ON FOURIER TRANSFORMS OF FUNCTIONS

IN HPR?") FOR p< 1

T. Walsh

0. INTRODUCTION

For p > 0, let HP(D) denote the space of holomorphic functions f in the unit
disk D satisfying the condition

2m l/p
sup (S |f(reif) P dB) = 5]l [HP] < .
0<r<1 \¥0 -

In a recent paper [8], C. N. Kellogg proved the following extension of the Hausdorff-
Young inequality. Suppose 1 <p <2, and let 1/p + 1/p' = 1. Then there exists a

constant A, such that for each f € HP(D) (with f(z) = E:;o f(n) z")

w ' p2ktl 2/p' J1/2
(0.1) l:]f(o)|2 + 2 ( 2 |im|P ) } < A, || [HP].
k=0 n=2k

The present article originated with an attempt to extend this result to the space

HP(REH) of systems of conjugate harmonic functions in the sense of E. M. Stein and
G. Weiss. .

Recall that a system F = (Fy, F;, ---, F,) of n+ 1 harmonic functions in the
half-space R}'! = {x, y): x e R*, y> 0} belongs to HP(R‘J:“) for p>(n - 1)/n
(for p> 0 if n=1) provided F is the gradient of a harmonic function and

1/p
|F| [HP] = sup | F(x, y)|Pdx < oo,
I y>0 (‘S‘ )

2 n 2 . 2 . . 1 .
where [F[ = Ejzo 'FJl . The Fourier transform f of a function f in L(R®) is
defined by the formula

f(x) = Se'ix"ff(y)dy,
so that the inverse Fourier transform f* is defined by
£7(x) = (27T)'n5 eV f(y)dy .

The Poisson kernel P for Ri“ is defined by the equations
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P(x, y) = cpy(y? + |x|2)-(0t1)/2 o = p-(at1)/2((n +1)/2),

so that P( -, y)" (x) = e-v|x| (see [12, Chapters 1and 6]). If p<1 and F ¢ HP,
then F( -, y) € L1 for each y > 0; hence the transform F( -, 0) is well-defined by
the formula F( -, 0)=F( -, y) e¥l*| (see [11]).

Let xy denote the characteristic function of the set {x: 2K < |x| <2k*1}. The
space with mixed norm L(P-a)(Rn) is defined to consist of all measurable functions
f on R™ such that

"f” (p,q) = ” {"ka"p}::_oo "q < e ’

where the outer norm | || is that of ¢%(Z) with respect to the counting measure
on the set of integers Z. For p =1, Kellogg’s result has the following generaliza-
tion.

PROPOSITION 1. If F e HX(R}'Y), then
(0.2) IFC, Ol (o,2) < AT ('],

A well-known theorem of G. H. Hardy and J. E. Littlewood asserts that if p <1
and a holomorphic function f in the unit disk belongs to the class HP, then

©0 l/p
(0.3) ( 27 (n+1)P2 lf(n)|P) < A | ]| [6P]
n=0

(see [4], for example). T. M. Flett’s generalization of another inequality of Hardy
and Littlewood (see [4, Theorem 3] ) yields a short proof of the following strength-

ened version of (0.3) for Hp(Rfr1+1 .

PROPOSITION 2. For (n- 1)/n <p< 1,

©0 - l/p
(0.4) (5 ( sup |P(x 0)|)Pt'““'P>'1dt) < Ap | F| [HP].
0 t|x|<Lz2t

Furthermore, for s < =,

‘ o0 1/s
(0.5) j‘ ( S | B(x, 0)|de) t-lat < Aq ||F|| [H!].
° t< x| <2t

Clearly (0.4) and (0.5) imply the inequality
N 1/p
( §1Fe 0P x| m@Pax) " <A IF|[BP] (- D/a<p<D).

In view of (0.1), it may not be unexpected that the well-known inequality of R. E.
A. C. Paley (see [17, Vol. 2, p. 123, Theorem 5.10])

f* -n(2-p) l/p
(5 [f*x)]P | x| P dx) SAp"f“p (1<p<2)
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(where f* denotes the radial (nonincreasing) equimeasurable rearrangement of f)
has the following similar extension to a mixed-norm inequality.

