THE MODULI OF EXTREMAL FUNCTIONS

Stephen Fisher

Let D be a domain on the Riemann sphere that supports nonconstant bounded analytic functions, and let p be a point in D. The extremal problem of maximizing |f'(p)| over the class of functions f that are holomorphic and bounded by 1 in D is known to have a solution unique up to multiplication by unimodular constants (see [2]); the solution with positive derivative is called the Ahlfors function for D and p. Since both D and p are fixed, I shall suppress them in the notation and denote the Ahlors function for p and D by $\Phi(z)$. It is known that $\Phi(p) = 0$. It is also known that if D is bounded by a finite number of disjoint, analytic, simple closed curves, then Φ is analytic on the boundary of D and has unit modulus there. This implies that for a domain of this type. Φ has unit modulus on the Silov boundary of the Banach algebra $H^{\infty}(D)$. For a general domain, it makes no sense to talk about the boundary values of a bounded holomorphic function; but it does make sense to discuss the values of the (transform of this) function on the maximal ideal space of $H^{\infty}(D)$. The main result of this note is that for a general domain, the Ahlfors function for D and p has unit modulus on the Silov boundary of $H^{\infty}(D)$. The main result and another result on the modulus of the Ahlfors function are in Section 1; Section 2 contains some related matters, extensions, and open problems concerning the Ahlfors function.

1. THE MODULUS OF THE AHLFORS FUNCTION

THEOREM 1. Let Φ be the Ahlfors function for D and p. Then (the Gelfand transform of) Φ has unit modulus on the Silov boundary of $H^{\infty}(D)$; equivalently, for each $h \in H^{\infty}(D)$, $||h|| = ||\Phi h||$.

Proof. Let Ω consist of all points w in D for which there exists an h \in H[∞](D) such that |h(w)| > 1 and $||h\Phi|| \le 1$. If Ω is empty (as I wish to show), then $||h|| = ||h\Phi||$ for each h \in H[∞](D), as desired. Hence, to reach a contradiction, I assume that Ω is not empty. Clearly, Ω is an open subset of D. I shall show that Ω is also a closed subset of D; since D is connected, this will imply that $\Omega = D$. Hence, there exists an h \in H[∞](D) with |h(p)| > 1 and $||h\Phi|| \le 1$. Thus, $|(h\Phi)'(p)| = |h(p)| \Phi'(p) > \Phi'(p)$, while $||h\Phi|| \le 1$; this contradicts the extremal property of Φ . Thus the remainder of the proof is devoted to showing that Ω is a closed subset of D (equivalently, that D - Ω is open).

Let $r \in D - \Omega$, and let $\{z_i\}$ be a dominating sequence for $H^\infty(D)$; that is, let $\sup |h(z_i)| = \|h\|$ for every $h \in H^\infty(D)$; see [6] for a discussion of dominating sequences. There is no loss in assuming that $r \notin \{z_i\}$. Let M be the maximal ideal space of ℓ^∞ . If F is a bounded function defined on a neighborhood of $\{z_i\}$, the restriction of F to $\{z_i\}$ gives an element of ℓ^∞ ; I shall denote the transform of such an element by \hat{F} .

Received September 21, 1971.

This research was supported in part by NSF grant GP-19526.

Michigan Math. J. 19 (1972).

Since $r \notin \Omega$, we know that the condition $\|\Phi h\| \le 1$ implies that $|h(r)| \le 1$ for every $h \in H^{\infty}(D)$. Hence, there is a measure m on M of total variation at most 1, with

$$\int_{\mathbf{M}} \hat{\mathbf{h}} \, \hat{\Phi} \, d\mathbf{m} = \mathbf{h}(\mathbf{r}) \quad \text{for all } \mathbf{h} \in \mathbf{H}^{\infty}(\mathbf{D}) .$$

