COMMUTANTS OF SHIFTS ON BANACH SPACES
Richard M. Crownover

Among the operators on an arbitrary complex Banach space, we consider a
class of operators that can be represented as certain unilateral shift operators on a
Banach space of sequences. We associate an analytic structure with each of these
operators in such a way that each element of the Banach space may be expressed as
an analytic function on a neighborhood in the spectrum of the operator. This identi-
fication enables us to view the commutant of the operator as an algebra of multipli-
cations by bounded analytic functions, thus giving us a commutant theory similar to
that for the unilateral shift on the sequence space €2 [5, Problem 116].

For the special case in which the shift operator is an isometry, sharper esti-
mates on the size of the convergence set for the commutant are available than for
the general case. We show that in this special case, the commutant can be identified
with a subalgebra of the space H* on the unit disk.

We apply the theory developed to a commutant problem of A. L. Shields and L.
J. Wallen [12], and we make other applications to results on factorization of power
series with coefficients in ¢P, the spectrum of a shift, and a question of existence of
roots. In the last section, we discuss special cases of an approximation theory for
elements of the commutant.

In addition to the work of Shields and Wallen on commutant problems, we men-
tion the work of R. Gellar [2], [3], which has some structural similarity to the pres-
ent work. Gellar also utilizes power series and considers commutant problems.
The main distinction, however, is that Gellar starts with a particular Schauder basis
and considers weighted shifts with respect to that basis. These shifts are occasion-
ally included in the collection of shifts considered in our work. Moreover, a large
collection of the shifts considered here are not of the type considered by Gellar. A
further distinction is that our definition of a shift is basis-free, and indeed we carry
out our work independent of the existence of a Schauder basis.

We wish to thank Professor Allen L. Shields for sending a preprint of [12], and
for a valuable conversation concerning that paper.

1. PRELIMINARIES

A standard definition is that a unilateral shift on a Hilbert space is an operator
U for which there exists an orthonormal basis {e,}5-; such that Ue, = e, for
n=1,2, 3, ---. Unilateral shifts on Hilbert space have been extensively studied, and
many of their properties are well known ([5, Chapter 14] and [6, Chapter 7]). Much
of the utility of such an operator derives from its unitary equivalence to the opera-

tor S, of multiplication by z on the Hilbert space of square-summable power series
(=]

Enzo anz™ (the classical Hardy space H?%). Thus an inherent analytic structure is
associated with the unilateral shift, and this structure facilitates the study of a
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numbzer of problems, such as that of identifying the commutant of the unilateral shift
on {

It is known [6, p. 109] that an operator T on a Hilbert space X is a unilateral
shift if and only if

(@) T is an isometry,
(8) T has co-rank one,

(y) if x € X and x # 0, then x is not infinitely divisible by T. (A vector x € X
is infinitely divisible by T if for each nonnegative integer Kk, there exists a vector
y € X such that x = Tky.)

The conditions (@), (8), and (y) may be imposed on an operator on a Banach
space, and they could serve as a definition of a shift operator on a Banach space.
For many purposes, however, condition (@) is too restrictive, and it is desirable that
we use the weakened form

(a') T is injective and has closed range.

Definition. A bounded linear operator T on a complex Banach space X will be
called a shift isometry provided conditions (a), (8), and (y) are satisfied. If condi-
tions (a'), (B), and (y) are satisfied, the operator will be called a shift.

The use of the term “shift” for an operator satisfying ('), (8), and (y) is further
justified by the following theorem.

THEOREM 1. Suppose T is a shift on the Banach space X. Then there exists a
Banach space Xg of complex-valued sequences such that X is isomovphic and iso-
metvic to Xg,and such that on Xg the operator T corvresponds to the unilateral
shift operator Tg defined by the condition

Ts(ao, al, "‘) = (0, ao, al, "').

Proof. Conditions (a') and (8) imply the existence of an element xy € X with
H xg| =1 such that X is the Banach space direct sum

X = (xg) @TX ,

where (xg) is the one-dimensional subspace containing xg. Let x € X. Then there
exist a complex scalar ag(x) and an element x; ¢ X such that x = ag(x) xg + Tx; .

