THE GREEN FUNCTION OF DOMAINS CONTAINING
A FIXED ELLIPSE
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INTRODUCTION AND SUMMARY

Recently, E. ZYotkiewicz and the present author [4] showed that domains of
hyperbolic type have a property of “uniform local convexity.” More precisely, if 2
is a domain of hyperbolic type, then any two points w;, w, € © whose hyperbolic
distance h(w;, w,; ) with respect to € is less than tanh-! (1/v2) can be joined
in Q by a segment [w,, w,]. The constant tanh-1 (1/V2) is the best possible.

The natural question arises whether the segment [w;, w2} can be replaced by a
larger set, after a suitable diminution of hyperbolic distance. In fact, if
0<r<1/¥2 and h(w;, wp; ©) =tanh-! r, then © contains an open ellipse with
foci w; and w, and with eccentricity €(r) =2r v 1 - r¢ (Theorem 3). In order to
prove Theorem 3, we first solve an extremal problem involving the Green function
g(0, 1; ) of domains  containing a fixed, maximal ellipse E with foci 0 and 1
(Theorem 1). Next, we consider a related problem for ring domains (Theorem 2).
The well-known ring domain of A. Mori turns out to be extremal in this case. As
corollaries of Theorem 3, estimates for the Green function g{w;, w,; Q) are ob-
tained under the assumption that 2 contains a fixed maximal ellipse with foci w;
and w, (Theorem 4). As a consequence of Theorem 3 we also obtain a result that
extends to arbitrary univalent majorants a theorem recently proved by Z. Lewandow-
ski and J. Stankiewicz [6] for starlike majorants (Theorem 5).

1. TWO EXTREMAL PROBLEMS IN CONFORMAL MAPPING

We shall be concerned with the maximal value of the Green function g(b, c; Q)
for the class of simply connected domains £ in the finite plane C, each  contain-
ing a fixed ellipse E with foci b and c¢. Obviously, we may assume that b =0 and
¢ = 1, and that some boundary points of € actually lie on the boundary 2E of E. We
show that the extremal domain is the finite plane minus a ray on the prolongation of
the minor axis of E.

THEOREM 1. Let {Q} be the class of simply connected domains Q in the
finite plane C, each Q containing the open ellipse E with foci 0 and 1 and with
eccentricity €. Let us also assume that the intersection (C \ ) N dE is not empty.
Then the Green function g(0, 1; Q) is a maximum for Q = Qg =C \ Ly, where 0, is
one of the two vertical vays that lie outside of E and join the ends of the minor axis
of E {to the point at infinity. Moreover,

(1.1) g(0, 1; Qq) = —%log%(l - V1-g2)= -logél-w/z - V4 -a-2,

where 2a = 1/¢ is the major axis of E.
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Proof. Let @ be a simply connected domain that contains the points b and c
and omits the point w = -b - ¢. It was shown in [4] that for each w, the Green func-
tion g(b, ¢; ) is a maximum for ©; = C \ I'|, where I'; is the image of the seg-
ment [0, 1/2] under the mapping ¢( *; 1, 7). The period 7, satisfies the equa-
tion

b-¢__1
w-c 1l-w;’

(1.2) ?\(Tl) =

We assume here that after a suitable similarity transformation the points b, ¢, w
are carried into 0, 1, w; ; moreover, 7, lies in the fundamental region B of the
modular function A. By symmetry, we may assume that 7, lies in the right-hand

half B of B. Thus
A7) -1 N T,-1
w = —— .
1 A(Tl) Tl

(1.3) w=>\1(7)=>\(7;1)

Obviously, the function

maps the region BT onto the upper half-plane H' so that the points 0, 1, © remain
invariant. On the other hand, the function

(1.4) w =%[1+sin%(2§— 1)]

maps the upper half ST of the strip 0 < 9% ¢ < 1 onto the upper half-plane Ht so
that the segments ¢ = constant correspond to arcs of ellipses in HT with foci 0
and 1. Consider now the compound transformation

