VECTOR-VALUED ANALYTIC FUNCTIONS
Michael E. Taylor

In this note we show that a function f defined on a real domain and taking values
in the dual of a Fréchet space is analytic if it is weakly analytic. A counterexample
shows that this is not generally true for functions taking values in a Fréchet space.

We apply this result to a consideration of partially analytic distributions, and to
a theorem of T. Kotake and M. S. Narasimhan on the behavior of elliptic partial dif-
ferential operators with analytic coefficients.

First, let us fix some notational conventions. We shall denote by & the space
of germs of functions holomorphic in a neighborhood of the point 0 in the complex
plane C, and by & the space of formal power series in z. By o#(B;) we shall
mean the space of holomorphic functions defined on the disc B, = {z e C: lzl < r}.

Then ¢ is a (generalized) LF-space; 0 = Ur>0 H(By).

Our first theorem could be proved directly by means of the Baire Category
Theorem. However, we prefer to use the theorem of Grothendieck that if T: E — F

is a closed linear map, E is a Fréchet space, and F = UFk is an inductive limit of
a sequence of Fréchet spaces, then there exists an N such that T maps E into Fy
continuously. (See Theorem 3 and the remark at the end of this note.)

THEOREM 1. Let E be a Fréchet space and E' its stvong dual. If {f;} isa

sequence of elements of E' such that, for each u € E, the sequence

{1{t5,u)|}/i} is bounded, then there exists an & > 0 such that {&j £;} is
strongly bounded.

[>e] .

Proof. For each u € E, the element Tu = Z)J-zo (fj, u) z) belongs to 0.
Since the composite map E L ¢ — & is clearly continuous, T is closed. Grothen-
dieck’s theorem implies that T maps E continuously into & (B..) for some r > 0,
which implies that | {f;, u)| < C(2/r)} for each u € E, with r independent of u.
Our theorem follows, with € = r/2, by the uniform-boundedness theorem.

THEOREM 2. Let Q be a rvegion in R" | and suppose f: Q@ — E' is a function
such that, for each u in the Fréchet space E, the map x — <f(x), u) is analytic.

Then £ is strongly analylic.
Proof. Tf xg € Q, then for each u € E, % <f(x0 +he;) - 1(xo), u> converges to

(2/2x;) {1(x), u) |, as h— 0, where {,, -, £,} is the standard orthonormal

basis of R™. The uniform boundedness theorem implies that there is an fj € E'
such that

(f;,u) = -a—a;;(f(x),u> g forall ueE.
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Repeating this reasoning, we conclude that for each multi-index o there is an
fy € E' such that D® (£(x), u )|, = (fq, u) for all u e E. Obviously, for each

u € E we have the relation

<f(x0+y),u> = 2 -al—!-yO‘(fa,u)

a>0

for all y in some neighborhood of 0. The desired result is now an-immediate con-
sequence of Theorem 1, or, to be more precise, of the analogous theorem obtained

when {fj} is replaced by { % for }, where a is a multi-index.

COROLLARY. If B is a Banach space and f: @ — B is weakly analytic, then f
is strongly analytic.

Proof. This follows from Theorem 2 if we consider B as a closed subspace of
B", taking E = B'. We need only remark that the coefficients f, belong to B. But

if © is a small complex neighborhood of € to which f has a holomorphic extension
f: @ — B", then the Hahn-Banach theorem shows that actually f maps & into B;
hence the {, , being given by Cauchy’s integral formula, belong to B.

We note that the corollary is not valid if we replace B by a Fréchet space.
Consider the following counterexample. Let F(x, y) = (x2 - y2+1)-1. Denote by I
the interval (-1, 1), and define f: I — C*(I) by f(x) = F(x, - ). It is easy to see that
for each v ¢ &'(I), <f(x), v> is an analytic function of x. However, f does not
have a strongly convergent power series expansion about 0.

It is convenient to state an extension of Theorem 2, namely that distributions
with values in the strong dual E' of an F-space, which are weakly analytic, are
strongly analytic. Recall that a distribution on 2 with values in E' is a continuous
linear map T: CH(Q) — E'.

THEOREM 3. Let T: Cy(Q) — E' be a distribution with values in the stvong
dual E' of an F-space. Suppose that for each u € E the composition
uT: C3(R) — C, belonging to D '(R), is an analytic function on Q. Then T is a
strongly analytic function on Q@ with values in E'.