PROPOSITION 3. If 1 <p<2 and s <p', then
(0.6) I£%(| - | =Wt -ty o < Ay Sl

In case p = 1, the substitute result for H! is contained in Proposition 2.

Recall the definition of the space BMO (modulo additive constants) of fuhctions
of bounded mean oscillation. We say that f ¢ BMO if

sup |q|-1§ |£(x) - avgyt| ax = ||£]| [BMO] < =,
Q ;
where Q ranges through the set of cubes (with sides parallel to the axes), |Q| de-

notes the volume of Q, and avgf is the average of f over Q. Because of the identi-

fication of the dual space of H! with the space BMO established by C. Fefferman
[3], Propositions 1 and 2 have the following corollary.

PROPOSITION 4. (a) There exists a constant A such that for £ e L(1,2), the
Fourier transform f of f (in the sense of dzstmbutzons) satisfies the condztzon
(0.7) |l (BMO] < Al -

(b) Suppose f is locally integrable, r > 1, and | - |*/*'f € L) . then £ is of
bounded mean oscillation and

(0.8) 1] (BMO] < Al |- ™™ 8] (1, o) -

Because the definition of functions of bounded mean oscillatio'ns does not involve
HP-gspaces, it seems of some interest to give a direct proof of Proposition 4 that
does not use Fefferman’s result.

1. PROOF OF PROPOSITIONS 1 TO 4

Proposition 1 is a simple consequence of the following result.

LEMMA 1. Suppose ¢ € C°(RP), 0< ¢ <1, and ¢(x) =1 if 1< |x| <2,
o(x) =0 if |x| <1/2 or |x| > 4; let ¢ (x) = (2°Kx) for k € Z. Then

o« 1/2
( 27 {(f’(-,O) ¢k)v}2) -

k: -00

(1.1) F|l [5P].

Ap |l

P

Proof. Let m: R® — 2% be defined by m(x) = {qbk(x)}k__00 ; then Da ¢k(x) =0
unless 1/2 <2°K|x| < 4, that is, 2k-1 < |x| < 2k¥2; and if 2 < |x| < 2i+1; then

] 1/2
%% [m{@ )], < 20t1)el (Ik |Z>< 22l ol D2 ) 1T < a6
-j 2

Hence, by a theorem of Stein [11] that clearly extends to multipliers with values in a

Hilbert space, m is a multipler from #HP(R] n+l , C) to FHP(R} 2+l 12) of norm at
most
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Asup {[|¢/*).: |a| = [max(n/p, n/2)] +1} .
Since | ,

{FC-, 0t )" = {FC, 080",

this concludes the proof of (1.1).

Proof of Proposition 1. By the Hausdorff-Young inéquality, Minkowski’s in-
equality for integrals, and (1.1), it follows that for 1 <p <2,

1EC, Ol gy = I BC, Ol Y0, < I lecfC, 030 I,
RN RRTCS ROV 8 M
R 1/2
(ZH{EC, 0007}?)
k

sAl < A, | P 8P,

P

where as in the Introgiuction the ¢P-norm of a sequence is with respect to counting
measure. For p = 1, this is inequality(0.2).

The argument above indicates that Kellogg’s result (0.1) for 1 <p<2 isa
corollary of the well-known result of Paley and Littlewood, namely that

where ¥y denotes the characteristic function of the set {x: 2% < max; |x;| <2k*t1}
(see [9, Theorem 4]). Note also that for 1 < p < 2 the nonperiodic n-dimensional
analogue ”f”(p',z) < Ap”f”p of (0.1) is equivalent to a result of C. S. Herz [6,

Lemma 3.1]. (Take z(£, h) = xo(|£|/]h]).)