(1.5) T = &(¢): " - BT

defined by (1.3) and (1.4). Again, the points 0, 1, and © remain invariant under ®.
By symmetry, the image of the ray %¢ =1/2, I¢ >0 isthe ray %7 =1/2,

S 7 >1/2. As we showed in [4], the maximal value of g(0, 1; Q) for domains
omitting the point w,; is equal to

1
(1.6) 80, 15 2)) = -log v-! (5 57, ),

where w; and 7; satisfy (1.2), that is,

(1.7) wy = (1)),

and where v(r) = % K(vV1 - r2)/K(r) denotes the modulus of the ring domain

A\ [0, r]. Because under (1.4) the points w € H* on ellipses with foci 0 and 1
correspond to the points ¢ on segments ¢ = constant, it follows from (1.6) that the
maximal value of g(0, 1; ) corresponds to the maximal value of $7; = S&(¢) for
¢ moving on the segment 3¢ = constant in S* that corresponds to 9E.
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We next prove that 3 ®(¢) attains its maximal value at the center of the seg-
ment. To this end, consider the mapping 7 = &(¢) in the left-hand half S; of S*,
that is, in the domain 0 < %¢ < 1/2, $¢ > 0. The function u(f) = S log &' (¢) is
harmonic and bounded in S, . Its boundary values are zero on vertical boundary
rays of S;, and they do not surpass 7/2 on (0, 1/2). Hence 0 <arg ¢'(¢) <#/2 in
S1. This implies that the local rotation of infinitesimal segments in S, under the
mapping ¢ is contained between 0 and 7/2. Consequently, I&(t+ing) is a strictly
increasing function of t in (0, 1/2), for each fixed 1, > 0. By symmetry,

3 ®(t +ing) is a strictly decreasing function of t in (1/2, 1), and therefore
3 ®(t +iny) has an absolute maximum for t = 1/2.

Since the line of symmetry % ¢ =1/2 in S* remains unchanged under (1.4), we
see that the extremal continuum emanates from a point w; with %w; = 1/2 on 9E.
Moreover, the value 7] associated with w, satisfies the conditions %7, =1/2 and
§ 71> 1/2. In order to obtain the extremal domain €, note that in our case
(% 7; =1/2) the pair 1 and 7, of periods of » may be replaced by another pair
7, and T, of periods. Hence the image line of [0, 1/2] under p( - ; 1, 7,) and
also under p( - ; 7;; 7,) is a half-line on the real axis. Moreover, p(1/2) = e, is
real, while e, = p(7,/2) ='e3. Since the points e;, e,, and ez become w;, 0, and
1 after a suitable similarity transformation, the extremal domain is the finite plane
C minus a ray £y on the perpendicular bisector of the segment [0, 1]. By Lindelof’s
principle, £y does not intersect the segment; hence it must lie on the prolongation of
the minor axis of the ellipse E. In order to evaluate g(0, 1; C \ £3), we map C \ ¢,
conformally onto the unit disc A; so that 0 and 1 correspond to 0 and r
(0 < r < 1), respectively. Then g(0, 1; C \ £g) = -log r, by virtue of the conformal
invariance of the Green function. After elementary calculations, we obtain (1.1), and
this completes the proof.

Theorem 1 has a counterpart involving ring domains. The extremal ring do-
main is the well-known ring domain of Mori (see for example [5, p. 61]). Thus we
have the following result.

THEOREM 2. Let {R} be the class of ving domains R such that the bounded
component I'g of the complement of R contains the points 0 and 1, while the un-
bounded component T, lies outside a fixed ellipse E = {w: |w| +|w - 1| <2a} and
has a nonempty intevsection with the boundary of E. Then the modulus mod R is a
maximum in case T, is one of the two vertical vays in Theovem 1 while 'y is a
civcular avc (disjoint from T' ) whose endpoints ave the foci 0 and 1 and whose
center is the finite endpoint of T .

