BOUNDED FUNCTIONS WITH ONE-SIDED SPECTRAL GAPS
Harold S. Shapiro

1. INTRODUCTION

N o
It is a well-known theorem of Sidon that if the sequence {f(n)},__, of Fourier
coefficients of a bounded, measurable, 27-periodic function f defined on the real line

R has Hadamard lacunarity, then 27 |f(n)| < « (for terminology and references,
see [9, vol. I, p. 247]). In particular, the gap condition implies that f is continuous
(after correction on a set of measure zero); moreover, it is known that lacunarity
hypotheses weaker than those in Sidon’s theorem imply continuity (H. P. Rosenthal
[3]). If we assume only that {f(n)} has infinitely many Hadamard gaps, then con-
tinuity of f is not guaranteed, but certain kinds of discontinuous behavior are ruled
out. For instance, f cannot have a jump discontinuity; this is a consequence of well-
known facts about conjugate Fourier series (it is not difficult to deduce it from
Theorem 8.13 in Chapter 2 of [9]; I am grateful to Professor Zygmund, who supplied
me with this reference).

In results of the type just described, a “gap” in the sequence of Fourier coeffi-
cients means the vanishing of both the sine and cosine coefficients, for a certain
block of indices; that is, in terms of the sequence {f(n)}>_ __ , a gap is understood
to be symmetric about n = 0. The main point of this paper (Corollary to Theorem 2)

is that one-sided gaps, that is, sufficiently long blocks of consecutive zeros in the

sequence {f(n) ﬁi - » are incompatible with jump discontinuities. More generally,
one-sided gaps force a kind of matching behavior, in a sense of averages, on the

values of a function in left- and right-hand neighborhoods of each point. Results of
the latter kind do not seem to be explicitly known, even for symmetric gaps; at any

rate, we do not know of any studies along these lines.

Observe that no one-sided gap condition can force so strong a regularity as
continuity upon a bounded function: even the most drastic conceivable one-sided gap
condition, namely that f(n) = 0 for all n < 0, means only that f is the radial boundary
function of a bounded analytic function, which needn’t be continuous. But such a func-
tion cannot have a jump discontinuity, by virtue of a classical theorem of Pringsheim
and Lindelof; generalizations of this, involving matching average behavior, were
noted in [5]. (For other generalizations of the no-jump theorem, see [7], [8].)

The present paper can be viewed as a sequel to [5], and it overlaps that paper
slightly; however, here we employ a variant of the method in [5 ] that enables us to
handle functions having one-sided gaps, not merely boundary values in H*. Because
the generalization does not complicate matters, we formulate our results for func-
tions on IR™ (as in [5]). Specialization to n =1 and 27-periodic functions yields re-
sults on traditional Fourier series.
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2. FUNCTIONS WHOSE SPECTRUM LIES IN A CONE

By L% = L(IR™) we denote as usual the bounded measurable functions on Eu-
clidean n-space R™. We employ customary vector notation; in particular, t and u
denote points of R™, and dt the (Haar) measure in R®. By B(t9, a) we denote the
open ball of radius a centered at t9; by [EI we denote the measure of E.

Before formulating our first theorem, which does not mention gaps explicitly,
we discuss certain properties that a subspace S of L* may have:

(a) The constant function 1 is in S.
(b) S is weak*-closed in L*.

(c) S is translation-invarviant; that is, f € S => T ,f € S for all u € R", where
(T, ) (t) = £(t - u).

(d) S is dilation-invariant; that is, f € S => D_f € S for all a > 0, where
(D, 1) (t) = #(at).

(e) “Quasi-analyticity”: an element of S that vanishes on a nonempty open cone
is identically zero.