Proof of Proposition 2. If p=1, let 2 < s < «; otherwise let s =«. Let r be
equal to the conjugate index s' of s, and let X[t,2t] denote the characteristic func-

tion of the set {x:t < |x| <2t}. Then

/
(E[(lPkﬂ']Z)l 2” < AplEl, (X <p<w),
L P

I, O)X[t,Zt]"s < e |FC-, 0)e -1/t ls < Ae? |F(-, Y],

hence

A 1/p 00 1/p
(S “F(',t)X[t,Zt]”zt"n(l-P)-ldt) SA(S |]F(.,y)||§yn(1-p)-1dy)
0 0

Now, by [4, Theorem 3], the last expression is bounded by A, , | | [=P].

Proof of Proposition 3. Let 7 be some measure-preserving transformation of
R™ . It suffices to show that

(1.2) |for|-|-WptVs-Dn| ) < Apsltly, (<p<2),
where A ; does not depend on 7. Observe that (1.2) is equivalent to the inequality

(1.3) {25 N0 ooyl 32l () < Ape el
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where
1/p -kn
‘"{ak}“p(v) = (Z Iak|pv(k)) , vik) = 27°°,
k

and ¢y is the mapping from B = {x: 1 < |x| <2} to 2B defined by the equation
o (x) = 2kx,
By Plancherel’s theorem, (1.3) holds for p = s = 2. Also,

v({k: 2% |foro0,||_>a}) < v({k: A2 £, > a})

<vk 2 >e/@|f] D) < Z {2k 2k > o/t )} < Alt]], /.

Thus the linear operator taking f to {zkn forT oak} o 15 bounded between

L2 and L{%:2) and between L! and the mixed (quasi- )norm space L{®:1°)} (where
1 indicates that the outer quasi-norm is the L!®- or weak L! -quasi-norm). By
interpolation (see [1], [7]), it follows that

(1.4 {25 [Fo 7 00, ], e () < A, Nl

where || - ” , denotes the Lorentz- or LPP'-norm (see [1, Section 13.9]) with re-
spect to the measure vonZ. Ifnow 1<p<2and 2<s<p',let p; =1 and
pz = s', so that p < pz < 2; then (1.4) and the inequality

[foroofls <Alforoo],
imply that
[ [forooy M, ., ) <Al G=12.

The inequality (1.3)—and w1th it (0.6)—now follows from the interpolation theorem of
J. Marcinkiewicz.

Pyoof of Proposition 4(a). Suppose Q is a cube with center xy and side a,

where 2k <a <2ktl  1et
| f(x) if |x| < 27k,
fl(X) =

0 otherwise,

and let fz =f - fl . Then

(1.5) |Q|'IS |f(x)-anf|dx_<_2|Q|“1(S lfl(x)—fl(xo)]dx+5 |f2(x)|dx);
Q

Q Q
also,
S Ifl(x) - f (xo)l dx = 5 5 e 1V'X _ ¢71YX0] | f(y)| dy dx
ly|<2- k :
<A S j |x - xo] [¥] [£(»)| dyax < Aan! j Iyl |t)] ay
ly|<2- yj<2®
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~k 1/2 -k > 1/2
< Aanrtl| 2 22m) [ 2 (Sxm_l(y)lf(y)ldy) :l

< Aattia il o) < Aat e, -

Furthermore,

> S Se"ix'“ X oy ) £y ) dy, Seix'yz X (72 1(y2) dy 2 dx

S |£,x)]? ax
Q £,m=-k ¥ Q

2 S sz(yl)xm(yaf(yl)WZ)S e 2 gy gy, ay,
Q

£,m=-k
<Al 2™ T el Ixptl, #2020 gt O g x ol
lﬂ-m |S1 £,m=-k
£,m> -k
°© 1/2 ®©
<al wago (D gm0 )T D g <At gl .
£, m=-k =-k ’

Substitution of these estimates in (1.5) gives the inequality
ot § i - avafl ax < Al 2

this completes the proof of (0.7).