[2e]

ponents of €\ R* (€ being the extended plane). Consider the family {y*} of
closed, rectifiable Jordan curves y* in R* that separate I'§ from I'%, and let {y}

be the family of closed, rectifiable Jordan curves in R* U 1"6‘ that separate 0 and 1
from Tf. It follows from the extremal-length characterization of the Green func-
tion [2] and from Theorem 1 that

Proof. Let R* be an extremal ring domain, and let 1“3 and T be the com-

mod R* = mod {y*} <mod{y} = v(exp[-g(0, 1; €\ TX)])

< vlexp[-g(0, 1; € \ £4)])

() (YT
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On the other hand, a direct calculation shows that the last expression represents the
modulus of the ring domain C \ (£¢ U yq) (see [5, page 61], for example). This
proves Theorem 2.

2. A COVERING THEOREM FOR DOMAINS OF HYPERBOLIC TYPE

THEOREM 3. Let Q be a simply connected domain of hypevbolic type, and let
wy and wy be points of Q@ whose hyperbolic distance h(w |, w, ; Q) with respect to
Q is equal to tanh~! r, where 0 <r < 1/vV2. Then the domain Q contains the
ellipse

(2.1) E. = {w: |w-w;| +]w-wz| <|w;-wy|/@rV1-r?)}

with foci w; and wp and eccentrvicity €(r) = 2r v 1 - r2. The lower estimate
|wy - wo|/@r V1 - r2) of the major axis is sharp.

Proof. Without loss of generality, we may assume that w; =0 and w, = 1. Let
f be the univalent function that maps the unit disc A; onto £ so that f(0) = 0 and
the inverse image r of w, = 1 lies on the radius (0, 1). By the conformal invari-
ance of hyperbolic distance, f(r) = 1. As was shown in [4], the domain f(A;) contains
the closed segment [0, 1], if r < 1/vV2. Hence £ = f(A,) also contains a maximal
ellipse E with major axis 2a > 1 and foci 0 and 1. By the conformal invariance of
the Green function, g(0, 1; ) = -log r. Thus the complementary set of Q has a non-
empty intersection with 9E, while E C Q. Consequently, we can apply Theorem 1
and the formula (1.1) to obtain the inequalities

g(0,1; Q) = -logr < —10g%w/2— V4 - a2 .

It follows that
(2.2) 2a > (2r V1 - r2)! |

Hence the major axis of E is at least (2rv1 - r2)-!, or le - wy | (2r V1 - r2)-1
in the general case. In the case of the extremal domain considered in Theorem 1,

the major axis of the maximal ellipse E. is actually equal to
|w, - wy| @rv1-1r2)1,

so that the estimate (2.2) is sharp. We can restate Theorem 3 in terms of so-called
Koebe sets. For 0 <r < 1, let S' be the class of functions regular and univalent in
A; that are normalized by the conditions f(0) and f(r) = 1. The intersection

nfESr f(A,) is called the Koebe set #(S") for the class S* (see [3], [4]). Although

the exact form of ' (S*) has been determined in [4], it is still desirable to determine
a large subset of o (S¥) with a fairly simple characterization. From Theorem 3 we
obtain at once the following result.

COROLLARY 1. If 0<r < 1/V2, then the Koebe set #(S*) contains the open
ellipse E. with foci 0 and 1 and eccentricity e(r) =2rv1-r2.

Another subset of & (S¥) can be obtained in an elementary way. With each
f € S¥ we can associate a constant X and a univalent function ¥ =f subject to the
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standard normalization ¥(0) =0, F'(0) = 1. The equation F(r) = M(r) =X implies
that

(2.3) f(z) = F(z)/F(r) .

From (2.3) and Koebe’s 1/4-theorem we readily deduce that (ST) also contains the
disc AL = {w: ]wl <(1-r1)¢/(4r)}. By symmetry, s (ST) also contains the disc
A, of the same radius and center 1. Hence we have the following proposition.

COROLLARY 2. If 0<r <1/VZ, then ALU A UE_ C X(S%).