Similarly, there exist a scalar al(x) and a vector x; € X such that

x; = a;(x)xg + Tx,, so that x = ao(x) Xg + al(x) Txg + T?x,. By induction, there

exist unique sequences {a,(x)}n-o and {x,} =0 of scalars and vectors such that

for each positive integer n,

(1) x = ag(x) xg +a(x) Txg + -+ +2,(x) TPxg + T x4 .

o0 . ©0
We let Xg denote the space of sequences {a,(x)},_o. The mapping x — {a, (%)}, -0
is linear and maps X onto Xg. By condition (), no vector other than the zero vec-
tor maps onto the zero sequence. Thus the correspondence is an isomorphism.

Let || {an(x)}n-o| be defined as |x||. Then the two vector spaces are iso-
metric, and Xg is a Banach space.

Equation (1) implies that
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Tx = ag(x) Txg+2a(x) T2xg+ - +ay(x) T xg+ T 2x

so that the corresponding sequence for Tx is {0, ag(x), a1(x), -+ }. Thus T corre-
sponds to the unilateral shift operator Tg on Xg.

Remarks. 1. For convenience, the notation a,(x) will frequently be shortened
to a,.

2. The formula (1) for x has the same structure as the familiar Taylor formula
for a function. In fact, if T is the operator S, of multiplication by z on the square-
summable power series, with x; =1 (the constant function 1)}, then (1) becomes

(2) f(z) = ag+tajz+ - +a,z™+z7 L 4(2),

and this is the usual Taylor formula for the function f. Equation (1) will be called
the Taylor formula for x, and the coefficients a,(x) will be called the Taylor co-
efficients.

3. A further consequence of the closed range of T is that for each nonnegative
integer n, the linear functional x — a,(x) is continuous. This is easily proved by
means of the open-map theorem.

Examples. (a) If X = (P (1 < p < =), then the shift operator
T(aO; a], '") = (0) ag, a), ”')

is a shift isometry.

(b) If A is the disk algebra, in other words, the sup-norm algebra of functions
that are continuous on the disk {z: |z| < 1} and analytic for |z| <1l,and if S, is
the operation of multiplication by z (the function ¢ defined by ¢(z) = z), then Sz is a
shift isometry on A. In this example, the Taylor formula for a function f € A, which
is also given by equation (2), does not lead to a series converging to f on the disk
{z: |z| < 1}. Not every function f € A is given by a power series convergent for

|z] <1.

2. THE ANALYTIC STRUCTURE

In general, the partial sums occurring in the Taylor formula for x need not con-
verge to x in the norm topology of X. However, we shall see that the sums are as-
sociated with an analytic structure. For this purpose, we employ a lemma that A. M.
Gleason used to obtain an analytic structure in certain commutative Banach algebras.

LEMMA (Gleason [4, Prop. 1.5]). Let X; and X, be complex Banach spaces,
and let B(X 1, X2) be the set of all bounded linear opevators from X1 into Xp. Sup-
pose that A € B(X1, X2) and that A is bijective. Then

lA-Y-! = inf{||U||: U e B(X,,Xs) and A - U is not surjective } .

Again, let T be our shift operator on X. Since T is injective and has closed
range, it has an inverse in #(X, TX), which we denote by T-1. Following along
lines similar to Gleason’s, we define the norm in X C (where C is the field of
complex numbers) as

(3) Ix@8l = max {|=], |T-| |8]},
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and we define A X C — X by
Ar(x®B) = Tx+Bxp.

The significance of the factor [T -1 || in (3) will become apparent in the proof of
Theorem 3. The operator Ay is easily seen to be injective, since T is injective.
Since X = (xq) @ TX, the operator A1 is also surjective, and thus the lemma ap-
plies to A .

For r > 0,let D(r) be the open disk in € of radius r, centered at the origin.
Also, if T is an operator on X and A € C, let T, be the operator T - Al

THEOREM 2. Let r(T) = ||[AZ|"! . Then for 1 € D(x(T)), the operator Ty is
also a shift on X, and

(4) X = (XO)@T]\X

Moreover, if x € X and {a_ }o_ is the sequence of Taylor coefficients for x, then
o]
En=0 ankn converges, and the representation for x induced by (4) has the form

©0
(5) X = ( 2 anhn>x0 + Ty ¥ »
n=0

Jor some y, € X.
Proof. Suppose A € D(r(T)) and U: X@C — X is defined by

Ux®B) = rx, for xe X, Be C.

