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INTRODUCTION

In [2], it was shown that for every integer k > 1 there exist compact Riemann-
ian manifolds M of dimension 4k and sectional curvature K (-4 < K < -1) that do
not admit a Riemannian metric with K = -1. In this paper, we show by a different
method that there exist many (noncompact) product manifolds M that admit a com-
plete metric with sectional curvature K < -1, but admit no complete metric with
K = -1. For example, if B is a compact Riemannian manifold of dimension n > 2
and sectional curvature K < 0, then M =R x B x 8! | where S! and R denote the
unit circle and real line, is such a manifold.

If M is a complete Riemannian manifold with sectional curvature K < 0, then
M is a quotient H/D, where H is a complete, simply connected manifold with
K <0, and D is a properly discontinuous group of isometries of H. As in [3], one
may construct the set H(~) of points at infinity for H and define a limit set
L(D) C H(x) for the group D. If M = H/D has curvature K < -1, then the limit set
must be one of three types described in Theorem 1. If #{(M) is a nontrivial direct
product, then the discussion of monic groups shows that L(D) must be of the first
type. If M admits a complete metric with K = -1, and if L(D) is of the first type,
then by Proposition 4, 7;(M) is isomorphic to 7;(M'), where M' is a complete flat
manifold. Using warped products, we construct manifolds M with sectional curva-
ture K < -1 such that 7)(M) is a nontrivial direct product not isomorphic to 7,(M")
for any flat manifold M'. Our result has the defect that the curvature of M is not
bounded below; but this defect is inherent in our method.

The necessary background results are developed in [1] and [3], and more de-
tailed discussions of points at infinity, limit sets, monic groups, and warped prod-
ucts may be found there with proofs of our unproved assertions.

MANIFOLDS WITH SECTIONAL CURVATURE K <0

Let H denote a complete, simply connected Riemannian manifold of dimension
n > 2 and sectional curvature K < 0. Unit-speed geodesics y and ¢ in H are
asymptotic if there exists a number c¢ > 0 such that d(yt, ot) < c for all t >0,
where d denotes the Riemannian metric of H. The relation of being asymptotic is
an equivalence relation on the geodesics of H (which shall always be assumed to
have unit speed), and the equivalence classes are points at infinity for H. If H(ew)
denotes the set of points at infinity, then the space H = H UH(») with a natural to-
pology is homeomorphic to the closed unit ball in R™, and H(«) is homeomorphic to
the bounding sphere Sn-!.

Received June 4, 1971.
This research was supported in part by NSF Grants GP-11476 and GP-20096.

Michigan Math. J. 19 (1972).

225



226 PATRICK EBERLEIN

If y is a geodesic of H, let y(~) denote the equivalence class of y, and let
y(-) denote the equivalence class of the reverse curve t — y(-t). If ¢ is an isom-
etry of H and x is a point in H(w), let ¢(x) = (¢ 0y) (»), where y denotes any geo-
desic in the equivalence class x. The mapping ¢ is well-defined and becomes a
homeomorphism of H. Let D denote a nonempty, properly discontinuous group of
isometries of H, together with its extension to a group of homeomorphisms of H.
The limit set of D, denoted by L(D), is defined as the set of accumulation points in
H(«) of an orbit D(p); here p denotes any point of H (its choice is immaterial).
The set L(D) is nonempty and closed, and it is invariant under D.

A geodesic y in H is said to join points x # y in H(ew) if y(-0) = x and
v(«) = y. A manifold H satisfies Axiom 1 if for each pair of points x # y in H(w)
there exists a geodesic y joining x to y. Axiom 1 is satisfied, for example, if the
sectional curvature satisfies an inequality of the form K <c¢ < 0 [3].

If ¢ is an isometry of H, then ¢ has at least one fixed point in ﬁ, since H is a
cell. An isometry ¢ is elliptic if it has a fixed point in H. If ¢ is not elliptic, and
if H satisfies Axiom 1, then ¢ has either exactly one fixed point in H(») (¢ is par-
abolic), or exactly two fixed points in H(w) (¢ is axial).

The following result classifies the sets L(D).

THEOREM 1. Lef H satisfy Axiom 1, and let D be a propevrly discontinuous
gvoup of isometvies of H. Then either

(1) L(D) is a singleton {x}, and every element of D is pavabolic with fixed
point x; or

(2) L(D) consists of two points x and y, D is infinite cyclic, and every element
of D is axial with fixed points x and y; or

(3) L(D) is an infinite set, and the elements of D have no common fixed point.