Proof of Proposition 4(b). Note that (1.5) is valid for Q, a, f;, £, defined as
before. Next, observe that

-k

‘Slfl(x) - f1(xg)] dx < Aant! S ly| |[#n)] dy < Aamtl 2 2™ I, £l
|y|_§_2"k m= -co

-k ’ l/r
< Aa™l 2 2Mgyp 2P™ (Z'nm 5 X o1 [E)|T dy )
ms= -co m
S Aan ” I ) |n/r'f” (r,»o)"
Also,

@l § Jlas < (1al § B0 a)'"

By the Hausdorff-Young inequality, the right-hand member is at most equal to
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1/r ' 0 1/r
AIQl'l/r'(S lf(y)lrdy) = A|Q| /T ( 2 gxm(y) [£(y)|* dy)
m=-k

ly|>2-k

0 1/r
< ajql-L/r 22‘“”““'”) D 1P/ 6] g

m=-k
= AlQIM L e oy = AP ] () -

Substitution of the preceding estimates in (1.5) completes the proof of inequality
(0.8).

2. ADDITIONAL REMARKS

1. Kellogg proved that as a consequence of his extension of the Hausdorff-Young
inequality, functions in L{5®) are (HP, H9)-multipliers, for 1 <p<L2<Lqg<x and
1/s =1/p - 1/q. As he indicated in his proof of (0.1), the latter result in turn im-
plies the first (if ¢ = 2). Observe that these results also are direct consequences of
a result of Hardy and Littlewood (see [5, Theorem 14]). The latter has the following
extension to R™. Note that the case p > 1 has already been dealt with in [15, Theo-
rem 2] and [14, Appendix (1)].

LEMMA 2. Supposing k belongs to L' + L°, define the function K on RRT! by
K(x, y) = P( -, y)*k(x), and for F € HP(R?H), define the linear operator T by

TF(x, y) = S\ F(x -z, y)k(z)dz .
Rn

Finally, suppose 1 <p <2 < q <, and for qp defined by 1/q=1/p+1/qy - 1,
suppose |(a/ay)K( -, y)“qo < B/y. Then T is a bounded linear mapping from HP
to Hq, and

(2.1) ITF| [HY < Ap o B[ F| [1H]].

Proof. The proof is similar to that of Hardy and Littlewood. For every har-
monic function G in R}T! | set

,(G) (x) = (Yo I (aa—y)kG(x, y)|2y2k‘1dy)l/2 ;
0

then (see [12, p. 86]), if limy _, o G(x, y) = 0,
(2.2) el 5% < Ag i e, -

Also, for 0 <u <y,

TF(x, y) = S F(x - z, y)k(z)dz = ‘S‘ F(x - z, y- wWK(z, u)dz ;

hence
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2
(%) TF(x, y) = S%F(x— z, Y/Z)%K(Z’ y/2)dz .

As a result of [12, p. 89] and the main theorem of [10], we obtain the inequality
(2.3) ley(®)l, < AL |IF]| [EPT.

It follows from M1nkowsk1 s inequality for integrals and Young s inequality for con-
volutions that )

2 1/2

q

1/2
<a(fEConlgvey) < alel,

leaemlly < (§ ] 7y - 2 w2 (o, v/200

Hence (2.1) now follows from (2.2) and (2 3).
COROLLARY Suppose ,

ge LO™(RY, FeHP, 1<p<2<q<«, 1/s=1/p-1/q;
then |
2.4) . [(Fe)" || (1Y) < A, a lel (s w) IIFII [Hp]

Pyoof. By Lemma 2, it sufflces to observe that for k = g¥ and
1/q=1/p+1/q, - 1, the Hausdorff Young inequality implies that

“ K( -, y)" < AS S:|x|s EMES |gx)|® dxr

o0

k
< AS 2 2s(k+1)e-sz y‘g Xk(X) Ig(X)|S dx
k= -0 ) L
< A® ”gllszs,oo)( 27 .. -+ 22 : ) exp s(k log 2 - Zky)
k< -(log y)/(log 2) kZ -(log y)-/(log 2) . . )
< A% | gl ?S w) Y% 27 éxp(-smlog 2)+ 20 exp(-s(@™ - m log 2)))
m=0 m:O'

-8

_<_ AS ”g” ?S,oo)y

2. P. L. Duren, B. W. Romberg, and A. L. Shields [2] have characterized the
dual of HP(D) for p <1 as the space of Lipschitz functions Al/P-1 on the unit

circle. There is an extension of this result to HP(Rn+1) to the effect that the dual -

of HP(R} ) is topologically isomorphic to AR(!/P- 1) (see [16]). Since the dual of

£P for p <1 is £, Proposition 2 implies that for ¢ < n and for (locally) inte-
grable {1,

.9 1 EA%T < Mg 1[5l 1y (@ >0),
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where A? is defined to consist of all residue classes of measurable functions g,
modulo polynomials of degree at most [a], such that

lgll [A9] = sup { || ® || akh)g|,: h € R*} < o,

where k denotes the least integer greater than o.