Then | U|| < |r]sup {||x|: =@ 8] =1} <|r| <||a7!||"!, and by the lemma,
A1 - U is surjective. Therefore

X=(Ap-0)(E®C) = {T)\x+8xyl xe X and Be C},

and hence X = (xp) + T, X. It remains to show that the sum is a Banach-space direct
sum.

Let us again consider the Taylor formula for x. Since x = Af{x; Day), we
have the inequality [x; Daol < |AF| lx||. Thus

l=, 0 < JAZ'l Il and faol T < Az =l
Since x, = Aqp{xn11 (®a,), it follows from an induction argument that

| 2001 @anll < IAF] Ixal < N4 =l

and hence

el < NATHIP ]
and
(6) lanl < AT I (=]

For A € D(r(T)), let ¢): X — C be defined by the formula
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(7) ¢7\(X) = 2 akhk .

k=0

Since X € D(r(T)) implies that |A|® < |AZ'|™, the estimate (6) implies that the
series (7) converges. For each A € D(r(T)), ¢, is linear because x is a linear
function of its Taylor coefficients. Also, it follows from the estimate (6) that ¢y is
bounded for fixed A.

Now qb)\(xo) =1 for each A € D(r(T)), and on the other hand, if y € T, X, then
¢\ (y) = 0. To see this, suppose that y = Ty z and that z has Taylor coefficients
{a,}a_o- Then

o (y) = 6 (Tz - Az) = ) (Tz) - Ay (z) = 22 a1 -2 Zar=0.
n=0 n=0

Also, if x € X and ¢, (x) =0, then x € Ty X. For if x € X, then x has a representa-
tion x =byxg+ T, y; therefore 0= ¢, (x) = by¢y(x0) + ¢, (Ty y) = by, and hence
x=T)vy.

Thus Ty X = {x: x € X and ¢, (x) =0}. Since ¢) is a bounded linear functional,
T) X is closed, X is the Banach-space direct sum X = (x¢) (D Ty X, and (5) holds.

Next we show that T, is injective, and this will complete the argument that T,
has properties (a') and (8). Suppose T) y =0 and X # 0. Using the Taylor formula
for y, we have the relations

Ay = dagxg+Ara;Txg+ - +ra, Tlxg + T Iy g

and

— 2 ves n+l nt+2

Because of the uniqueness of the Taylor coefficients for Ty = Ay, we see that
Aap = 0, and Aa, = an-; for each positive integer n. It follows that each a, is 0
and hence that y = 0. Thus T, is injective.

’

It remains to show that T, has property (), in other words, that if x € X and
x # 0, then x is not infinitely divisible by T. For this purpose we observe that we
may apply the part of the proof already completed to the operator T, (which has the
properties (') and (B8)) to conclude that for all p in some plane neighborhood of
zero, the operator T, - ul has closed range, that

X = (xo) D(Ty - pDX,
and that each x € X has the representation
o0
X =< 2 bkuk)xo +(Ty - uDy,
k=0

0
where {bk}kzo is the sequence of Taylor coefficients of x relative to T, - pl. But
Ty - pl= T?\+u , and x also has the representation



238 RICHARD M. CROWNOVER

o0
x = 27 ap(h + p)¥xg + Th4p W,
k=0

0
where {ak}k:() is the sequence of Taylor coefficients of x relative to T, and where
w € X. Thus

o0 o0
27 bpk = 27 ay (o p)k
k=0 k=0

for all p in a neighborhood of zero. It now follows that if x is infinitely divisible
by T, , which implies that each b, = 0 for each k, then also a; = 0 for each k and
hence that x = 0.

Definition. For each x € X, let X be the function on D(r(T)) defined by

(>l
z) = 22 akzk,
k=0

(o]
the sequence {ak} k=0 being the sequence of Taylor coefficients for x. Let
Xg=1{%: x € X}, and call Xy the function-space representation of X.

COROLLARY: The mapping x — X is an isomovphism of X onto Xg. Under
this mapping, T corvesponds to the opevator Sz of multiplication by z. For each
% € X and each A € D(r(T)), there is an X| € Xy such that X admits the factovi-
zation

(8) X(z) - &) = (z - 1) K(z) (2 € D(r(T))).

Proof. The first two assertions are clear from the conclusion of Theorem 2 and
the definition of X. The factorization (8) now follows from the corresponding de-
composition

x = M) xo+ (T - AD x4

for the element x € X.

