THE MODULI OF EXTREMAL FUNCTIONS
Stephen Fisher

Let D be a domain on the Riemann sphere that supports nonconstant bounded
analytic functions, and let p be a point in D. The extremal problem of maximizing
lf '(p)| over the class of functions f that are holomorphic and bounded by 1 in D is
known to have a solution unique up to multiplication by unimodular constants (see
[2]); the solution with positive derivative is called the Ahklfors function for D and p.
Since both D and p are fixed, I shall suppress them in the notation and denote the
Ahlors function for p and D by &(z). It is known that &(p) = 0. It is also known that
if D is bounded by a finite number of disjoint, analytic, simple closed curves, then &
is analytic on the boundary of D and has unit modulus there. This implies that for a
domain of this type, ® has unit modulus on the Silov boundary of the Banach algebra
H*(D). For a general domain, it makes no sense to talk about the boundary values of
a bounded holomorphic function; but it does make sense to discuss the values of the
(transform of this) function on the maximal ideal space of H®(D). The main result
of this note is that for a general domain, the Ahlfors function for D and p has unit
modulus on the Silov boundary of H*(D). The main result and another result on the
modulus of the Ahlfors function are in Section 1; Section 2 contains some related
matters, extensions, and open problems concerning the Ahlfors function.

1. THE MODULUS OF THE AHLFORS FUNCTION

THEOREM 1. Let & be the Ahlfors function for D and p. Then (the Gelfand
transform of) & has unit modulus on the Silov boundary of H®(D); equivalently, for

each h € H°(D), |h| = ||@h]|.

Proof. Let 2 consist of all points w in D for which there exists an h € H®(D)
such that |h(w)| > 1 and ||he| < 1. If @ is empty (as I wish to show), then

Hh" = ” h " for each h € H®(D), as desired. Hence, to reach a contradiction, I as-

sume that € is not empty. Clearly, £ is an open subset of D. I shall show that Q
is also a closed subset of D; since D is connected, this will imply that £ = D.
Hence, there exists an h € H®(D) with |h(p)| >1 and |hé| < 1. Thus,

.(h(I:)'(p)| = lh(p)l ®'(p) > &'(p), while H hé [I < 1; this contradicts the extremal
property of ®. Thus the remainder of the proof is devoted to showing that € is a
closed subset of D (equivalently, that D - Q is open).

Let r € D - £, and let {zi} be a dominating sequence for H*(D); that is, let
sup |h(z;)| = |h|| for every h € H®(D); see [6] for a discussion of dominating se-
quences. There is no loss in assuming that r ¢ {zi}. Let M be the maximal ideal
space of (*. If F is a bounded function defined on a neighborhood of {zi}, the re-

striction of F to {Zi} gives an element of £%; I shall denote the transform of such
an element by F.
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Since r ¢ Q, we know that the condition ||®h|| <1 implies that |h(r)| <1 for
every h € H®(D). Hence, there is a measure m on M of total variation at most 1,

with

S Aiddm = h(r) forall h € H®(D).
M

Thus 1 = S‘ic'f)dm = S&:dmg_ SI&)I d|mt < ||¢>|| ||m” < 1, and therefore the

measure dp = dm is positive and has mass 1, and its closed support lies in the set
where |&| = 1; also,

S hdp = h(r) for all h € H®(D).
M

Now let p(z; s) = Z

; for s close to r. Then, since F(s) = S p( ; s)dp is a con-
M

tinuous function of s for s near r and has the value 1 when s =r, it is nonzero in a
neighborhood of r. Let s be a point near r where F(s) # 0. For h € H®(D), let

Z-~-T
z -5

g(z) = (h(z) - h(s))

Then g ¢ H®(D) and S gdp = 0. Hence
M

S hp( ; s)dp = h(s) F(s),
M

so that the measure dg = (F(s)) ! p( ; s)dp represents evaluation at s for H*(D).
Hence, if ||f]jx <1, where K= {|&| =1}, then |h(s)| < C, where C = ||g] is in-
dependent of h. Replace h by h™, then take nth roots, and let n approach infinity.
The condition ||h | <1 implies that |h(s)| <1 for all h € H*(D). In particular,
”<I)hl|_<_ 1 implies |h(s)| <1, and hence s ¢ . Thus D - © is open; equivalently, £
is closed in D. As I outlined above, this leads to a contradiction.