An example of a subspace S having these properties is the set of Fatou boundary
functions of functions bounded and holomorphic in a Cartesian product of n half-
planes (see [5]; a detailed discussion of the analogue for the polydisc is in [4]). This
space shall be denoted by H®(IR"). If for each closed set Q in the dual n-space IR"
we denote by L®(IR™, Q) the set of f € L® whose (distributional) Fourier transforms
are supported in Q, then H®(IR®) is easily identified with L¥(R", Q'), where Q*
denotes the first “quadrant” in IR" | that is, the set of points with nonnegative coordi-
nates. Observe that the space S = L*(IR", Q) satisfies (b) and (c) for every closed
set Q; moreover, it satisfies (a) if the origin lies in Q, and (d) if Q is a cone with
vertex at the origin. The condition (e) is more delicate; it is certainly satisfied if Q
is what we shall call a minor cone, that is, a closed convex cone such that (assuming
its vertex to be the origin) we can find a vector u € IR"® whose scalar product with
each nonzero vector of Q is positive (for example, a half-line in IR, or a sector of
opening less than 7 in IR%). Indeed, we can then easily find n linearly independent
vectors ul, --+, u® near u such that wt > 0 for all nonzero t € Q and for
j=1,2, -, n. This gives a nonsingular linear transformation of IR" that carries Q
into Q; consequently, the set L™(R", Q), being carried into a set of functions satis-
fying (e) by an invertible linear change of variables, itself satisfies (e).

THEOREM 1. Let S denote any subspace of L™ satisfying (a), (b), (¢), (d), and
(e). Let K and K' denote open cones in R™ with common vertex t°. Suppose, for
some f € S and some complex numbey c, that

lim f(t) = c.
t— t0
teK

Then lim_ _, o, ‘E(a)\’1 S f(t)dt = c, wheve E(a) = K' N B(t?, a).

E(a)

Remavrk. Thus, if f € S tendsto c as t — t0 from inside some cone with ver-
tex at t0, it tends to ¢ “on the average” as t — t0 from inside any cone with vertex
at t%. In particular, f cannot tend to distinct limits from inside two cones with com-
mon vertex. For the case where n=1, S=H*, and K and K' are the positive and
negative halflines, we recover the Pringsheim-Lindeldf theorem.
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Pyoof. We may assume that ¢ = 0, since by (a) the function f - ¢ is in S. Also,
since by (c) the function g(t) = f(t +ty) is in S, we may assume that t0 is the origin.
Assuming these normalizations, we prove first that

(1) lim Sf(at)k(t)dt =0 forall ke LI(R®.
a—0+

Indeed, if (1) does not hold, then there exist a function h € L!, a positive sequence
{a;} tending to 0, and a complex number b # 0, such that

2) lim {fa;0n(t)dt = b.

i— o0

Since the dilates {D,f} constitute a bounded subset of L, we may further assume,
by passing to a subsequence, that the functions f(a;t) converge, in the weak* topology
of L™, to some function ¢. This ¢ is again in S, by virtue of (d) and (b); and

(3) lim Sf(ait)k(t) dt = Sq)(t)k(t) dt for all k e L',

1-— 00

Now, let k in (3) be any element of L(IR") that is supported in K. Since f(a;t) — 0,
for each t € K, the left side of (3) equals 0, by the dominated-convergence theorem.

Therefore, since qukdt vanishes for all k supported in K, the function ¢ vanishes

a.e. on K, and so it vanishes identically, by (e). Thus, the right side of (3) may be
replaced by 0, and taking k = h, we have a contradiction of (2). Hence (1) is estab-
lished.

The conclusion of the theorem now follows at once if for k in (1) we take the
characteristic function of K' N B(0, 1), and if we observe that, with this choice of Kk,

Sf(at)k(t) dt = Sf(t)a“nk(t/a) dt = a-nS £(t) dt .

E(a)

Since IE(a)I is a constant multiple of a™, the proof is complete.

Remarks. (i) Evidently, in the hypothesis that f(t) — c as t — t0 from within
K, we may allow an exceptional set of measure 0. Elsewhere in the paper we shall
take corrections on sets of measure zero for granted, wherever they are appro-
priate.