3. ESTIMATES OF THE GREEN FUNCTION

From Theorem 1, we shall now obtain sharp lower and upper estimates of the
Green function g(w;, wy; ), under the assumption that  contains a maximal el-
lipse E with foci w; and w, and eccentricity ¢.

THEOREM 4. If Q is a simply connected domain that contains a maximal el-
lipse E with foci w, and w, and eccentvicity €, then

J1 -¢2
(3.1) -1log V‘l(zl—ﬂlogl-i-—sl—i-)_{_g(wl,wz;ﬂ)s-%log%(l—\/1—82).

Both estimates ave sharp.

Proof. The second inequality is a consequence of formula (1.1). In order to ob-
tain the first inequality, note that E C €, and use the Lindelsf principle. The lower
bound g(w;, w,; E) thus obtained can be evaluated as follows. Use the extremal-
length characterization of the Green function [2] and assume that w; = -1 and
w, = 1. Let {y} be the family of rectificable Jordan curves separating -1 and 1
from ¢oE. Obviously,

M = mod {y} = mod (E\ [-1; 1]),

and the value of the latter expression is readily found by means of the transforma-
tion w = (z +z-1)/2. Thus we have the relation

1++vV1-¢g2

_ 1 Jaz - 1) = L
(3.2) M = gy log (a+ Va 1) py log "
On the other hand,
(3.3) g(-1, 1; E) = -log v~1(M) .

The desired inequality now follows from (3.2) and (3.3).

4. FURTHER APPLICATIONS

Let F be a function regular and univalent in A;, subject to the standard nor-
malization F(0) = 0, F'(0) = 1. Suppose that f is regular in A; and that £'(0) > 0.
If F is a modular majorant of f in A, (that is, if |f(z)| < lF(z)l for each z € A),
then there exists a positive number p such that f(A.) € F(A;) for each r < p and
each pair of admissible functions f and ¥ satisfying the conditions stated above. If
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F is starlike with respect to the origin, then p = 1/3, and this value is best possible
(see [6]). We shall now extend this result. To this end, we need two lemmas. The
first is essentially due to Rogosinski (see [1, p. 327]).

LEMMA 1. Let B be the class of functions w vegulav in the unit disc that
satisfy the conditions w(0) >0 and |w(z)| < 1 for all z in the unit disc. The set
HZo of all possible values w(zy) for a fixed zy (0 < |zo| < 1) and for w ranging

over B depends only on r = Izol, and it is a closed convex domain H,. whose
boundary consists of the semicivcle lzl =r, Rz L0, logether with two circular
arcs through z =1 tangent to |z| =r at z = Fir.

LEMMA 2. Fov each pair of admissible functionié f and F and each r
(0 <r < 1), the relation £(A,) C F(Ay) holds if and only if

(4.1) H, C #(S%) .

(Here A, denotes the disc [z] <r, and Zr is its closure.)

Proof. With each pair of admissible functions f and F, we can associate a
function w € B such that f(z) = w(z) F(z). The assertion that f(A,.) € F(A;) holds
for each pair of admissible functions can also be stated as follows. For each
Zg € A, and each pair of admissible functions f and F, we can find z, € A such
that f(z,) = w(zy) F(zg) = F(z,), in other words,

(4.2) w(zy) = F(z)/Flzg) = ¢(z;),

where ¢ is univalent in A; and normalized by the conditions ¢(0) = 0 and ¢(zg) = 1.
By Lemma 1, the point w(zg) can be an arbitrary point of H, . Obviously, we can
find a point z, satisfying (4.2), for each ¢, if and only if w(z,) belongs to the inter-

section n¢, ¢(A); the latter set is readily identified as #(S") (r = ]zol). Because
H#(ST) shrinks as r increases, (4.2) has a solution z; € A, for each admissible ¢
and each w(zg) = wqy € H,., if and only if wy € H,. implies wg € #(S"). This condi-
tion is equivalent to (4.1), and Lemma 2 is proved.