Definition. A point £ € 9D is removable if for each h € H*®(D) there exists
some neighborhood U of &, which may depend on h, such that h has a holomorphic
extension to U. Otherwise, ¢ is essential. If each point in 9D is essential, then D
is maximal.

COROLLARY. Let £ € oD. Then & is essential if and only if
1 = lim sup {|®(z)|: z € D and z — £}.

Proof. Suppose £ is essential but lim sup |&(z)| =1 - 6, where 6> 0. Bya
theorem of A. Beck [1], there exists a function h € H*(D) with

lim sup {|h(z)|: z—> £} =1 and lim sup{|h(z)|:z -2} <1

for every A € aD - §.
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Thus 1lim sup { |&z) h(z)|: z — A} <1 for every A € 9D, and hence ||¢h|| < 1. But
”<I>h“ = “hu =1, by Theorem 1.

Conversely, suppose & is removable. Then there exists a domain D* contain-
ing D and £, and such that every function in H®(D) extends to a function in H®(D*)
(see [6]). Should it happen that lim sup {|&®(z)|: z — £} =1, then |®| would have
an interior maximum in D*, and hence & would be a constant, a contradiction.

The proposition that & has modulus 1 on the Silov boundary of H*(D) may con-
stitute the best possible result. Nevertheless, a more concrete result would be
preferable, especially since the Silov boundary of H*(D) is difficult to visualize.
One possibility for a more appealing theorem might be found along these lines: let
F be the uniformizer of D; then the composition ®oF is a bounded holomorphic
function on the open unit disc A, and as such it has radial boundary values on a set
of full measure on the unit circle T; in the case where D is bounded by a finite
number of disjoint, nontrivial continua, ® oF is an inner function; that is,
|®#oF| =1 a.e. (d6) on T. As a first step, one might guess that this is true in
general; however, it is easy to find a counterexample. For example, let us form D
by deleting from A a compact set K of positive logarithmic capacity but analytic
capacity 0 (see [8]). Then &(z) = z (assuming p = 0), but the uniformizer F cannot
be an inner function, for this would require that its range omits only a set of loga-
rithmic capacity 0; but log cap(K) > 0. There is an obvious weakness in this exam-
ple, however: the domain D is not maximal for H*(D); that is, 9D includes remov-
able singularities. Hence, we are left with the following problem.

QUESTION 1. Let D be a maximal domain, and let ¥ be its uniformizey. Is
® oF an innev function? If not, is theve at least a set of positive measure on which
the boundary values of ® oF have modulus 17

Of course, at any point where 9D is “nice,” ® is continuous and has modulus 1
(see [2, Theorem 5]) and if in some sense most of 3D is nice, then ® oF is an inner
function (see [2, Theorem 7]). The problem is to deal with domains having very bad
boundaries. L. A. Rubel and J. Ryff [4] have dealt with this problem and have ob-
tained results about the modulus of ® oF for some special types of domains. An-
other such result is Theorem 2 below; in order to present it, I first give some back-
ground information.

In dealing with multiply connected domains, it is natural to consider certain
multiple~-valued bounded analytic functions. To be precise, let F be a bounded,
multiple-valued, holomorphic function on D whose modulus is single-valued, and
let v be a smooth closed curve in D. Then continuation of a function element of F
around 7y results in multiplication by a constant of absolute value 1 (since IFl is
single-valued). We denote this constant by I'w(y) and note that I'(y) is the same
on homotopic curves, and is independent of the point on y from which the continua-
tion is begun. Thus I'w(y) is a character on the fundamental group 7(D) of D. The
solutions of various function-theoretic problems concerning multiply connected do-
mains depend on the fact that if " is a character on #(D), then there exists a
bounded, multiple-valued, holomorphic function F on D whose modulus is single-
valued, with T'y = I'. H. Widom [7] discusses this, and he gives necessary and suf-
ficient conditions for the existence of such a function. To state Widom’s theorem,
we need some notation. If T" is a character on 7(D), lét s# (D, I') be the set of
bounded, multiple-valued, holomorphic functions F on D whose modulus is single-
valued and for which I'p = T". If ¢ € D, let

M(D, T, ¢) = sup {|F(¢)|: F € #*(D, I') and |F| <1 in D}
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and
M(D, ¢) = inf {M(D, T, ¢): " is a character on 7(D)} .