3. THE SPECTRUM OF A SHIFT OPERATOR

Some information on the spectrum of a shift operator comes directly from Theo-
rem 2 as follows. By the compression spectrum of the operator T, we mean the
complex numbers A such that T - AI does not have dense range. This is analogous
to the definition of compression spectrum for a Hilbert space operator (see P. R.
Halmos [5, p. 188]).

We have shown that for A € D(r(T)), the range of T - AI has closed range of co-
dimension one, and hence D(r(T)) lies in the compression spectrum of the shift T.

A stronger result on the compression spectrum is available by way of the index
theory for semi-Fredholm operators. Index theorems of T. Kato [8, Theorems 1 and
6], when applied to an operator satisfying axioms (a') and (8), yield the information
that for each complex a satisfying |a| < | T-1||-!, the operator T - AI also satis-
fies (@') and (8). In particular, for these values of A, T - Al has closed range of

codimension one, and the compression spectrum contains the set D(||T-1|-1).
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For an arbitrary shift operator, the spectrum can be a fairly arbitrary set. For
instance, if K is a compact subset of the plane with connected complement and con-
taining a neighborhood of the origin, then K is the spectrum of some shift operator.
Simply let X be the sup-norm algebra of functions that are continuous on K and
analytic at interior points. Let T denote multiplication by z, that is, by the function
¢(z) = z. Then T is a shift on X, and by standard function-algebraic arguments, the
spectrum of T is the range K of the function ¢. The main tool needed for the argu-
ment is Mergelyan’s theorem [11, Theorem 20.5].

In the case of a shift isometry, however, the index theory referred to above pro-
vides the complete solution to the problem of finding the spectrum. By the formula
for the spectral radius, the spectrum is contained in the closed unit disk
{x: |x] <1}, and the index theory shows that the compression spectrum consists of

{x: |x] <1}. Thus the spectrum is in fact the whole disk. This fact will also occur
later as a consequence of Theorem 6.

Note. The referee points out that the spectrum of each noninvertible isometry
T on any Banach space is the unit disk.

Proof. Let D= {x: || <1}. If » € D, then T - AI is bounded below. If
o(T) N D # D, then, since ¢(T) N D # ¢, we see that 90(T) N D # @. But if
A € 90(T) N D, then A is an approximate eigenvalue, a contradiction.

4. ORTHOGONAL DECOMPOSITIONS

The applications of the index theory made in the previous section suggest that
equation (4) of Theorem 2 should perhaps be valid for any A satisfying the condition

|7x] < “T‘l “'1 . The values of A for which the theorem is proved are at most this
large, since

A7 ] > sup {|x®0[|: [Arx@ 0| =1} = sup {[x]: |Tx] =1} = |7,

and r(T) = |AZ||"* <||T~!|"!. Moreover, strict inequality may actually occur. In
the case of the disk algebra mentioned in the introduction, it is easy to compute that
r(T) = || Ar}l ||"1 = 1/2. On the other hand, the operator T, being multiplication by z,
is an isometry, and therefore ||T'1 "'1 = 1.

One should note that the value of r(T) also depends on the choice of x taken in
the complement of the range of T, and that a poor choice of x5 can lead to an even
smaller value of r(T). In the case of a Hilbert space, an obvious best candidate for
Xo is an element of norm 1 that is orthogonal to TX. This choice is indeed the best,
as we shall see, and in certain cases the idea can be extended to a Banach space.

Following R. C. James [7], we say that two vectors x and y in a Banach space
are orthogonal provided that for each scalar t,

Ix| < lx+ty] and |y < [y +tx].
The conditions of the following theorem can always be satisfied if X is a Hilbert

space. In the case of the Banach spaces £ (1 < p < =) and the unilateral shift
operator T defined by the equation

T(ag, a;,a,, ***) = (0,a9,2a;,a,, =),
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the conditions are satisfied with the vector x4=(1, 0, 0, ---).

THEOREM 3. Suppose that T is a shift on X, and that in the decomposition
X = (xg) D TX the vector x is ovthogonal to each vector in TX. Then the vadius

r(T) of the neighborkood D(r(T)) in Theovem 2 is ||T-1|-1.
Proof. By Theorem 2, r(T) = ||A7!|| !, and therefore we show that
laz!l =T
As we mentioned in the discussion above, we always have the relations
(1) = [agt]-t <[ T-1-t
On the other hand, if |A(x@pB)[| <1, then |Tx+pxy|| < 1. Since x4 and Tx

are orthogonal, Tx and Bx, are also orthogonal. Therefore |Tx| <1 and |8]| <1,
and hence

Ix@el = max{ =], |- 6]} < max{-1, -1 |8]} < -1
This yields the inequality ||A7!|| < | T-!|, and therefore
r(r) = |AF ] > Tt

We remark that it is in this calculation that we use the factor || T-1 || occurring
in the expression for the norm of x @) 3.