It is worthwhile to mention that Lemma 2 remains true if we allow F to range
over a subclass of ST and take the Koebe set for the corresponding subclass.

THEOREM 5. Let F(z) = z + Ay 2% + -+ be vegular and univalent in the unit
disc A} . Suppose that the function f(z) =ajz +azz% + - (a; > 0) is regular in A,
and that |f(z)| < |F(z)| Jorall z € Ay . Then f(A1/3) C F(A;). The constant 1/3
is best possible.

Proof. Suppose that 0 <r < 1/3. We show that then H, c #(S"). By Corollary
2, it is sufficient to verify that H. C A, U Ay UE, for r € (0, 1/3). Since
(1-r)2/(4r) >r if 0 <r < 1/3, the boundary arc of H, situated on |z| =r is con-
tained in A, . On the other hand, two remaining boundary arcs of H,. are contained
in the rectangle {w: | Swl Lr, 0 < aw < 1}, which is a proper subset of the el-
lipse E.. In fact, 9E, intersects the imaginary axis at the points

Fi(1 - 2r?)%/(ar V1 - r2)

and (1 - 2r%)2/(4r v 1 - r2) > r, since obviously 1 - 2r? > 2r for r € (0, 1/3).
Hence H. C AL, UA} UE, for r € (0, 1/3), and by Lemma 2, f(A,) C F(A,) for each
r € (0, 1/3) and each pair of admissible functions f and ¥. On the other hand, the
pair
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f(z) = -z2(1 - z)°2, F(z) = z(1 - z)°2

is obviously admissible; however, the value £(1/3) = -1/4 is omitted by F. This
shows that the radius 1/3 is sharp.

In [4], the ellipse E] = {w: |w| + |w - 1| < r-1} was indentified with the Koebe
set o (SL) for the subclass of ST consisting of convex functions. The following re-
sult is analogous to Theorem 5.

THEOREM 6. Let F(z) =z + Az z% + --- be a convex, univalent function in Ay .
Suppose that the function (z) =ayz +azz% +--- (a) > 0) is vegular in A, and that
|#(z)| < |F(z)| in Ay. Then £(Ay/2) C F(A1). The constant 1/2 is best possible.

Proof. Obviously, H,. C ES for 0 <r < 1/2. Hence f(A;) C F(A1) for each
r € (0, 1/2) and each pair of admissible functions f and F. For F(z) = z(1 - z)~!
and f(z) = - z F(z), the value f(1/2) = -1/2 is omitted by F. This ends the proof.

Theorem 5 suggests the following problem. Find the largest value ry such that
for each r € (0, ry) the inclusion f£(A.) C F(A,) holds for each paiv of univalent
Sunctions

f(z)

F(z)

ajz+azzé+-- (a;>0),

Z2+Ayz? e

satisfying the inequality |f(z)| < |F(z)| in A;.

REFERENCES

1. G. M. Golusin, Geomelrische Funktionentheorie. Deutscher Verl. Wissensch.,
Berlin, 1957.

2. J. Hersch, Longueurs extvémales et théovie des fonctions. Comment. Math.
Helvet. 29 (1955), 301-337.

3. J. Krzyz and M. O. Reade, Koebe domains for certain classes of analytic func-
tions. J. Analyse Math. 18 (1967), 185-195.

4. J. Krzyz and E. Zlotkiewicz, Koebe sets for univalent functions with two pre-
assigned values. Ann. Acad. Sci. Fenn. Ser. A.l., No. 487 (1971), 12 pp.

5. O. Lehto and K. L. Virtanen, Quasikonforme Abbildungen. Springer-Verlag,
Berlin-Heidelberg-New York, 1965.

6. Z. Lewandowski and J. Stankiewicz, Les majorantes modulaives étoilées et
l'inclusion. Bull. Acad. Polon. Sér. Sci. Math. Astronom. Phys. 19 (1971), 923-
929.

Maria Curie - Skiodowska University
Lublin, Poland