If o (D, I') is empty, we set M(D, T, ¢) = 0.

THEOREM (Widom [7]). A necessary and sufficient condition that each
H (D, T) be nonempty is that M(D, £) > 0 for some (and hence all) ¢ € D.

We shall use this theorem to prove the following result.

THEOREM 2. Suppose M(D, £) > 0 for some £ € D. Then ®oF is an inner
Junction.

Proof. Suppose there exists a set E on the unit circle T, of positive measure,
on which ®oF has modulus less than 1 - 6 for some 6 (1/2 > 6 > 0). There is no
loss in assuming that E is invariant under the group G of conformal self-maps «
of A that satisfy the condition Foa = F (see [3]). Hence u, the harmonic extension
to A of the characteristic function of E, is also invariant under G, and thus there
exists a positive harmonic function v on D with u(z) = v(F(z)) for all z € A. Let c
be given by the formula c(1 - 6/e)e = 1, and let f(z) = c(exp(u + i*u)), where *u is
the harmonic conjugate of u on A. Then f is a bounded holomorphic function on A,
and

(1-6/e)"! (z¢BE),
|£(z)| =
c<1 (z e T-E).

Note also that |(f) (<I>0F)| <1 a.e. on T. Further, If] is invariant under the group
G, and hence there exists a multiple-valued, bounded, holomorphic function A(z) on
D with A(F(z)) = f(z) for all z € A. Choose a point r in A with ]f(r)l >1+4+¢

(e > 0). Widom’s theorem implies that for each n there exists a multiple-valued
holomorphic function h, on D such that |h,| <1, such that |h(F(r))| > v >0, and
such that g, = A"h, is a single-valued holomorphic function and v does not depend
on n. Note that

leall > |AFEE)|® |h(FE)| > A +e)®v — «

as n — «. However, since multiplication by ¢ is an isometry of H*(D), we have for
each n the relations

leall = le”gnllp = @ PN B, 0Py < [[@oFID|™ < 1.

This is a contradiction; hence, $°F must be an inner function.

Remarks. Once we know that ®oF is an inner function on A, we may ask
whether it has a singular factor. In the case where D is bounded by a finite number
of nontrivial continua, ®oF is an (infinite) Blaschke product. Whether this is true
when D is maximal for H® is unknown.

2. RELATED MATTERS AND OPEN PROBLEMS

A topic closely related to the modulus of & is the range of ®. It is known that if
oD consists of n disjoint, nontrivial continua, then & maps D exactly n-to-1 onto
A. Again, the example cited in Section 1 shows that in the general case & may omit
many points in A (but the omitted set always has analytic capacity O (see [2,
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Theorem 3]). If & is an inner function, then the omitted set has logarithmic capa-
city zero. Using the theory of cluster sets, I can show that in certain special situa-
tions the mapping & covers each point of A infinitely often, with perhaps one ex-
ception. In the general case, nothing as strong is known about the range of &.

QUESTION 2. Let D be a maximal domain. Does & map D onto A? If D is
infinitely connected, does each point of A have infinitely many inverse images ?

Finally, the reader should note that the proof of the Theorem in Section 1 uses
only a few properties of H*(D), namely

(1) H®(D) is an algebra that contains the constants,

(2) it |£,]] £C, £, € H(D), and f,(z) — £(z) for each z € D, then f € H”(D),
and

(3) if f € H°(D) and f(a) = 0 for some @ € D, then (z - a)-! #(z) € H®(D).

If A is a subalgebra of H”(D) satisfying (1), (2), and (3), then there exists a unique
function @ in A with &'(p) > max {|f'(p)|: f € A, |[f]| <1}, and for this &, |®] =1
on the Silov boundary of A. In general, many proper subalgebras A of H*(D) sat-
isfy (1), (2), and (3), even if D is simply connected. We can obtain such a subalge-
bra by taking for D the open unit disc A with the set {x: 0<x< 1} deleted and
letting A be the restriction to D of the functions that are analytic and bounded on
the complement of [0, 1/2] relative to the Riemann sphere.
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