0
COROLLARY. Corresponding to each power series E,FO a, z" with coeffi-

o0
cients in 4P (1 < p < =) and each ) (|r| < 1), there is a power series 27 _ob,z"
with coefficients also in 0P, such that for |z| <1,

[>e] o0 o0
Zo a, z" - 27 a At = (z - A) Ebnzn.
n:

n=0 n=0

Proof. We apply Theorem 3 and the corollary to Theorem 2 to the unilateral
shift on the space (P (1 <p < ).

5. COMMUTANTS OF SHIFT OPERATORS

Suppose T is a shift operator on a Banach space X. We now consider the
bounded linear operators S on X that commute with T, in other words, the elements
of the commutant of T.

THEOREM 4. Suppose S commutes with T. On the function space Xg, S cor-
responds to an operator of multiplication by a bounded analytic function having sup-
norm at most HS" .

Proof. By the results of the previous section, each x € X can be expressed as

x = XA xg + T, ¥y,

[=e]
for A € D(r(T)), where ®(A) = En:O a, A" and {an}::O is the sequence of Taylor
coefficients for x. Let the expression for the element Sxy be

Sxg = ¢(\)xg + Ty 2y
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where ¢ is analytic on D(r(T)). Then

Sx = () Sxo + STy vy, = KM [¢(A)xg + Ty 2, ] + STy vy,

(A () xg + Ty [R(\) 2, + Sy, ]
(the last step is permissible since S must also commute with T)\). Thus
Sx(x) = ¢(A) ),

and S corresponds to multiplication by the analytic function ¢ on D(r(T)).

To compute the sup-norm of ¢, we follow an argument of Halmos [5, Problem
53]. For a fixed A, the mapping x — X(\) is a bounded linear functional, and hence
there exists a number K, > 0 such that

["0] < Ky |82 Txqf <K [s]* [T .
For A # 0, this yields the inequality
ls)] < ARy RS T e,

from which it follows that |¢(A)| < ||S|. Since ¢ is continuous on D(r(T)),
|$(0)] < |/8] atso.

COROLLARY. The commutant of a shift opervator is a commutative algebra.

Proof. The commutant of an operator is always a subalgebra of the algebra of
all bounded linear operators on the space. In the present case the commutativity fol-
lows from commutativity of operators of multiplication by bounded analytic functions.

In analyzing the commutant of the Cesaro operator Cg on £2, or rather of
I - Cp, Shields and Wallen [12] are led to consider the following spaces.

Let H be a Hilbert space whose elements are complex-valued functions defined
on an open disk D = D(1), with the usual addition of functions and multiplication by
scalars. We assume that there are no points in D at which all the functions in H
vanish. Consider four additional assumptions:

(a) Point evaluations are bounded linear functionals on H, so that to each point
€ D there corresponds a function ky € H such that f(¢) = (f, ky) for all f € H.
S ¢

(b) The operator S, of multiplication by z maps H into itself and is a contrac-
tion (]S, f|| < ||f| for an f e H).

(c) The functions kC are simple eigenfunctions of the operator S: .
(d) The functions in H are analytic on D.

Shields and Wallen showed that the operators that commute with S, are precisely
the operators that are multiplications by elements of H”. As part of their develop-
ment, they show that if A(Sz) denotes the weakly closed algebra with identity gen-
erated by S, , then the assumptions (a), (b), and (c) alone imply that

H® c A(S,) C commutant of S, .
The question they raise is whether under these conditions H* = A(S,). We are able

to give a positive answer provided condition (c) is strengthened slightly and all of the
functions are assumed to be continuous.