Thus 1 = $\int \hat{\mathbf{1}} \hat{\Phi} \, dm = \int \hat{\Phi} \, dm \le \int |\hat{\Phi}| \, d|m| \le \|\Phi\| \, \|m\| \le 1$, and therefore the

measure $d\rho = \hat{\Phi}$ dm is positive and has mass 1, and its closed support lies in the set where $|\hat{\Phi}| = 1$; also,

$$\int_{M} \hat{h} d\rho = h(r) \quad \text{for all } h \in H^{\infty}(D).$$

Now let $p(z; s) = \frac{z - r}{z - s}$ for s close to r. Then, since $F(s) = \int_{M} \hat{p}(z; s) d\rho$ is a con-

tinuous function of s for s near r and has the value 1 when s = r, it is nonzero in a neighborhood of r. Let s be a point near r where $F(s) \neq 0$. For $h \in H^{\infty}(D)$, let

$$g(z) = (h(z) - h(s)) \frac{z - r}{z - s}.$$

Then $g \in H^{\infty}(D)$ and $\int_{M} \hat{g} d\rho = 0$. Hence

$$\int_{M} \hat{h}\hat{p}(; s) d\rho = h(s) F(s),$$

so that the measure $d\beta=(F(s))^{-1}\,\hat{p}(\ ;s)\,d\rho$ represents evaluation at s for $H^\infty(D)$. Hence, if $\|\hat{h}\|_K \leq 1$, where $K=\{|\hat{\Phi}|=1\}$, then $|h(s)|\leq C$, where $C=\|\beta\|$ is independent of h. Replace h by h^n , then take nth roots, and let n approach infinity. The condition $\|\hat{h}\|_K \leq 1$ implies that $|h(s)|\leq 1$ for all $h\in H^\infty(D)$. In particular, $\|\Phi h\|\leq 1$ implies $|h(s)|\leq 1$, and hence $s\not\in\Omega$. Thus $D-\Omega$ is open; equivalently, Ω is closed in D. As I outlined above, this leads to a contradiction.

Definition. A point $\xi \in \partial D$ is removable if for each $h \in H^{\infty}(D)$ there exists some neighborhood U of ξ , which may depend on h, such that h has a holomorphic extension to U. Otherwise, ξ is essential. If each point in ∂D is essential, then D is maximal.

COROLLARY. Let $\xi \in \partial D$. Then ξ is essential if and only if

1 =
$$\lim \sup \{ |\Phi(z)| : z \in D \text{ and } z \to \xi \}.$$

Proof. Suppose ξ is essential but $\limsup |\Phi(z)| = 1 - \delta$, where $\delta > 0$. By a theorem of A. Beck [1], there exists a function $h \in H^{\infty}(D)$ with

$$\label{eq:lim_sup} \begin{split} \lim\sup\big\{\,\big|\,h(z)\big|\colon z\to\xi\,\big\} &= 1 \qquad \text{and} \quad \lim\sup\big\{\,\big|\,h(z)\big|\colon z\to\lambda\,\big\} < 1 \end{split}$$
 for every $\lambda~\epsilon~\partial D$ - ξ .

Thus $\limsup \{ |\Phi(z) h(z)| : z \to \lambda \} < 1$ for every $\lambda \in \partial D$, and hence $\|\Phi h\| < 1$. But $\|\Phi h\| = \|h\| = 1$, by Theorem 1.

Conversely, suppose ξ is removable. Then there exists a domain D^* containing D and ξ , and such that every function in $H^{\infty}(D)$ extends to a function in $H^{\infty}(D^*)$ (see [6]). Should it happen that $\limsup \{|\Phi(z)|: z \to \xi\} = 1$, then $|\Phi|$ would have an interior maximum in D^* , and hence Φ would be a constant, a contradiction.

The proposition that Φ has modulus 1 on the Silov boundary of $H^{\infty}(D)$ may constitute the best possible result. Nevertheless, a more concrete result would be preferable, especially since the Silov boundary of $H^{\infty}(D)$ is difficult to visualize. One possibility for a more appealing theorem might be found along these lines: let F be the uniformizer of D; then the composition $\Phi \circ F$ is a bounded holomorphic function on the open unit disc Δ , and as such it has radial boundary values on a set of full measure on the unit circle T; in the case where D is bounded by a finite number of disjoint, nontrivial continua, $\Phi \circ F$ is an inner function; that is, $|\Phi \circ F| = 1$ a.e. $(d\theta)$ on T. As a first step, one might guess that this is true in general; however, it is easy to find a counterexample. For example, let us form D by deleting from Δ a compact set K of positive logarithmic capacity but analytic capacity 0 (see [8]). Then $\Phi(z) = z$ (assuming p = 0), but the uniformizer F cannot be an inner function, for this would require that its range omits only a set of logarithmic capacity 0; but $\log \operatorname{cap}(K) > 0$. There is an obvious weakness in this example, however: the domain D is not maximal for $H^{\infty}(D)$; that is, ∂D includes removable singularities. Hence, we are left with the following problem.