The group D and the quotient manifold H/D are called parabolic, axial, or
Fuchsian according as L(D) is of type (1), (2), or (3). If M is a compact Riemann-
ian manifold with K < 0, then M is Fuchsian. In particular, if M is a compact,
orientable surface of genus n > 2, then M admits a Riemannian metric of Gaussian
curvature K = -1, and thus M is Fuchsian. There exist many noncompact Fuchsian
manifolds [3].

MONIC GROUPS

A disjoint decomposition of a group G is an indexed collection {G;} of sub-
groups such that

(1) G = Ui Gi, and for each pair i, j, either G; = Gj or G; N Gj= {1},

(2) each G; has strictly disjoint conjugates; that is, if xG;x~! N G; # {1},
then x € Gj.

A group G is monic if the only disjoint decomposition it possesses is the
trivial one such that G; = G for all i; otherwise, G is multic. Let H satisfy Axiom
1, and let D be a properly discontinuous group of isometries of H. For each
x € H(w), let D, = {¢ € D: ¢x = x}. By Proposition 9.2 of [3], the stability groups
D, form a disjoint decomposition of D ~ 7;(M), where M =H/D. If D is monic,
then D has a fixed point in H(«), and by Theorem 1, D cannot be Fuchsian. The
following result is Proposition 9.4 of [3].
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PROPOSITION 1. A group G is monic if
(1) G has nontrivial center; ov
(2) G is a nontrivial divect product; or

(3) G has a monic noymal subgvoup N # {1}.

WARPED PRODUCTS

For the construction of product manifolds with sectional curvature K < -1, we
shall need the concept of warped products, developed by R. L. Bishop and B. O’Neill
in Section 7 of [1].

Let B and F be Riemannian manifolds, and let f be a positive differentiable
function on B. Consider the differentiable product manifold B X F with projections
7: BXF — B and 7: BXF — F. The warped product M = B X; F is the manifold
B X F furnished with the Riemannian structure such that

=] = |7, |12 + t5am) || 7,602

for every tangent vector x € M,,. If B and F are complete Riemannian manifolds,
then M is a complete Riemannian manifold.

We shall be interested in the case where B is the real line R. If 7 is a 2-
plane tangent to R X¢ F at (t, p), let 7 have an orthonormal basis consisting of
X +v and w, where x is tangent to R at t, while v and w are tangent to F at p.
If v and w span a plane ¢, let L(v, w) be the sectional curvature in F of ¢; other-
wise, let L(v, w) be zero. In R X¢ F, the sectional curvature of 7 is given by the
formula
-f"(t)

K(m = <y Ix1* +

L(v, w) - £'(t)? 2
W o

where the warped-product norms ”XHZ and || vn2 satisfy the condition
| ||* + [|v]|* = 1 (for a derivation of the formula, see [1, pp. 23-27]).

From the formula for K(7) we easily obtain the following result.

PROPOSITION 2. Let M =R X F;let L and K denote the sectional curvature
of F and M, respectively.

(1) If L <0 and £(t) = et , then K < -1.
(2) If L = 0 and f(t) = et , where c denotes a positive constant, then K = -¢2 .

(3) If there exist positive constants ¢ and d such that -c2 <L < -d¢ < 0 and if
£(t) = cosh t, then -a® <K < -p%, where a =max{1,c} and g=min {1,d}.

The sectional curvature K of a Riemannian manifold X is negatively pinched if
there exist positive constants ¢ and d such that -c2 < K(m) L -d2 < 0, for all 2-
planes 7 tangent to X. We show that cases (2) and (3) in the preceding result pro-
vide essentially the only possibilities for the construction of warped-product mani-
folds of the form R X F with negatively pinched sectional curvature.

PROPOSITION 3. Let F be a complete Riemannian manifold, and let f denote
a positive Cm-function on R. Suppose that the sectional curvature of M =R X, F is
negatively pinched. Then either
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(1) £ is a strictly convex function on R with a minimum, and the sectional
curvature L of F is negatively pinched; or

(2) f is a strictly convex function on R, with inf £ =0, and ¥ is a flat manifold
(L = 0).

Pyroof. By Lemma 7.6 of [1], F has sectional curvature L < 0, and f is strictly
convex (f"(t) > 0 for all t). This can also be seen directly from the curvature for-
mula. Let ¢ and d be positive numbers such that -c2 <K < -d2. We divide the
proof into two cases.