242 RICHARD M. CROWNOVER

Let us consider more closely condition (c) wh1ch states that each kC is a sim-
ple elgenfunctlon of S . If h is an eigenfunction of SZ corresponding to the eigen-
value €, then Sih = th,

(S¥h, g) = (th, g) and (h, Sz-¢ g =0 forall ge H,

and h is orthogonal to the range of S,_g. Clearly, the converse is true, and thus
condition (c¢) holds if and only if the range of SZ_§ has a one- d1mensmna1 orthogonal
complement. In order to apply Theorem 4, we need to know that the range of S,_

is closed. We also need to know that S, -t is injective, and this condition is clearly
satisfied if each f € H is continuous. Assuming that each f € H is continuous, we
impose a condition (c') that we obtain from (c) by also requiring that S, _ ¢ have
closed range.

(c') For each ¢ € D, S,-¢ satisfies conditions (@') and (B) of a shift operator.
THEOREM 5. Suppose H is a Hilbert space of continuous functions in D satis-
fyving axioms (a), (b), and (c'). Then

® = A(S,) = commutant of S,

Proof. As we mentioned above, Shields and Wallen have shown that
H” C A(S,) C commutant of S, They have also shown that an operator S in the
commutant of S, is mult1p11cat10n by some bounded function ¢. We show that ¢ is
actually analytic on D, and this will complete the proof.

Even without the information whether S, _p satisfies condition (y) of a shift
operator, we note that conditions (') and (8) alone imply that for all A in some
neighborhood D(r) of zero, there is a decomposition

(9) f= 'f(?x)kg +(S,-¢ - A g,
where g, € H and T is analytic on D(.rv). Thus

'St = ¢f = T\ gke +(S,_p - D¢ g, ,
and upon evaluating Sf at z = { + 1, we obtain the relation
(10) D@2 = T)el +N)ke(g +2).

On the other hand, repeating part of the argument in the proof of Theorem 4, we see
that

Ske = a()ke +(S,_¢ - AD) By,
for all » € D(r), where 8, € H and « is analytic on D(r). Therefore

and
(11) (Sf) (€ +2) = f(k)a(h)kg(c +2A).

For A € D(r), it cannot happen that kC(C + ) = 0, for if it does, then by equation
(9),
(6 +2) = T ke(¢ +2) =0
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for all f € H, and this is ruled out by our initial assumption about H. Equations (10)
and (11) now combine to yield the equation

T o(¢ +2) = T ),
and finally
#g+r) = a@d) (e D(r)).

Since a is analytic on D(r), ¢ is analytic on a neighborhood of ¢, and since ¢ is
arbitrary in D, ¢ is analytic on all of D.

6. COMMUTANTS OF SHIFT ISOMETRIES

Suppose now that X is a Banach space and that T is a shift isometry on X. For
convenience, we use the function-space representation of X, in which X is a space of
power series convergent on the disk D(r(T)), and on which T is the operator of
multiplication by z. As shown in Section 3, D(r(T)) may be a rather small subset of
the spectrum of T, which itself is the whole disk D(1). Of course, r(T) =1 if an
orthogonal decomposition is available, as in Section 4; but such decompositions are
not always available, as in the case of the disk algebra. In Theorem 4, it was proved
that the commutant of T is an algebra of multiplications by analytic functions on
D(r(T)), with absolute values bounded by the operator norms.

In the present section, we shall use Banach-algebraic techniques to analyze
further the commutant of a shift isometry. The main result obtained (Theorem 6) is
that the multiplying functions on D(r(T)) are actually convergent on the whole disk
{x: ‘)\I < 1} (which is the whole compression spectrum of T), and with absolute
values remaining bounded by the operator norms. As an easy consequence of this
description of the commutant, we obtain the nonexistence of nth roots of T - AI,
where || <1.

For relevant material on the Banach-algebraic results quoted in this section, we
refer the reader to C. E. Rickart [9, Chapter III].

Let « denote the commutant of T. By standard arguments, . is a closed sub-
algebra of the algebra #(X) of all bounded linear operators on X, with the usual
operations and operator norm. Also, « contains the identity operator I and the
operator T itself. By Theorem 4, each operator S in . is multiplication by the
element S(1) in X, and by the corollary,  is a commutative algebra.

LEMMA 1. The principal ideal T is a maximal ideal in .

Proof. For S € &, let S(1) have the power series expansion E::O Sp2z™ in
the function-space representation of X. The mapping S — sg is a multiplicative
linear functional on <, and therefore its null space Mg is a maximal ideal in .
We show that Mg is the same as the principal ideal T.#.

Suppose S € Mg. For each x € X, the element Sx = S(1) -x has a power-series
expansion with first coefficient zero, and hence there is an element in X, which we
denote by S x, such that

Sx = TS;x (x€ X).
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Since T is injective, S) x is uniquely determined by x. It follows immediately that
the operator S; thus determined is linear on X. Also, since T is an isometry,
”Sl x" = “TSlx“ = | sx|, and hence ||S1|| = HS”, and S; is bounded. Since

T 8; Tx = 8(Tx) = T(Sx), and therefore S; Tx = Sx, we see that §; Tx = TS, x; there-
fore S; commutes with T. Thus for each S € My, there is an element S| €
such that S =TS, , and thus My C T#. On the other hand, it is clear that

Tt C MO .

For S € «, let S denote the Gelfand transform of S. Let .« denote the maxi-
mal ideal space of .

LEMMA 2. For each S € 2, | TS| = |9].
Proof. |Ts|| = sup {||Tsx[|: x| =1} = sup {f|sx]|: =] =1} = |s].
LEMMA 3. The algebra -« is semisimple.
Pyoof. We show that if S € 4 and S=0 on A, then S =0, Let S(1) have
power-series representation Z};ozo spz™. If §=0on M , then sp =0 and hence
S =TS;. Therefore §= "f‘§l = 0 on . By the formula for the spectral radius,
tim (| T} )1 /" = |48, ], = o.
By Lemma 2, | T®S?| = | 89|, and therefore ||§1||00 = lim (|| 87| )1/n =0, This im-
plies that the first coefficient of S)(1), which is s, is zero.

By an easy induction argument, s, = 0 for each n, and hence S =0. Thus & is
semisimple.

LEMMA 4. Let T be the Silov boundary of . Then
m = min {|T(t)|:te T'} = 1.

Proof. Suppose that |'i‘| has its minimum value m on I' at ty and that m <1,
Let m' be chosen so that m <m' <1. Let

U= {tite# and |T@t)| <m'}.

Then U is a neighborhood of ty € . Since ty € T, there exists an S €  such that
|§| =1 =8| somewhere in U, and |S| <1 outside U. For some positive inte-

ger n, [|S"T|., <m'. By the formula for the spectral radius,
Lim (f (s> T)<[D/* = & T < m'.
By Lemma 2, [|(S*T)%| = ||s”k||, and therefore
187|.e = Lim (||s™5PVE < m' < 1.
But [|8”|, = ||S[% = 1, which is a contradiction. Thus m > 1.

On the other hand, m < | T, < || T| =1, and thus m = 1.

We now think of T as a multiplication operator on . We have proved that it
is a shift isometry on , and that

A= (DEHTH.
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Each S € « has a sequence of Taylor coefficients relative to this new setting, but it
is clear that the new sequence is the same as the sequence of Tayloroocoefficients of
the elements S(1). Again, let these coefficients be denoted by {sn}n:0 .

The main result of Gleason’s paper [4] yields the information that the maximal
ideal My = T« is the center of an analytic disk in .4, and that for each M in this
“disk,”

[~ e}
S = 27 s [T(]".

n=0

The same information is obtainable from Theorem 2 of the present work. However,
neither in Gleason’s theorem nor in Theorem 2 is the optimal convergence set ob-
tained, except in the case where the orthogonality condition of Theorem 3 is satis-
fied. (Again, consider multiplication by z on the disk algebra.)

The optimal convergence set in the maximal ideal space is obtained, however,
in [1]. The arguments there are measure-theoretic, but apparently they do not admit
extension from the context of a Banach algebra to an arbitrary Banach space (such
an extension would yield a sharpening of Theorem 2 itself, in addition to the sharp-
ening of Theorem 4 being developed here). The main result of [1], stated in the no-
tation of the present development, is as follows.

THEOREM. Suppose that « is a commulative, semisimple Banach algebra
with identity 1, that A is the maximal ideal space of <, and that T is the Silov
boundary of . Suppose T € A and the principal ideal T A is a maximal ideal My
that is not an isolated point of A(. Let m = min { |'i‘(t)| :te T'}. Then m >0, and
the set V = {M: |’i‘(M)| <m} is an analytic disk in M. Fov each S € o,

[=o]

S = 2 s TM)  (Me V),

n=0

the sequence {sn}‘:;o being the set of Taylor coefficients for S.

Applying this to the present situation, we obtain the following result on the com-
mutant «/ of T.