QUESTION 1. Let D be a maximal domain, and let F be its uniformizer. Is $\Phi \circ F$ an inner function? If not, is there at least a set of positive measure on which the boundary values of $\Phi \circ F$ have modulus 1?

Of course, at any point where ∂D is "nice," Φ is continuous and has modulus 1 (see [2, Theorem 5]) and if in some sense most of ∂D is nice, then $\Phi \circ F$ is an inner function (see [2, Theorem 7]). The problem is to deal with domains having very bad boundaries. L. A. Rubel and J. Ryff [4] have dealt with this problem and have obtained results about the modulus of $\Phi \circ F$ for some special types of domains. Another such result is Theorem 2 below; in order to present it, I first give some background information.

In dealing with multiply connected domains, it is natural to consider certain multiple-valued bounded analytic functions. To be precise, let F be a bounded, multiple-valued, holomorphic function on D whose modulus is single-valued, and let γ be a smooth closed curve in D. Then continuation of a function element of F around γ results in multiplication by a constant of absolute value 1 (since | F| is single-valued). We denote this constant by $\Gamma_F(\gamma)$ and note that $\Gamma_F(\gamma)$ is the same on homotopic curves, and is independent of the point on γ from which the continuation is begun. Thus $\Gamma_{\rm F}(\gamma)$ is a character on the fundamental group $\pi({\rm D})$ of D. The solutions of various function-theoretic problems concerning multiply connected domains depend on the fact that if Γ is a character on $\pi(D)$, then there exists a bounded, multiple-valued, holomorphic function F on D whose modulus is singlevalued, with $\Gamma_{\rm F} = \Gamma$. H. Widom [7] discusses this, and he gives necessary and sufficient conditions for the existence of such a function. To state Widom's theorem, we need some notation. If Γ is a character on $\pi(D)$, let $\mathscr{H}^{\infty}(D, \Gamma)$ be the set of bounded, multiple-valued, holomorphic functions F on D whose modulus is singlevalued and for which $\Gamma_F = \Gamma$. If $\zeta \in D$, let

$$M(D, \Gamma, \zeta) = \sup \{ |F(\zeta)| : F \in \mathcal{H}^{\infty}(D, \Gamma) \text{ and } |F| \leq 1 \text{ in } D \}$$

and

$$M(D, \zeta) = \inf \{ M(D, \Gamma, \zeta) : \Gamma \text{ is a character on } \pi(D) \}.$$

If $\mathscr{H}^{\infty}(D, \Gamma)$ is empty, we set $M(D, \Gamma, \zeta) = 0$.

THEOREM (Widom [7]). A necessary and sufficient condition that each $\mathscr{H}^{\infty}(D, \Gamma)$ be nonempty is that $M(D, \zeta) > 0$ for some (and hence all) $\zeta \in D$.

We shall use this theorem to prove the following result.

THEOREM 2. Suppose $M(D, \zeta) > 0$ for some $\zeta \in D$. Then $\Phi \circ F$ is an inner function.

Proof. Suppose there exists a set E on the unit circle T, of positive measure, on which $\Phi \circ F$ has modulus less than 1 - δ for some δ $(1/2 > \delta > 0)$. There is no loss in assuming that E is invariant under the group G of conformal self-maps α of Δ that satisfy the condition $F \circ \alpha = F$ (see [3]). Hence u, the harmonic extension to Δ of the characteristic function of E, is also invariant under G, and thus there exists a positive harmonic function v on D with u(z) = v(F(z)) for all $z \in \Delta$. Let c be given by the formula $c(1 - \delta/e)e = 1$, and let f(z) = c(exp(u + i*u)), where *u is the harmonic conjugate of u on Δ . Then f is a bounded holomorphic function on Δ , and

$$|f(z)| = \begin{cases} (1 - \delta/e)^{-1} & (z \in E), \\ c < 1 & (z \in T - E). \end{cases}$$

Note also that $|(f)(\Phi \circ F)| \leq 1$ a.e. on T. Further, |f| is invariant under the group G, and hence there exists a multiple-valued, bounded, holomorphic function A(z) on D with A(F(z)) = f(z) for all $z \in \Delta$. Choose a point r in Δ with $|f(r)| > 1 + \epsilon$ ($\epsilon > 0$). Widom's theorem implies that for each n there exists a multiple-valued holomorphic function h_n on D such that $|h_n| \leq 1$, such that $|h_n(F(r))| \geq \nu > 0$, and such that $g_n = A^n h_n$ is a single-valued holomorphic function and ν does not depend on n. Note that

$$\left\| g_n \right\| \, \geq \, \left| \, A(F(r)) \right|^n \, \left| \, h_n(F(r)) \right| \, \geq \, (1+\epsilon)^n \, \nu \, \, \rightarrow \, \infty$$

as $n \to \infty$. However, since multiplication by Φ is an isometry of $H^{\infty}(D)$, we have for each n the relations

$$\|g_n\| = \|\Phi^n g_n\|_D = \|(\Phi^n \circ F)(f^n)(h_n \circ F)\|_{\Lambda} \le \|(\Phi \circ F)(f)\|^n \le 1.$$

This is a contradiction; hence, $\Phi \circ F$ must be an inner function.

Remarks. Once we know that $\Phi \circ F$ is an inner function on Δ , we may ask whether it has a singular factor. In the case where D is bounded by a finite number of nontrivial continua, $\Phi \circ F$ is an (infinite) Blaschke product. Whether this is true when D is maximal for H^{∞} is unknown.

2. RELATED MATTERS AND OPEN PROBLEMS

A topic closely related to the modulus of Φ is the range of Φ . It is known that if ∂D consists of n disjoint, nontrivial continua, then Φ maps D exactly n-to-1 onto Δ . Again, the example cited in Section 1 shows that in the general case Φ may omit many points in Δ (but the omitted set always has analytic capacity 0 (see [2,

Theorem 3]). If Φ is an inner function, then the omitted set has logarithmic capacity zero. Using the theory of cluster sets, I can show that in certain special situations the mapping Φ covers each point of Δ infinitely often, with perhaps one exception. In the general case, nothing as strong is known about the range of Φ .

QUESTION 2. Let \dot{D} be a maximal domain. Does Φ map D onto Δ ? If D is infinitely connected, does each point of Δ have infinitely many inverse images?

Finally, the reader should note that the proof of the Theorem in Section 1 uses only a few properties of $H^{\infty}(D)$, namely

- (1) $H^{\infty}(D)$ is an algebra that contains the constants,
- (2) if $\|f_n\| \le C$, $f_n \in H^{\infty}(D)$, and $f_n(z) \to f(z)$ for each $z \in D$, then $f \in H^{\infty}(D)$, and
 - (3) if $f \in H^{\infty}(D)$ and $f(\alpha) = 0$ for some $\alpha \in D$, then $(z \alpha)^{-1} f(z) \in H^{\infty}(D)$.

If A is a subalgebra of $H^{\infty}(D)$ satisfying (1), (2), and (3), then there exists a unique function Φ in A with $\Phi'(p) \geq \max \left\{ \left| f'(p) \right| \colon f \in A, \ \left\| f \right\| < 1 \right\}$, and for this Φ , $\left| \Phi \right| = 1$ on the Silov boundary of A. In general, many proper subalgebras A of $H^{\infty}(D)$ satisfy (1), (2), and (3), even if D is simply connected. We can obtain such a subalgebra by taking for D the open unit disc Δ with the set $\{x\colon 0\leq x<1\}$ deleted and letting A be the restriction to D of the functions that are analytic and bounded on the complement of [0,1/2] relative to the Riemann sphere.

REFERENCES

- 1. A. Beck, A theorem on maximum modulus. Proc. Amer. Math. Soc. 15 (1964), 345-349.
- 2. S. D. Fisher, On Schwarz's lemma and inner functions. Trans. Amer. Math. Soc. 138 (1969), 229-240.
- 3. F. Forelli, Bounded holomorphic functions and projections. Illinois J. Math. 10 (1966), 367-380.
- 4. L. A. Rubel and J. V. Ryff, The bounded weak-star topology and the bounded analytic functions. J. Functional Analysis 5 (1970), 167-183.
- 5. L. A. Rubel and A. L. Shields, *The space of bounded analytic functions on a region*. Ann. Inst. Fourier (Grenoble) 16 (1966), fasc. 1, 235-277.
- 6. W. Rudin, Some theorems on bounded analytic functions. Trans. Amer. Math. Soc. 78 (1955), 333-342.
- 7. H. Widom, The maximum principle for multiple-valued analytic functions. Acta Math. 126 (1971), 63-82.
- 8. L. Zalcman, Analytic capacity and rational approximation. Springer Lecture Notes, No. 50. Springer-Verlag, Berlin-New York, 1968.

Northwestern University Evanston, Illinois 60201