Case 1: f has a minimum at ty. Let ¢ be any 2-plane tangent to F at p, and
let Oto be the induced 2-plane tangent to M at (to , p). By the curvature formula,

L{g)

. Hence
f(ty)?

K(oto) =

~f(tg)éc? < L{o) < -f(ty)%a?,

and L is negatively pinched.

Case 2: f has no minimum. Replacing { by the function g(t) = f(~t), if neces-
sary, we may assume that f(t) decreasesto a >0 as t — +w«. The manifold
M' =R Xy F is isometric to M = R X¢ F, under the map (t, p) — (-t, p).

We show that a = 0. Since f(t) is decreasing, there exists a sequence {tn} of
positive real numbers such that t,, — < and {"(t,) - 0 as n — «. For each int?ge)r
-fr(t
n, let 7, be a 2-plane containing a vector tangent to R at t . Then K(?Tn) = —mn— .
n
If a >0, then K(n,) —» 0 as n — «; this contradicts the assumption that K is nega-
tively pinched.

We now show that F is flat. Suppose that L(o) < 0 for some 2-plane ¢ tangent
to F at p. For any t € R, let ¢, denote the induced 2-plane tangent to M at (t, p).
Then

L(o) - £')* _ L(s) _ __
£(t)2 = 1(t)?

K(oy) =

as t — +o; this contradicts the fact that K is negatively pinched.’

PARABOLIC MANIFOLDS WITH K = -1

If a manifold M admits a complete Riemannian metric with K = -1, then M
must be parabolic, axial, or Fuchsian, by Theorem 1. The following result and the
discussion after it classify the parabolic manifolds with K = -1.

PROPOSITION 4. Let M be a parabolic manifold with sectional curvature
K =-1. If M has dimension 2, then 11(M) is infinite cyclic. If M has dimension
n > 3, then theve exists a flat manifold M' of dimension n - 1 such that = 1(M) is
isomovphic to 7, (M').

Proof. We shall consider only the case where M has dimension n > 3. The
case n = 2 is treated similarly.

The n-dimensional hyperbolic space H" is the unique complete, simply con-
nected, Riemannian manifold with sectional curvature K = -1. It follows that if M
is an n-dimensional parabolic manifold with sectional curvature K = -1, then M is
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a quotient manifold H™ /D, where the isometry group D has a unique fixed point
x € H™(x). We recall that

H? = {(x;, """, %X,):%; € R and x, >0},

and that the inner product at x = (x;, ***, x,,) is the usual dot product multiplied by
by the factor l/xrzl. Let y denote the asymptotic equivalence class of the geodesic
¥(t) = (0, 0, >+, 0, e*), and let T be an isometry of H® such that T(y) = x. If
D*=T-loD oT, then D* is a properly discontinuous group of parabolic isometries
of H", and it has the unique fixed point y. Since 7;(M) is isomorphic to D¥*, it suf-
fices to show that D* is isomorphic to 7;(M') for some complete, flat manifold M'.

The set L = {(xl , ", Xp) € HYix, = 1} is a complete hypersurface of sec-
tional curvature K = 0. This is the horosphere determined by y that passes
through the point (0, 0, ---, 0, 1). We show that L is invariant under D¥*.

Given p = (x;, ***, X1, 1) € L and ¢* € D*, let ¢*(p) = (y;, -, yo). If
y(t) = (x), =+, x,_1, e, then ¢™¢(t) =(y;, -**, Yn_1, Yne'), since ¢* fixes
y € H?(«). It is easy to show that if d is the Riemannian metric in H", then
d(yt, $* 1t) = |log y,| as t — . On the other hand, d(yt, ¢*1t) — 0 as t — =, by
Propositions 10.8 and 10.9 of [1]. Hence y, =1 and D* preserves L.

For each ¢* € D* we define a map ¢': R"~1 — R™-1 such that

(p'(xy, =, x,.1), 1) = ¢*xy, x5, 1)

for each point x = (x;, --+, X, _;) € R®~1. It is not difficult to show that
D'= {¢': ¢* € D*} is a properly discontinuous group of isometries of Rn-1. If
M'=R"-!1 /D', then 7)(M) ~ D ~ D* ~ D' ~ 7,(M").