THEOREM 6. Suppose that T is.a shift isometry on the Banach space X, and
that S is in the commutant of T. Then, on the function-space vepresentation of X,

S corvesponds to multiplication by an element of H” of the unit disk, with values
bounded by IIS“ .

Proof. We have shown that  is semisimple, that Mg = T & is a maximal
ideal in ., and that m = min{IT(t)l tte 1"} = 1. We now need to show that Mg is
not isolated in .

Suppose M, is isolated in .#. By Silov’s Idempotency Theorem, there exists a

nonzero idempotent E € M. Let the element E(1) in X have series representation
©0

27 -0 €nz™, with eg = 0. Since E%=E,
e, = eye,teje, ;+t " te e
for each positive integer n. It follows by an easy induction argument that e, = 0 for

each n, and that E = 0. Thus we obtain a contradiction, and M; is not isolated in
A



246 RICHARD M. CROWNOVER

By the previous theorem, if S € ., then for all M € . such that |T(M)| <1,
[+ o]

S = 27 s T™(M) .

n=0

o0
This proves that the series Enzo sn z" has radius of convergence at least 1. Be-

~ o0
cause « is a commutative Banach algebra, ||8],, < ||S||, so that 27,_¢ s,z is the
power-series representation of an H*-function. But this power series, when re-
stricted to D(r(T)), is the same as the one obtained in Theorem 4.

COROLLARY. Suppose T is a shift isometry on a Banach space X. If A is a
complex scalar (IAI < 1),then T - Al has no nth voot in B(X).

Proof, If S € #(X) and S =T - M, then S commutes with T - AI and hence
with T. By Theorem 6, the function S lies in H” . But this would imply that
S™(z) = z - A, in other words, that z - A has an nth root in H®, which of course is
impossible.

Remark. The same technique also shows that for |x| <1, T - AI has no in-
verse in #(X), as mentioned in Section 3.

7. FURTHER DISCUSSION OF THE COMMUTANT

Let us again restrict our attention to the case of a shift isometry on a Banach
space X. We have seen that the commutant corresponds to an algebra of multipli-
cations by H®-functions. The full algebra of H*-functions emerges as the com-
mutant in case X is the Hardy space HP (1 < p < «). On the other hand, if X is the
disk algebra or the algebra of absolutely convergent power series with the usual
norm, then the commutant consists of multiplications by elements of that algebra
and cannot be as large as H*. It is not difficult to see that each absolutely conver-
gent power series always defines a function that occurs in our description of the
commutant.

It is of some interest to know whether there is some topology under which poly-
nomials in T are dense in the commutant. If X is the disk algebra or the algebra
of absolutely convergent power series, then the commutant of T is the operator-
norm closure of polynomials in T, as is easily seen. If X is an HP-space
(1 < p < =), it turns out that the commutant, consisting of all multiplications by H*®-
functions, is generated by T in the strong operator topology. This result is largely
an application of Fejér’s theorem for arithmetic means of partial sums of Fourier
series. The proof is given for p =2 in [5, Problem 117], and it remains valid for
1 <p < ». For the case of X = H®, it is not apparent that T generates the com-
mutant, even in the weak operator topology. However, the commutant (which again
is H®) is generated by z in the weak-* topology of L* [0, 27].

One might expect that in the case of X = £P (1 < p < ), the commutant is at
least generated by T in the weak operator topology. The cases p=1 and p=2
have occurred above in the form of the absolutely.convergent power series and H? ,
where the result is even stronger. For 1 <p <« (p # 2), the difficulty in using
Fejér’s theorem in a manner analogous to the case p = 2 is the apparent absence of
an analogue of Parseval’s theorem. We can state some results about the shift on
2P however. A few straightforward calculations (which we omit) show that if S is
in the commutant, and h is the corresponding H*-function as given in Theorem 6,
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then the sequence of power series coefficients for h lies in both ¢P and (%, where
1/p +1/q = 1. Moreover, the ¢P- and ¢9-norms of this sequence are at most |S|.
If X=24! or £, the commutant corresponds to £!. For 1 <p <« (p # 2), no
complete description of the commutant seems to be available. One can conclude,
however, that the commutant in these cases is a proper subset of H*, and that it
does not contain all of the functions in the disk algebra. It is known [10, p. 223] that
for each p > 0, there exists a function in the disk algebra whose sequence of power
series coefficients does not lie in 2%7H. Since 1< p <« and p # 2, the function
just described cannot correspond to an element of the commutant, if y is small
enough.
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