A standard argument yields the following direct proof of (2.5). For each h in
R™ (h # 0), choose m so that 2™ < |h| < 2™+l  Then

|| = | § iy - ey tiy)ay |

< |nf* §

-m-1 co

< |nfle 20 2ty ol w2k 2 fIx,

ﬂ_:-oo =-Im

|Y|k|f(y)|dy+2k5 l1(y)| dy

[y|L2™™ ly|>27™

-m-1 ©o
< (|h|k 2 ollk-a) +2k 2 2"J2a)sup(2£a “xﬂf" 1)
£

f£=-00 f=-m

o  no
<A@ P,

3. By duality, Proposition 3 has the following corollary.

PROPOSITION 3'. Suppose 2 <p<w and fislocally integrable; then for
r>p',

"f"p < Apr" | - ln(l/p'—l/r)f*”(r,P) )
wheve f* again denotes the (nonincreasing) vadial vearvangement of f.

4. since |F(-, )|, < A|F| [EP]y™1/P-1) for (n-1)/n <p< 1, it follows
that

|F(x, 0)] < AeY!xly=/P-D g gr].

For y = |x|-!, this implies that |F(x, 0)| < A ||F| [HP]|x|?(1/P-1) Thus, in the
limiting case p=(n - 1)/n (for n > 1),

|F(x, 0] < A|F| [EP]]x|?/ 1)

In case n = 1, consider the space NP of holomorphic functions f in the upper
half-plane II, = {x +iy: y > 0}, satisfying the condition

[+ ]
(2.6) sup [log (1 + |f(x +iy)| 1/P)]Pdx = B < =,
y>0 Y=o

where log (1 + IfIl/P) instead of log" ]f[ is used to ensure that f( - +iy) € L! for
each y > 0. For 1 <p < and f=1f(- +iy)ey, '!,
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(2.7) : |fx)| < A,Bexp A (B|x|)!/(P+1)

This is a consequence of the following lemma.

LEMMA 3. Supposé f is holomovphic in H’+ , 0<p< 00., and -
(2.8) £ - +in|, < yexp(B/y)l/P;

then (2.7) is satisfied. If on the other hand g is measuvable on (-, «) and satis-
fies the condition |g(x)| <B exp(B|x|)1/(P+1) , where 0 <p <, and if for y > 0,

g (x+1iy) = 21—," 5 eixt-yltl gty at |

then .
(2.9) le¥(x +iy)| < ApBy'lexp AP(B/y)l/P .

Proof. Condition (2.7) implies that ,
)] = |- +in) )] e1xl <y exp[(B/y)1/P - y|x|] .
The exponent [(B/y)!/P - v|x|] has a minimum for )
y = p~P/(ptl) Bl/(ptl) | x| -P/(p+1) ;
hence
|ix)| < APBI/(pH) |x| P/PHL) oxp AL(B |x[)1/(PH1) < A, Bexp Ap(B |x|)t/(p*1)

for B |x| > 1; on the other hand, if B |x| <1, put y = B-! to show that
|f(x)| <A, B. This concludes the proof of (2.7).

To prove the second part of Lemma 3, note that

le*(x + iy)|

< A,Bexp 21/P(B/y)!/P | ' evitl dt+BSe'V|t|/2dt
|t]| <2(pt1)/Pl/Py-(p+1)/p
< A,BylexpA (B/y)/P.

The following more symmetric result for holomorphic functions in the unit disk
can be proved similarly.

cO
LEMMA 3'. Suppose f(z) = 27 n=0 Cn 2" is holomovphic in D and a > 0. Then
log |£(z)| = O((1 - |2]|)"%) as |z| — 1 if and only if ¢, = 0L/ (@+1)) g5 n — e,

To see that condition (2.6) implies (2.8), note that
(1/p)10g+|f(z)| < log(1l + |f(z)|1/p) ..
The mean-value inequality for subharmonic functions implies that

log*|f(x +iy)| < A, (B/y)l/P
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(see, for example, [13, p. 84, Section 5.3]); hence |f(x +iy)| < exp (Ap (B/y)L/P).
Also, ¢(t) =t/[log(1 + ¢! /P)]P is an increasing function of t for t > 0; thus for
0<y<B,

I8 - +iy)|l; < élexp[Ap(B/¥)1/P])B < Apy exp[Ap(B/y)!/P].

Inequality (2.7) for f € NP now follows from Lemma 3.

2T
Furthermore, if f is holomorphic in D and S (log* ]f(rew)])pde < B for
0

0 <r <1, then, by an argument similar to that above, Lemma 3' implies that

c, = O(Ap (Bn)!/(Pt1)). To see that the exponent 1/(p + 1) cannot be replaced by any
smaller exponent, consider the function f(z) = exp(l - z)-® for 0 < a <1/p and «
sufficiently close to 1/p. It is easily verified that | f(rei')Hl >Aexp Al - r)%;
hence, by Lemma 3', ¢, # O(nP) for each g<a/a+1).

5. The replacement of F( -, 0) by F( -, 0)* in (0.4) and (0.5) would make the
left-hand sides infinite, unless F = 0. Thus Proposition 3 does not extend to HP,
for p < 1. In the case of the unit disk, this does not seem to be equally obvious, and
the following example for the case p =1 may therefore be justified.

Let ¢,(z) = Eizo zX . Then, by Parseval’s equality,

loal 1821 = @m) 12+ 1)Y/2
hence |¢Z| [H!]= (n+ 1)/27. Moreover, ¢Z(z) = 212;10 (n+1- |n-k|)z¥, so that

the nonincreasing radial rearrangement {cl”;} of the sequence of Taylor coefficients
of <;b121 is given by the rule

{n+1—k for |k|
L -

0 for |k|

07 1} ...7 n?

n+1.

Y

Also, the relation

n

27 X /(+1) ~ nlogn ~ [ [H!]log n
k=0

shows that {f(n)} in (0.3) cannot be replaced by its radial rearrangement. By

©0
standard methods, we can use the functions ¢r21 to construct a function Enzo ¢,z
. 1 > * =
in H (D) such that 2/ _g cX¥(n + 1) = w.

6. Proposition 4 has natural analogues for periodic functions in R™ and for
functions defined on the set of lattice points Z" of R™. It appears sufficient to state

the version of Proposition 4(b) valid for functions on Z. Suppose {c(n)}?._ isa
sequence of complex numbers such that

sup 2k(2 K 27 |c(n) lr)l/r = M,(c),
k 2k5n<2k+1
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where r > 1. Define & as the limit in L?([-7, 7]) of the sequence of partial sums

k 11y e ~
En: xeme™) (k=0,1, ---). Then & is of bounded mean oscillation, and
(2.10) €] [BMO] < A.M,(c) .

In the present case, it is even simpler to see that, in contrast to Proposition 3'
relation (2.10) is false with M,(c*) in place of M.(c), even if r = . For if
cn(k) = c(k +n) for k € Z, then obviously (c,)* = c¢* but &,(x) = e!™@&(x). By the
Riemann-Lebesgue lemma, the relation lirzrllnl__,o<J avyC, = 0 holds for each inter-
val I; hence

b

lim Iﬁn(x) - évIén| dx = S Ié(x)| dx .

lnl—-)°0 I I

Thus, if ||&]| [BMO] < AMy(c*), then

J2lle = sup [1]-2 |20 ax < M(e® .
I I

The latter inequality, however, is contradicted, for instance, by the sequence
c={(k] + 1)1} -
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