(ii) The essence of the preceding theorem is the observation that if {f } isa
bounded sequence in S, and {f, | E} converges to 0 in the weak* topology of L™(E),
where E is any measurable subset of IR® whose complement is too small to sup-
port a nonnull function in S, then {f,} converges to 0 in the weak* topology of
L®(IR"™). In the case at hand, the “sequence” was the family of dilates {D,f}. >0,
and E was K; the hypothesis f(t) - 0 as t —» 0 (t € K) is simply a convenient way
of assuring that the restrictions D, f| K tend to 0 weak* in L*(K). It is worth
pointing out that for n =1 and K = IR*, the hypothesis that f(t) -0 as t — 0

a
through positive values can be weakened to read lim, _, o4 a"! S f(t) = 0. Indeed,
0

this condition implies that
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(4) lim Sf(at)k(t) dt = 0

a— 0+

when k is kg, the characteristic function of [0, 1]. Therefore (4) holds also for all
dilates {D,ykgp}. >0, as well as for all k € L! that lie in the annihilator of S. But
this annihilator, together with the dilates of kg, spans Li , as is easily shown by
means of duality and (e) (see [5]); therefore D,f — 0 (weak™), and the proof proceeds
as before. Variants with kg replaced by other averaging kernels are also possible.

(iii) Variants of the theorem could obviously be formulated wherein {D,} is
replaced by a more general family of affine mappings, or where a different special
choice of k is made in (1), and so forth. We leave these possibilities to the reader.
We also note that when S is the space H®, we could take for K any cone of positive
measure (the assumption that K has énferior points being unnecessary), since an
element of H®(IR™) that vanishes on a set of positive measure on IR™ vanishes
identically.

3. FUNCTIONS WITH ONE-SIDED GAPS

Theorem 1 does not yet yield gap results of the kind alluded to in the title and
introduction of the paper, because it is applicable only to classes L™(RR", Q) for
which Q is a cone, and a minor one at that. Theorem 2 is a genuine gap theorem,
demanding of f only that there be occasional large holes in its spectrum; the local
behavior thereby forced upon f is similar to that in Theorem 1, but rather weaker.

LEMMA. Let J be a minor cone in R™ with vevtex at the ovigin, that is, a
closed convex cone such that for some u € R" all the scalay products ut with
0 #t € J arve positive. If ¢ € L¥(IR™ is supported in I and the supporvt of & is not
all of R™, then ¢ = 0.

Remavk. In principle, this lemma is well known, and it is valid even when ¢ is
a tempered distribution; the case n =1 seems to have been formulated first by B. F.
Logan, Jr. (see [6, beginning p. 150]). For convenience, we sketch the proof.

Proof of the lemma. By means of a nonsingular linear transformation of R™,
we carry J into the first quadrant Q' (see the remarks preceding Theorem 1), and
since the spectrum is mapped covariantly by the transformation, we may assume
without loss of generality that J € Q. Let now g be a rapidly decreasing function
in C*°(R™) such that g(0) = 1 and g is supported in the unit ball. Then the function
W, = (D,g)¢ is in LI(IR™), and it is supported in Q' ; moreover, if a is positive and
sufficiently small, then ::Ea(x) vanishes on some ball, since the spectrum of D, g lies
in B(0, a). Now, denoting by U the open upper half-plane (thought of as bounded by
IR), and recalling that ,(x) is the boundary value on the distinguished boundary IR"
of U™ of a function holomorphic and bounded on U™, we deduce that y, = 0. Thus,
for each sufficiently small a > 0, the function g(at) ¢(t) vanishes a.e., and this im-
plies that ¢ = 0.

Remark. The lemma remains valid if the vertex of the cone is at some point
other than the origin, since translation of the spectrum corresponds to multiplication
of ¢ by an exponential.

