APPROXIMATIONS OF DOUBLY SUBSTOCHASTIC OPERATORS
C.W. Kim

1. INTRODUCTION AND PRELIMINARIES

We prove three approximation theorems for positive contractions T on
L, [0, ©) having at least one of the two properties T1 =1 and T*1 =1. The main
results concern approximations of such operators by convex combinations of those
operators induced by invertible measure-preserving maps on [0, ©) in well-known
operator topologies.

Let X, §, and pu denote the nonnegative real half-line, the class of Lebesgue
measurable sets, and Lebesgue measure. On X, we shall consider only T -measur-
able real functions (modulo p-equivalence), and by a set on X we shall always mean
an element of §. We shall omit the phrase “almost everywhere,” it being under-
stood wherever applicable. We assume 1 <p <. Let L, = LyX, &, u), and let
[Lp] be the Banach space of bounded linear operators from Ly into itself. We say
that T is a positive contvaction on Ly if T € [L,], Tf > 0 for each £ (0 <f € Ly),

and || T, < 1.
For each positive contraction T on L, , the adjoint T* determined by the equa-
tion ‘S‘ (Tf) gdy = S fT*gdu for f € L, and g € L, is a positive contraction on
X X

Lo . The operators T and T* can be extended uniquely to positive linear operators
on the cone of nonnegative numerical functions u and v as follows:

Tu = lim Tf_, where 0<f e L,, f Tu,

n

T*v = lim T*g , where 0<g € L_, g Tv.

n

The extensions satisfy the equation ‘S‘ (Tw)vdp = S uT*vdy. In particular, sup-
X X
pose T1 < 1. This condition is equivalent to the condition that

S T*ngSS gdp
X X

for 0 < g € L; N Le, and thus T* is uniquely extended to a positive contraction on
L; . The extended operator will also be denoted by T*. Observe that in this case T
is also a positive contraction on L, . We shall always assume that T and T*
represent the extended operators.
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Let D4 be the set of positive contractions T on L; such that T1 < 1. The ele-
ments of i) are called doubly substochastic (d.s.s.) operators. Note that T is
d.s.s. if and only if T* is d.s.s. By the Riesz convexity theorem, d.s.s. opera-
tors are also positive contractions on L, (1<p<x). Ad.s.s. operator T is
called weakly doubly stochastic (w.d.s.) or weak™ doubly stochastic (w*.d.s.) ac-
cording as Tl =1 or T*1 =1. Let D, and ©¥ denote the set of w.d.s. operators
and the set of w*.d.s. operators. A d.s.s. operator T such that T1 =1 and
T*1 =1 is called doubly stochastic (d.s.). If we denote by ® the set of d.s. oper-
ators, then ® = D N D% . It follows readily that the sets of operators mentioned
above are convex semigroups under multiplication. In particular, ®, and 9 are
self-adjoint, that is, D5 = ©% and ® = ©*. Let & be the class of measure-
preserving maps ¢ from (X, §, u) onto itself, and let &; be the class of maps
¢ € & that are invertible and measure-preserving. Then each ¢ € & gives rise to a
d.s. operator Ty that is defined by the equation T f(x) = f(¢(x)). For brevity, we
also write & for {Ty: ¢ € @} and &, for {T(p ¢e ®,}.

The contraction operators defined above have valuable discrete analogs. The
idea is to replace Ly by £,. Then it follows readily that there is a bijection be-
tween the set of d.s.s. operators on ¢; and the set of d.s.s. matrices. Similar
remarks apply to w.d.s. (w*.d.s., d.s.) operators on ¢,. By a d.s.s. matrix (tlJ)

we mean an infinite matrix with nonnegative entries t;; such that 27 jt; <1 for

each i and El tlJ <1 for each j. A d.s.s. matrix (tij) is called w.d.s. or

w*.d.s. according as Ej tij =1 for each i or Ei tij =1 for each j. By a d.s.
matrix we mean a d.s.s. matrix having the row sums and the column sums all equal
to 1. A d.s. matrix in which there is exactly one entry 1 in each row and column is
called a permutation matvix.

Since D4 C ﬂl <p<w [Lp] we may topologize ©4 by various operator topol-
ogies for [Lp] 1<p < )., By the Lp-weak (strong, norm) operator topology for
D4, we mean the weak (strong, norm) operator topology for [Lp] restricted to D4
J. R. Brown [1, Theorem 4, p. 370] showed that D¢ is the closure of &; in the LZ—
weak operator topology, and that it is the closed convex hull of &; in the L,-strong
operator topology.

In Section 2, we prove (Theorem 2.1) that D} is the closed convex hull of &, in
the L;-strong operator topology. It is also shown (Theorem 2.2) that ® is the
closed convex hull of &; in the L;- strong™* operator topology, and that the convex
hull of &, is a dense subset of © in the L;- strong™® operator topology (see Section
2 for definitions of strong* operator topologies). The first part of Theorem 2.2 is a
continuous analogue of a theorem of B, A. Rattray and J. E. L. Peck [7] as well as an
analogue of a theorem of Peck [6] for d.s. operators. The latter part of the theo-
rem is a sharper form of Brown’s strong approximation for d.s. operators. In Sec-
tion 3, we prove the Lj-norm approximation theorem for w.d.s. operators of
Hilbert-Schmidt type. Our results hold also when the underlying space X is the real
line.

2. STRONG APPROXIMATIONS

For each positive integer n, let ¥, be the o-algebra generated by dyadic in-
tervals D' = [(i - 1)/2", i/2") (i=1, 2, +-+), and let U,, be a conditional expectation
operator defined by the equation U, f = E(f | $,) for f € L N Ly, or equivalently
by the equation
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o0

U f= E(Z“S fdp.)x(-;D?) for f € Iy N L.

i=1 Dt

1

We shall denote the indicator (characteristic) function of a set A by x(+; A). In
particular, we shall write el = x( +; D'). It is easy to see that U, e ®, U, = uf,
and U, U, =U,,U, =0, if n<m, Observg that U, is a projection on Ly . Denote
the identity operator by I. It follows essentially from the martingale convergence
theorem [2, Theorem 4.1, p. 319] that U, — I as n — < in the Ly-strong operator
topology (Lp-s.o.t.), where 1 < p <«, Hence TU, and U, TU, converge to T in
the L,-strong operator topology (1 < p < =),

Let n be a fixed positive integer. If we set §,, , = Un(Lp) (1 < p L), that is,
Hn,p = {Unf: fe Lp}, then 9, , is a closed subspace of Ly, that is isomorphic to
{p. Each T € 9g induces in a natural way a positive contraction Ty: $, , — @n,z
defined by the condition

Thoh = U, Th for he $,,2,
or equivalently by the condition
T,U,f = U, TU,f for f € L, .

Following P. R. Halmos [3, p. 118], we call T, the compression of T to $, ,, and
T a dilation of T, to Ly . Since 9,1 € Hn,2, we have also the relation
ToUnf=U,TU,f for f € L;. In terms of the basis {eP}; for Pn,2, the compres-
sion T, is uniquely represented by the d.s.s. matrix (t?j) [where th = 2’“(Te31 , €]
as follows:

1

(2.1) T (U, 1) = 2 {Z) th 27 (1, e}‘)}ei1 (feL,.
j

We write (f, g) = S fgdu. It is a straightforward exercise to show that T;“l is the
X

compression of T* to $n,2 and

(2.2) TX(U, ) = 2 {Z} t5; 27 (f, e?)} e; (feLy).
S

1

Clearly, (2.1) and (2.2) hold for each f € Lj . On the other hand, for each d.s.s.
matrix (sj;), we define a positive contraction S,: $,, ] — 9,1 by the condition

S, (U, 1) = 2 { 20 55527 (1, egl)} el (feL).
J

1

By the Schur test [3, p. 23], S,, extends uniquely to a positive contraction on n,2
(denoted also by S,) so that

1

(2.3) Sp(Uf) = 2 { 27 ;527 (1, e?)} el (fel,.
J
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We have also the relation

(2.4) sK U f) = 2 {Z) s5; 2" (1, egl)} el (feLy.
j :

i

We shall show that if (s;:) is a permutation matrix, then the contraction S, on {)n 2
has a unitary dilation that is induced by ¢ in &;. By an operator S, on @n 2 in-

duced by a d.s.s. matrix (sij) we shall mean the operator S determmed by (2.3).

LEMMA 2.1. Let S be the operator on {)n, > induced by a permutation matvix
(sij). Then theve is a ¢ € &, such that

SnUnf = TgU,f and STU.f = TEULE  jor fe L, (p=1,2).

Proof. Since (s;;) is a permutation matrix, there exists a bijection ¢ from the
set of positive integers onto itself such that s; o(i) = =1 for each i (therefore Sij =0
whenever j # 0(i)). Note that

Let ¢: X — X be a point map of the form ¢(x) = x +b; for x € D} such that
¢(D) =Dg(;) (i=1,2, --). Clearly, ¢ € &; and Ty satisfies the conditions
—_ n

Tqbe?1 = e

¥ n o_ n_ ,n
i o-1(1) and T¢ei =T, _;€; e

) i o)

Recall that e? =y(-; D?) (i= «+). It follows that for each f € Lp (p=1, 2),

H

f = Z} 27(1, e]) Tyef = Z} 2n(t, e?)eg_l(i) =S,U,f.
1 1
Similarly, TgU,f = S} U, 1.

Clearly, Ty in Lemma 2.1 is a unitary operator on L, . Moreover, since $, >
is invariant under T, that is, since T¢(.g)n 5) C 9,2, we see that
U T¢U f=TyU,f= S U,f for f € L,. Hence the unltary dilation Ty is indeed an
extension of S, to L,. The convex hull of A C D4 will be denoted by ch(A). From
Lemma 2.1, we have at once the following proposition.

LEMMA 2.2, Let S, be the operator on $,, , induced by a d.s. maitrix (s;;)
that belongs to the convex hull of peymutation matvices. Then S, has a dilation (ex-
tension) S in ch(®,) such that

S,U,f =SU_,{, S}"lUnf = S*U,f Jfor fe L, (p=1,2).
When 9D is endowed with a topology Z, the closed convex hull of &; will be
denoted by cch(® 1 7). We shall prove the following approximation theorem.
THEOREM 2.1. % =cch(®;: L; - s.o.t.)

LEMMA 2.3. For each w*.d.s. matrix (t;;), for each ¢ > 0, and for each posi-
tive integer N, theve is a d.s. matrix (s ) n t}w convex hull of permutatzon ma-
trices such that
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E|tij—sij| <e (j=1,2, -, N).
i

Proof. Suppose N is a positive integer and 0 <& <1/2. Since all column
sums of (tij) are 1 by definition, there exists a positive integer n = n(e, N) such
that Ei>n tij < g¢/4 for each j (1 < j <N). Choose a positive integer m such that
n/m <ge/4, Let P;; be a nonnegative integer such that

Pi; < mtij < p;; + 1 when tij >0 and p;; = 0 when tij = 0.

Define the matrix (rij) by the formula r;; = p;; /m, It is easy to show that

Ej ri; < 1 for each i, 27 ri; <1 for each j,and 0 <1 -¢/2 < 27 ri; <1 for

each j < N. We can construct a d.s. matrix (sij) of the form s;; = q;;/m, where
q;; is an integer (0L ;5 < m), such that

0 <sj5-r3;5<1/m  for i, j=1,2, -

Since the entries s;jj take only finitely many distinct rationals, it follows from a
theorem of J. R. Isbell [4, Proposition 2, p. 3] that (s;;) belongs to the convex hull of
permutation matrices. For each j <N,

2 |tij - rij| < 2 (tij - I'ij)'l‘ 22 t;; < n/m+¢e/4 <¢e/2,
i i<n i>n

and

1

2|rij—s.j| = Z’Sij' _Erij <1-(1-¢/2) =¢g/2,
1 1 1

so that Ei ,tl_] - sijl <€,

Remark. Since there is a bijection between the set of w*.d.s. matrices and the
set of w*.d.s. operators on £, , we may topologize w*.d.s. matrices by the strong
operator topology for [£;], called the ¢;-s.0.t. It is easy to show that the set of
w*.d.s. matrices is closed in the £1-s.o0.t., so that by Lemma 2.3, it constitutes

the closed convex hull of permutation matrices in the ¢,-s.o.t.

Proof of Theovem 2.1. Note that both ®¢ and D% are closed in the L,-s.o.t.
It suffices therefore to prove that for each T € DX  each € > 0, and each f € L,,
there is an S € ch(®;) such that H Tf - Sf”l < e. We may assume without loss of

generality that f vanishes outside an interval [0, N], where N is a positive integer.
Choose an n sufficiently large so that

ITt-U,TU. ||, <e/3, |f-Uyfll; <e/3.

Set n; = 2"N. Let T, be the compressionof T to $, ,. Let (ti;) be the w*.d.s.
matrix defined by t% = 2n(Te31, ej'). Then

U,TU,f=T,Uf = E { L2t e;‘)}e?.
i 1j<ny
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It follows from Lemma 2.3 that there is a d.s. matrix (Sij) in the convex hull of
permutation matrices such that

Z)|tij - s;5] <e/8]f]]; for 1<j<m.
i

Let S,, be the operator on @n’z that is induced by the matrix (sij). By Lemma 2.2,
S, has a dilation S € ch(®;) such that

SU,f = S, Uyt = Z){ 27 s52° (8, e}‘)}e?.
i anl
It follows that
[0, 70, - 50l = [0t - 5.0t <D T |- syl del, & | < o/,
i anl
On the other hand, |SU,f - Sf|; < €/3, and hence ||Tt - Sf||; <e.

The example below shows that D, is not closed in the L;-s.o.t.

Example. Let S be an operator on L, defined by the equation

St

1 (8 10 17
2 jo fd“"‘[he)*ﬁjz fd“'x[2.3)+74'55 FdieXps,q4) T

2

Define w.d.s. operators T (n=1, 2, ***) by the relation

where bn=%n(n+3), an=l(n+2)(n -1). Then S € D4 - Dy .

1 n+l
Tnf=n+1 ‘SO fd,u.-x[o’l)+Sf.
Then

5 1 n+l

S*f = ‘g fdu - ,
nel nt+1 L H X[a.m,bn)

T*f = 1 1fd . +8*f (=1,2, )
nT T n+1 ), - X[0,n+1) TS .

Note that S* € D, - 9% and T € ©¥,. A simple calculation yields the bound

T, -8, <1/a+1) (@=1,2,).
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On the other hand,

IT2Xg0,1) = 8" Xl =1 =1, 2,0).

Let p be fixed (p =1, 2). Following J. T. Schwartz [9, p. 39], we define the L-
strong* operator topology (s*.o0.t.) for ®. as the topology induced by &-neighbor-
hoods, an g-neighborhood of T being defined as the set

{S: ”(T —S)fi”p < g, ”(T*_S*)gi"p < g, i=1’ '“)n}a

where f; ... f, and g;, ---, g, are arbitrary elements in L,. We can easily show
that both 4 and ® are closed in the L;-s*.0.t. Inthe Ly-s*.o.t., D4 is closed;
but it is not clear whether ® is also closed. The L;-s*.o.t. for D¢ has a discrete
version, called the ﬂl—s*.o.t. for the set of d.s.s. matrices. In this topology, a
neighborhood base at a d.s.s. matrix (tj;) consists of sets of the form

%(sij):zltik—sikl <e, Z)Itkj—skj| <eg, k=1,2 ---,n}.
i J

We state without proof a theorem of Rattray and Peck [7].

LEMMA 2.4 (Rattray and Peck). The set of d.s. matrices is the closed con-
vex hull of pevmutation matvices in the 2;-s*.o.t.

THEOREM 2.2, © =cch(®;: L;-s*.0.t.) ¢ cch(®;: Ly-s*.0.t.).

Proof. The proof is similar to that of Theorem 2.1, Let p be fixed (p =1, 2).
Let f be a continuous function with compact support [0, N], where N is a positive
integer. Given T € ® and & > 0, we choose a positive integer n sufficiently large
so that

It - U, TULE|, <e/3, |T*f-U,T*U, M|, <e/3, |f-U,t], <e/3.

Set n; = 2"N. Let T, be the compression of T to $,, », and let (t}}) be the d.s.
matrix that represents T, as (2.1). Then Tﬁ is represented by the transpose of

(t?j) as (2.2). It follows from Lemma 2.4 that there is a d.s. matrix (sij) in the
convex hull of permutation matrices such that

y

(2.5) 21 | - syl < e/3c, %) |th; = 845l < e/3¢

1

where k=1,2 -+ n; and ¢c =n; ”f”oo . Let S, be the operator on $, » induced
by the matrix (s;;). By Lemma 2.2, S, has a dilation S in ch(®,). Using (2.5) and
the inequalities |f|; < ||f],v N < ||f] N, we obtain the bounds

U TU.f-SULE||; <e/3-2%, |[U,TU,f-SU_{|, < e/3/2",
and thus
|0, TU,f-8U, ], <e/3.

Similarly, it follows that
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| U, T* ULt - 8*¥UL £, < /3.
We see at once that
Tt -st, <e, [T*t-s8%1], <e
so that ® C cch(®,: Lp-s*.o.t.).  Since D is closed in the L;-s*, o.t., it follows
that ® = cch(®: Lj- s* o.t.). This completes the proof,
3. NORM APPROXIMATION

By a d.s.s. operator T with kernel t(x, y) we mean a d.s.s. operator T of
the form

M) = |, Y ) de)
X

where t(x, y) is a nonnegative measurable function on the product space X2 = X x X,
and where S t(x, y)du(y) <1 and S t(x, y)du(x) < 1. Furthermore, we say that
X

the operator T is of Hilbevi-Schmidt type if its kernel t(x, y) belongs to
L,(X%, 12), where pu2 =p X . Givensucha T € Dg, we see readily that U, TU,
has the kernel t_(x, y) of the form

th(x, y) = Z) Z) 2"t el (x) e](y) ,
where e}’ = x( - ; D) and
t?j = 2n(Te31, e;) = 2" ‘S‘ t(x, y)e; (x) e?(y) anlx, y) .
Moreover, we have the relations

(3.1) 2 Z(tg)z = 5 t2(x, y) dp(x, y) < S t2(x, y) dp?(x, y) < «
i

x2 %2

and

IT- UaTU]l, = [T U, T"U, [,

s(j

%2

(3.2) 1/2
| t(x, y)—txyl2 ) =0 (n—w),

If YCX and ¢, is a measure-preserving map from Y onto a subset Z, C X|
then Y, induces a d.s.s. operator Twa defined by the equation
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f(zpa(x)) on X,
(3.3) T\U f(x) =
o 0 on X-Y,

The set of such d.s.s. operators will be denoted by &(Y). Let &,(Y) be the set of
operators Tlpa € (Y) induced by invertible measure-preserving maps y,: Y — Z, -

It is easy to see that T:E/a = TW&l ¢ ®,(Zg) when TlPo, e & (Y). For each AC X,

we define I, by the equation I,f(x) = x 5(x) f(x). Then I, is a self-adjoint d.s.s.
operator: I = I’z. We state the following L,-norm approximation theorem,

THEOREM 3.1. Suppose T is a w.d.s. opevator of Hilbert-Schmidtl type, and
e > 0. Then there exist a positive integeryr M and a d.s.s. opevator

V= Eiszl d;T, € ch(® [0, M]) such that
1
lT-v|], <e.

Movreover, theve exist Ty € ®(Z;) with p(Z;) =M (1 < i <s) such that
1

S
T - 24T | <ce.
i=1 Hiz2

The proof of the theorem follows readily from the following four lemmas. We
begin with some notions on w.d.s. matrices [8, p. 188]. A d.s.s. matrix (tij) will

be called an (m, «)-w.d.s. matrix if EJ- t-lj =1 for 1 <i<m and tij =0 for

i>m and j > 1. By an (m, n)-w.d.s. matrix (tij) we mean an (m, «©)-w.d.s.
matrix (tij) such that t;;=0 for 1 <i<m and j>n. It is easy to show that n > m
for each (m, n)-w.d.s. matrix. An (m, n)-w.d.s. matrix having only 0 and 1 as
its entries is called an (m, n)-weak permutation (w.p.) matrix. The following result
follows from the proof of Lemma 9 of [8, pp. 192-194].

LEMMA 3.1 (P. Révész). Lel (sjj) be an (m, »)-w.d.s. matvix. For each
€ > 0, there exist a positive integer kg =Ko(e) > m and {(m, k)-w.d.s. matvices
p= (rij) in the convex hull of (m, k)-w.p. matrices fov which

m
2 22 |sij - rij| <e whenever kK > Kq.
i=1 j

We shall establish an analogue of Lemma 2.1 for an (m, m')-w.p. matrix. In
the following lemmas, we assume that n is a fixed positive integer.

LEMMA 3.2. Let R, be the opevator on $,  induced by an(m, m')-w.p.

matvix (rij)- Then theve exists an invertible measuve-presevving map y from

m
Y = Uizl D? onto a subset Z of X such that for f € L,, the d.s.s. opevator T‘P
defined by (3.3) satisfies the conditions

)

_ * - p*
TyU,f =R, U and  TyU.f=RLULT.

Moveover, Y can be extended to ¢ € &, , with
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= = * _ * _ ok
T'\b = IYT¢ = Td)IZ and T¢ = IZT¢ = T(IJIY'
Proof. Since m' > m, there éxists an injection
U: {;1,’2, ';.’m} - {17 2’ '..!m’}

such that r;5(;) =1 for 1 <i< m and hence all other entries r;; are 0. Let

m m
y=Up*» ama z-=-U Dg (1)
i=1 =1

Let ¥: Y — Z be a point map of the form ¥ (x) =x+ b; for x € D? , with
lp(D?} = Dg(i) , where 1 <i<m, Clearly, ¢ is an invertible measure-preserving
map from Y onto Z. Note that

e} if j=o(i) for some i (1 <i<m),

0 otherwise.

It follows that
m

Ty U,f = 22 2°(F, ef ;) el = R, Ut .

i=1

Similarly, we prove the equation for T;ky .

. . m
If we set Y' = