < r < 1), respectively. Then  $g(0, 1; \mathbb{C} \setminus \ell_0) = -\log r$ , by virtue of the conformal invariance of the Green function. After elementary calculations, we obtain (1.1), and this completes the proof.

Theorem 1 has a counterpart involving ring domains. The extremal ring domain is the well-known ring domain of Mori (see for example [5, p. 61]). Thus we have the following result.

THEOREM 2. Let  $\{R\}$  be the class of ring domains R such that the bounded component  $\Gamma_0$  of the complement of R contains the points 0 and 1, while the unbounded component  $\Gamma_\infty$  lies outside a fixed ellipse  $E = \{w: |w| + |w-1| < 2a\}$  and has a nonempty intersection with the boundary of E. Then the modulus mod R is a maximum in case  $\Gamma_\infty$  is one of the two vertical rays in Theorem 1 while  $\Gamma_0$  is a circular arc (disjoint from  $\Gamma_\infty$ ) whose endpoints are the foci 0 and 1 and whose center is the finite endpoint of  $\Gamma_\infty$ .

*Proof.* Let  $R^*$  be an extremal ring domain, and let  $\Gamma_0^*$  and  $\Gamma_\infty^*$  be the components of  $\hat{\mathbb{C}} \setminus R^*$  ( $\hat{\mathbb{C}}$  being the extended plane). Consider the family  $\{\gamma^*\}$  of closed, rectifiable Jordan curves  $\gamma^*$  in  $R^*$  that separate  $\Gamma_0^*$  from  $\Gamma_\infty^*$ , and let  $\{\gamma\}$  be the family of closed, rectifiable Jordan curves in  $R^* \cup \Gamma_0^*$  that separate 0 and 1 from  $\Gamma_\infty^*$ . It follows from the extremal-length characterization of the Green function [2] and from Theorem 1 that

$$\begin{split} & \mod R^* = \mod \left\{ \gamma^* \right\} \ \leq \mod \left\{ \gamma \right\} = \nu \left( \exp \left[ - g(0, \ 1; \mathbb{C} \setminus \Gamma_\infty^*) \right] \right) \\ & \leq \nu \left( \exp \left[ - g(0, \ 1; \mathbb{C} \setminus \ell_0) \right] \right) \\ & = \nu \left( \frac{1}{2} \sqrt{2 - \sqrt{4 - a^{-2}}} \right) = \nu \left( \sqrt{\frac{1 - \sqrt{1 - \epsilon^2}}{2}} \right). \end{split}$$

On the other hand, a direct calculation shows that the last expression represents the modulus of the ring domain  $\mathbb{C} \setminus (\ell_0 \cup \gamma_0)$  (see [5, page 61], for example). This proves Theorem 2.

#### 2. A COVERING THEOREM FOR DOMAINS OF HYPERBOLIC TYPE

THEOREM 3. Let  $\Omega$  be a simply connected domain of hyperbolic type, and let  $w_1$  and  $w_2$  be points of  $\Omega$  whose hyperbolic distance  $h(w_1, w_2; \Omega)$  with respect to  $\Omega$  is equal to  $\tanh^{-1} r$ , where  $0 < r < 1/\sqrt{2}$ . Then the domain  $\Omega$  contains the ellipse

(2.1) 
$$E_r = \{w: |w - w_1| + |w - w_2| < |w_1 - w_2|/(2r\sqrt{1 - r^2})\}$$

with foci  $w_1$  and  $w_2$  and eccentricity  $\epsilon(\mathbf{r}) = 2\mathbf{r}\sqrt{1-\mathbf{r}^2}$ . The lower estimate  $|w_1 - w_2|/(2\mathbf{r}\sqrt{1-\mathbf{r}^2})$  of the major axis is sharp.

*Proof.* Without loss of generality, we may assume that  $w_1=0$  and  $w_2=1$ . Let f be the univalent function that maps the unit disc  $\Delta_1$  onto  $\Omega$  so that f(0)=0 and the inverse image r of  $w_2=1$  lies on the radius (0,1). By the conformal invariance of hyperbolic distance, f(r)=1. As was shown in [4], the domain  $f(\Delta_1)$  contains the closed segment [0,1], if  $r<1/\sqrt{2}$ . Hence  $\Omega=f(\Delta_1)$  also contains a maximal ellipse E with major axis 2a>1 and foci 0 and 1. By the conformal invariance of the Green function,  $g(0,1;\Omega)=-\log r$ . Thus the complementary set of  $\Omega$  has a non-empty intersection with  $\partial E$ , while  $E\subset \Omega$ . Consequently, we can apply Theorem 1 and the formula (1.1) to obtain the inequalities

$$g(0, 1; \Omega) = -\log r \le -\log \frac{1}{2} \sqrt{2 - \sqrt{4 - a^{-2}}}$$
.

It follows that

(2.2) 
$$2a \ge (2r\sqrt{1-r^2})^{-1}$$
.

Hence the major axis of E is at least  $(2r\sqrt{1-r^2})^{-1}$ , or  $|w_1-w_2|(2r\sqrt{1-r^2})^{-1}$  in the general case. In the case of the extremal domain considered in Theorem 1, the major axis of the maximal ellipse  $E_r$  is actually equal to

$$|w_1 - w_2| (2r \sqrt{1 - r^2})^{-1}$$
,

so that the estimate (2.2) is sharp. We can restate Theorem 3 in terms of so-called Koebe sets. For  $0 \le r \le 1$ , let  $S^r$  be the class of functions regular and univalent in  $\Delta_1$  that are normalized by the conditions f(0) and f(r) = 1. The intersection

 $\bigcap_{f \in S^r} f(\Delta_1)$  is called the *Koebe set*  $\mathscr{K}(S^r)$  for the class  $S^r$  (see [3], [4]). Although the exact form of  $\mathscr{K}(S^r)$  has been determined in [4], it is still desirable to determine a large subset of  $\mathscr{K}(S^r)$  with a fairly simple characterization. From Theorem 3 we obtain at once the following result.

COROLLARY 1. If  $0 < r < 1/\sqrt{2}$ , then the Koebe set  $\mathcal{K}(S^r)$  contains the open ellipse  $E_r$  with foci 0 and 1 and eccentricity  $\epsilon(r) = 2r\sqrt{1-r^2}$ .

Another subset of  $\mathcal{K}(S^r)$  can be obtained in an elementary way. With each  $f \in S^r$  we can associate a constant  $\lambda$  and a univalent function  $F = \lambda f$  subject to the

standard normalization F(0) = 0, F'(0) = 1. The equation  $F(r) = \lambda f(r) = \lambda$  implies that

(2.3) 
$$f(z) = F(z)/F(r)$$
.

From (2.3) and Koebe's 1/4-theorem we readily deduce that  $\mathscr{K}(S^r)$  also contains the disc  $\Delta_r' = \{w: |w| < (1-r)^2/(4r)\}$ . By symmetry,  $\mathscr{K}(S^r)$  also contains the disc  $\Delta_r''$  of the same radius and center 1. Hence we have the following proposition.

COROLLARY 2. If 
$$0 < r < 1/\sqrt{2}$$
, then  $\Delta_r' \cup \Delta_r'' \cup E_r \subset \mathcal{K}(S^r)$ .

# 3. ESTIMATES OF THE GREEN FUNCTION

From Theorem 1, we shall now obtain sharp lower and upper estimates of the Green function  $g(w_1,w_2;\Omega)$ , under the assumption that  $\Omega$  contains a maximal ellipse E with foci  $w_1$  and  $w_2$  and eccentricity  $\epsilon$ .

THEOREM 4. If  $\Omega$  is a simply connected domain that contains a maximal ellipse E with foci w<sub>1</sub> and w<sub>2</sub> and eccentricity  $\epsilon$ , then

$$(3.1) \quad -\log \ \nu^{-1} \left( \frac{1}{2\pi} \log \frac{1+\sqrt{1-\epsilon^2}}{\epsilon} \right) \leq \, g(w_1\,,\,w_2\,;\,\Omega) \, \leq \, -\frac{1}{2} \log \, \frac{1}{2} (1\,-\,\sqrt{1-\epsilon^2}) \, .$$

Both estimates are sharp.

*Proof.* The second inequality is a consequence of formula (1.1). In order to obtain the first inequality, note that  $E \subset \Omega$ , and use the Lindelöf principle. The lower bound  $g(w_1, w_2; E)$  thus obtained can be evaluated as follows. Use the extremallength characterization of the Green function [2] and assume that  $w_1 = -1$  and  $w_2 = 1$ . Let  $\{\gamma\}$  be the family of rectificable Jordan curves separating -1 and 1 from  $\partial E$ . Obviously,

$$M = mod \{\gamma\} = mod (E \setminus [-1; 1]),$$

and the value of the latter expression is readily found by means of the transformation  $w = (z + z^{-1})/2$ . Thus we have the relation

(3.2) 
$$M = \frac{1}{2\pi} \log (a + \sqrt{a^2 - 1}) = \frac{1}{2\pi} \log \frac{1 + \sqrt{1 - \epsilon^2}}{\epsilon}.$$

On the other hand,

(3.3) 
$$g(-1, 1; E) = -\log \nu^{-1}(M)$$
.

The desired inequality now follows from (3.2) and (3.3).

## 4. FURTHER APPLICATIONS

Let F be a function regular and univalent in  $\Delta_1$ , subject to the standard normalization F(0)=0, F'(0)=1. Suppose that f is regular in  $\Delta_1$  and that  $f'(0)\geq 0$ . If F is a modular majorant of f in  $\Delta_1$  (that is, if  $\left|f(z)\right|\leq \left|F(z)\right|$  for each  $z\in\Delta_1$ ), then there exists a positive number  $\rho$  such that  $f(\Delta_r)\subset F(\Delta_1)$  for each  $r<\rho$  and each pair of admissible functions f and F satisfying the conditions stated above. If

F is starlike with respect to the origin, then  $\rho = 1/3$ , and this value is best possible (see [6]). We shall now extend this result. To this end, we need two lemmas. The first is essentially due to Rogosinski (see [1, p. 327]).

LEMMA 1. Let B be the class of functions  $\omega$  regular in the unit disc that satisfy the conditions  $\omega(0) \geq 0$  and  $|\omega(z)| \leq 1$  for all z in the unit disc. The set  $H_{z_0}$  of all possible values  $\omega(z_0)$  for a fixed  $z_0$   $(0 < |z_0| < 1)$  and for  $\omega$  ranging over B depends only on  $r = |z_0|$ , and it is a closed convex domain  $H_r$  whose boundary consists of the semicircle |z| = r,  $\Re z \leq 0$ , together with two circular arcs through z = 1 tangent to |z| = r at  $z = \overline{+}ir$ .

LEMMA 2. For each pair of admissible functions f and F and each r (0 < r < 1), the relation  $f(\overline{\Delta_r}) \subset F(\Delta_1)$  holds if and only if

(Here  $\Delta_{\mathtt{r}}$  denotes the disc  $\, \left| \, z \, \right| \, < \, r, \, \text{and} \, \, \overline{\Delta}_{\mathtt{r}} \,$  is its closure.)

*Proof.* With each pair of admissible functions f and F, we can associate a function  $\omega \in B$  such that  $f(z) \equiv \omega(z) \, F(z)$ . The assertion that  $f(\overline{\Delta}_r) \subset F(\Delta_1)$  holds for each pair of admissible functions can also be stated as follows. For each  $z_0 \in \overline{\Delta}_r$  and each pair of admissible functions f and F, we can find  $z_1 \in \Delta_1$  such that  $f(z_0) = \omega(z_0) \, F(z_0) = F(z_1)$ , in other words,

(4.2) 
$$\omega(z_0) = F(z_1)/F(z_0) = \phi(z_1)$$
,

where  $\phi$  is univalent in  $\Delta_1$  and normalized by the conditions  $\phi(0) = 0$  and  $\phi(z_0) = 1$ . By Lemma 1, the point  $\omega(z_0)$  can be an arbitrary point of  $H_r$ . Obviously, we can find a point  $z_1$  satisfying (4.2), for each  $\phi$ , if and only if  $\omega(z_0)$  belongs to the intersection  $\bigcap_{\phi} \phi(\Delta_1)$ ; the latter set is readily identified as  $\mathcal{K}(S^r)$  ( $r = |z_0|$ ). Because  $\mathcal{K}(S^r)$  shrinks as r increases, (4.2) has a solution  $z_1 \in \Delta_1$ , for each admissible  $\phi$  and each  $\omega(z_0) = w_0 \in H_r$ , if and only if  $w_0 \in H_r$  implies  $w_0 \in \mathcal{K}(S^r)$ . This condition is equivalent to (4.1), and Lemma 2 is proved.

It is worthwhile to mention that Lemma 2 remains true if we allow F to range over a subclass of  $S^r$  and take the Koebe set for the corresponding subclass.

THEOREM 5. Let  $F(z) = z + A_2 z^2 + \cdots$  be regular and univalent in the unit disc  $\Delta_1$ . Suppose that the function  $f(z) = a_1 z + a_2 z^2 + \cdots (a_1 \ge 0)$  is regular in  $\Delta_1$  and that  $|f(z)| \le |F(z)|$  for all  $z \in \Delta_1$ . Then  $f(\Delta_{1/3}) \subset F(\Delta_1)$ . The constant 1/3 is best possible.

*Proof.* Suppose that 0 < r < 1/3. We show that then  $H_r \subset \mathcal{K}(S^r)$ . By Corollary 2, it is sufficient to verify that  $H_r \subset \Delta_r' \cup \Delta_r'' \cup E_r$  for  $r \in (0, 1/3)$ . Since  $(1-r)^2/(4r) > r$  if 0 < r < 1/3, the boundary arc of  $H_r$  situated on |z| = r is contained in  $\Delta_r'$ . On the other hand, two remaining boundary arcs of  $H_r$  are contained in the rectangle  $\{w: |\Im w| \le r, \ 0 \le \Re w \le 1\}$ , which is a proper subset of the ellipse  $E_r$ . In fact,  $\partial E_r$  intersects the imaginary axis at the points

$$\mp i(1 - 2r^2)^2/(4r\sqrt{1 - r^2})$$
,

and  $(1-2r^2)^2/(4r\sqrt{1-r^2})>r$ , since obviously  $1-2r^2>2r$  for  $r\in (0,\,1/3)$ . Hence  $H_r\subset \Delta_r'\cup \Delta_r''\cup E_r$  for  $r\in (0,\,1/3)$ , and by Lemma 2,  $f(\overline{\Delta}_r)\subset F(\Delta_1)$  for each  $r\in (0,\,1/3)$  and each pair of admissible functions f and F. On the other hand, the pair

$$f(z) = -z^2(1 - z)^{-2}$$
,  $F(z) = z(1 - z)^{-2}$ 

is obviously admissible; however, the value f(1/3) = -1/4 is omitted by F. This shows that the radius 1/3 is sharp.

In [4], the ellipse  $E_r^c = \{w: |w| + |w - 1| < r^{-1}\}$  was indentified with the Koebe set  $\mathcal{K}(S_c^r)$  for the subclass of  $S^r$  consisting of convex functions. The following result is analogous to Theorem 5.

THEOREM 6. Let  $F(z) = z + A_2 z^2 + \cdots$  be a convex, univalent function in  $\Delta_1$ . Suppose that the function  $f(z) = a_1 z + a_2 z^2 + \cdots$   $(a_1 \ge 0)$  is regular in  $\Delta_1$ , and that  $\left|f(z)\right| \le \left|F(z)\right|$  in  $\Delta_1$ . Then  $f(\Delta_{1/2}) \subset F(\Delta_1)$ . The constant 1/2 is best possible.

*Proof.* Obviously,  $H_r \subset E_r^c$  for 0 < r < 1/2. Hence  $f(\overline{\Delta}_r) \subset F(\Delta_1)$  for each  $r \in (0, 1/2)$  and each pair of admissible functions f and f. For  $f(z) = z(1 - z)^{-1}$  and f(z) = -z F(z), the value f(1/2) = -1/2 is omitted by f. This ends the proof.

Theorem 5 suggests the following problem. Find the largest value  $\mathbf{r}_0$  such that for each  $\mathbf{r} \in (0, \mathbf{r}_0)$  the inclusion  $f(\Delta_\mathbf{r}) \subset F(\Delta_1)$  holds for each pair of univalent functions

$$f(z) = a_1 z + a_2 z^2 + \cdots \quad (a_1 > 0)$$
,

$$F(z) = z + A_2 z^2 + \cdots$$

satisfying the inequality  $|f(z)| \leq |F(z)|$  in  $\Delta_1$ .

### REFERENCES

- 1. G. M. Golusin, *Geometrische Funktionentheorie*. Deutscher Verl. Wissensch., Berlin, 1957.
- 2. J. Hersch, Longueurs extrémales et théorie des fonctions. Comment. Math. Helvet. 29 (1955), 301-337.
- 3. J. Krzyż and M. O. Reade, Koebe domains for certain classes of analytic functions. J. Analyse Math. 18 (1967), 185-195.
- 4. J. Krzyż and E. Złotkiewicz, Koebe sets for univalent functions with two preassigned values. Ann. Acad. Sci. Fenn. Ser. A.I., No. 487 (1971), 12 pp.
- 5. O. Lehto and K. I. Virtanen, *Quasikonforme Abbildungen*. Springer-Verlag, Berlin-Heidelberg-New York, 1965.
- 6. Z. Lewandowski and J. Stankiewicz, Les majorantes modulaires étoilées et l'inclusion. Bull. Acad. Polon. Sér. Sci. Math. Astronom. Phys. 19 (1971), 923-929.

Maria Curie - Skłodowska University Lublin, Poland