Pyoof. The proof is a simple variation on the previous arguments. For if
Xo € © and 0 is the space of germs of functions analytic in a neighborhood of xg,

then u 5 uT givesamap 7: E — O.
Hence 7: E — o#(B.(x0)) for some r > 0. If for each z € B.(xg) we define

i(z) € E' by <u, f(z)> = 7u(z), then f is an analytic function in a neighborhood of
X0, its values lie in E') and it agrees with T.

We consider the application of Theorem 3 to partially analytic distributions.
Suppose a domain © = ' X Q" is given as a product, and u € 2'(Q). We write
x = (x', Xx") and say that u is analytic in x' if for each ¢ € CB°(Q"), the product
< u, ¢> € @'(Q') is analytic on ©'. There is another reasonable notion of partial
analyticity: we say u € @'(Q) is strongly analytic in x' provided that each point
Xy = (xg , Xg) € Q has a neighborhood w = w' X w" on which u has an expansion

u= 21 Colx'- xp)%  with Cy € @'(w"),
a>0
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in the sense that for each ¢ € Cy(w") and each x' € w', the series

2 (Cq, o) x'- x0)®

OzZu

converges absolutely to <u, q§> . Clearly, every strongly analytic distribution in x'
is analytic in x'. The next theorem shows that the two notions are indeed equivalent.

THEOREM 4. Ifu e @'(Q) is analytic in x' then u is strongly analytic in x'.

Proof. By hypothesis u: C3(Q') — E', where we take E = C7(®") with an arbi-
trary relatively compact w" C ". The hypothesis of analyticity implies that for
each ¢ € E the composition ¢u = (u, ¢> e @'(Q') is analytic; thus Theorem 4 is an
immediate consequence of Theorem 3.

This result stands in sharp contrast to the situation of partially smooth distribu-
tions. From it one can deduce without too much difficulty that every distribution,
analytic both in x' and in x", is analytic.

Finally we prove a strengthened form of a result due to T. Kotake and M. S.
Narasimhan. First we need a lemma.

LEMMA. If Q is a rvegion in R™ and {f} is a sequence of elements of 2'(Q)
such that, for each ¢ € C3(R), the sequence {|<fj, q’>>|1/J'} is bounded, then
Jov every compact K C Q thereis an r such that |< £, ¢> | <cri for each
¢ € Cg(K).

Proof. Apply Theorem 1 to E = Cy (K).

THEOREM 5. Let A = A(x, D) be a strongly elliptic operator of ovdey 2m, with
analytic coefficients on Q. Let u € 9'(Q), and suppose that for each ¢ € CB° (2)
there is a constant ¢ such that | <Aj u, ¢>‘ < dtl(2m)!. Then u is analytic.

Proof. In view of the lemma, our hypothesis implies that, for some p inde-
pendent of ¢, | <AJu, ¢>> | < Cp?(2mj)!, at least for any ¢ € C3(w) with any preas-

signed relatively compact w C Q. We can now complete the proof as in [3]. Namely,
define

- 5 ym+1)j 1 2mj,j
F(t) E)(l) Gapr b A%

If £ =p-1/2m this series converges on J = (-¢, £) to a continuous function of t
with values in @'(w). Hence F € @'(J X w). Note that (92™/pt?™)F = (-1)™*+1 AF,
But (92™/3t2m) + (-1)™ A is an elliptic operator with analytic coefficients on J X w,
so that F is analytic. Hence u = F(0) is analytic.

We remark that the series for F(t) is a natural one to write down. We obtain it
by taking the formal power series for exp[(-1)(mt1)/2mAl/2m]y = G(t), which
clearly satisfies the equation (92™/at2m)G = (~-1)™m*1 AG, and throwing away all
terms involving nonintegral powers of A. The assumed estimates precisely guar-
antee convergence of this series.

We also remark that Theorem 5 can be generalized in the following direction.
If A=A(x',D') and B = B(x", D") are differential operators with analytic coeffi-
cients, strongly elliptic of order 2m in their respective arguments, and if for each
¢ € Cp(Q), the inequalities
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|<Aju, ¢>| < ch(zmj)! and I (Bju, qb>| < cj+l(2mj)!

hold, then the same reasoning as above shows that u is analytic separately in x' and
x" and hence, as we remarked previously, is analytic. Indeed it is only necessary to
consider ¢ of the form ¢(x) = ¢,(x') $(x"), which does not involve a real weakening
of hypotheses, as one can see by noticing that Grothendieck’s theorem is also valid if
E is replaced by an (incompleted!) projective tensor product of Fréchet spaces.
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