Remark 1. (1) For any number a > 0, we could have considered the horosphere
L,={(x;,,x,) € H®: x, =a}. D* preserves L, and induces the same group
D'.

(2) If ¢' is an isometry of R™, then we may define an isometry ¢* of H™t! py
setting ¢*(xy, -+, Xp41) = (0'(X1, -+, Xp), Xns+1)- If D' is a properly discontinuous
group of isometries of R™, then D* = {¢*: ¢' € D'} is a properly discontinuous
group of parabolic isometries of H?*! with unique fixed point y(»), where
y(t) = (0, ---, 0, et). The flat manifold R™/D' induces a parabolic manifold H**! /D*
with K = -1.

(3) R" = (0, ») is complete in the metric determined by the formula
[d/du(t)||* = 1/t*. I £(t) = 1/t, then R* x; R is isometric to H™"! under the map
(t, (x1, -+, %)) = (x1, **, X4, t). If D' and D* are groups related to each other
as above, then the manifolds R* X¢ (R®/D') and H®*!/D* are isometric. Hence,

for n > 3, the parabolic manifolds M of dimension n and curvature K = -1 are
precisely the warped products M = Rt X; M', where M' is a complete manifold of

dimension n - 1 and curvature K = 0. The warped product R™* X¢ Sl is the only
parabolic manifold of dimension 2 and curvature K = -1.
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THEOREM 2. Let B and ¥ be complete, multiply connected, Riemannian mani-
Jolds of arbitrary dimension greater than 1 and with sectional curvature K < 0, and
let B be Fuchsian. Let S! and R denote the unit civcle and the veal line. Then the
differentiable product manifolds R X BX F and R X B x S! admit a complete metvic
with sectional curvature K < -1, but they admit no complete metvic with K= -1,

Proof. The Riemannian products {(with warping function f = 1) B X F and
B X S! are complete manifolds with curvature K < 0. By Proposition 2, the warped
products M = R X ot (BXxF) and N =R X ot (B x S!) are complete and have curvature

K< -1. We show that neither manifold admlts a complete metric with K = -1.

Suppose that one of these manifolds, say M, admits a complete metric g with
K = -1. By Proposition 1 and the discussion preceding it, M cannot be Fuchsian
with respect to g, since 7,(M) is a nontrivial direct product. Since 7;(M) is not
infinite cyclic, M must be parabolic with respect to g, by Theorem 1. By Proposi-
tion 4, 7y (M) ~ 71(B) X 71(F) ~ 7,{M'), where M' is a complete, flat manifold. Ac-
cordmg to [5, p. 106], there exists a compact, flat manifold M" such that
71(M") ~ 'nl(M ). If we regard 7;(M") as a properly discontinuous group of isome-
tries of a Euclidean space, then a theorem of Bieberbach [5, p. 100] states that the
translations in 7;(M") form a normal abelian subgroup of finite index. Projecting
from 7;(M) onto 7,(B), we see that 7;(B) contains a normal abelian subgroup G of
finite index in wl(Bﬁ. Since 7(B) is an infinite group, G # {1} . By Proposition 1,
G is a monic normal subgroup of 7(B), and therefore 71(B) is monic. This is im-
possible, since B is Fuchsian by hypothesis. The contradiction shows that neither
M nor N is a negative space form.

Remayk 2. (1) The argument above shows that neither Bx F nor Bx S! isa
negative space form. If either manifold admits a complete metric with K < ¢ <0,
then we need not form the product with R to obtain our desired example. It is un-
clear under what conditions such a metric may exist. For example, if B and F are
compact, then neither B X F nor B x 8! admits a metric with K < 0 [4].

(2) If B is the double torus, then R X B X Sl is the simplest example (with re-
spect to our method) of a C” mamfold that admits a complete metric with K < -1,
but admits no complete Riemannian metric with K = -1. We do not know whether
such examples exist in dimensions 2 and 3. Our method has the defect that the sec-
tional curvature of the product manifold is not negatively pinched. We shall now
show that we can not correct the defect by choosing a different warping function.
The sectional curvature of a Fuchsian manifold B is negative on some 2-planes,
since a Euclidean space does not satisfy Axiom 1. Hence, the Riemannian products
B X F and B X S! have sectional curvature that is zero on some 2-planes and nega-
tive on others. By Proposition 3 there exists no positive C*-function f on R such
that RX;(BX F) or RX;(BX S ) has negatively pinched sectional curvature.
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