THEOREM 2. Suppose that f € L™(R") and that theve exist a number a > 0

and a sequence of points x3 ¢ R (|xI| — ) such that B(x}, a|xI|) does not meet
the spectrum of f. Let K and K' denote open cones in R™ with common vevrtex.
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Suppose, morveover, that the complementary cone R" \ K is minor (velative to the
ovigin t0), and that

lim f(t) =
t — 0
teK

for some complex number c. Then

lim inf =0

a—0+

’

|Ea)] SE( (£(t) - c)dt

a)

wheve E(a) denotes K' N B0, a).

Remavks. In particular, the gap hypothesis is satisfied if the spectrum of
omits some nonempty open cone with vertex at 0. For n = 1, the gap hypothesis is
equivalent to the existence of infinitely many Hadamard gaps, that is, gaps of the
type [x, Bx], where g is a fixed number greater than 1. The hypothesis concerning
K is satisfied for n =1 if K is a half-ray, and for n= 2 if K is a sector of opening
greater than 7. Finally, observe that the conclusion of the theorem, while weaker
than that of Theorem 1, nevertheless implies that f(t) cannot tend to a limiting value
other than ¢ as t — t9 from within K'.

Proof. Again without loss of generality, we may suppose that t0 is the origin
and c = 0. Write aj = lil and & = aj xJ . It follows from the hypotheses that the
spectrum of each dilate D, f fails to intersect the ball B(é;J a). Passing to a sub-

sequence for which {&1} converges, say to £ (|£| = 1), we may suppose without
loss of generality that the spectrum of each Daj f fails to intersect B(%, @/2). By

passing to a new subsequence, we may further suppose the sequence {Daj f} to con-
verge weak* to some ¢ ¢ L™ whose spectrum is disjoint from B(, a/2).

Now, reasoning as in the proof of Theorem 1, we see that

S ¢kdt = lim S f(a; t)k(t)dt = 0

J—)OO

for every k € L! supported in K. Thus, ¢ is supported in the minor cone IR™ \ K,
and its spectrum omits the ball B(¢, @/2). By the lemma, this implies that ¢ is
identically zero. Hence, for every k € L!,

im  {fa; k@t =
j—o o

specializing k to be the characteristic function of K' N B(0, 1), we obtain the desired
conclusion.

COROLLARY. Suppose the function f € L(IR) has period 27, and the sequence
of Fourier coefficients {f(n) }n -« has an infinity of one-sided Hadama'rd gaps; that
is, suppose theve exist a number B > 1 and an infinite sequence of n; — +o Ssuch
that f(n) = 0 for n; < n < Bn; (o7 the corresponding condition for the negatively in-
dexed Fouriev coeffzczents) Then f cannot have distinct left- and vight-hand limits
at any point. Moveovey, if lim, _, ,_o {(t) = ¢ exists for some point u, then theve is
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a sequence {a.j} decreasing to 0 such that the mean value of f on the interval

[u, u + aj] tends to ¢ (indeed, we may take a; = nj-l).

4. CONCLUDING REMARKS

(i) In the theorems of this paper, the dilation parameter a could be made to ap-
proach +e, rather than 0, with only trivial changes in the proofs. (In Theorem 2, we
must of course then assume that |XJ| — 0.) We thus obtain a set of results connect-
ing the behavior of f(t) within each of two cones K and K' having a common vertex,
as t tends to infinity within the respective cones.

(ii) A cone that is not minor may indeed support a function whose spectrum
omits a nontrivial open set. A simple example in IR? is obtained if we choose a
rapidly decreasing C*-function g on IR! that vanishes for negative arguments, but
does not vanish identically, and set f(t; , t;) = g(t;)&(t;). Then both f and f vanish
in a half-plane. By means of a similar product, we can construct an f supported on
only two of the 2™ “quadrants” of IR™, and such that f vanishes on a half-space.

Added December 6, 1971. For n =1, the lemma in Section 3 is contained in
much more powerful results of N. Levinson [1, Chapter V, especially Theorem
XXVII]. In its dual version {phrased as an approximation theorem in L!), the lemma
(case n = 1) was recently rediscovered by D. J. Newman [2]." The dual version of
the lemma in IR" is an approximation theorem similar to Newman’s for minor
cones.
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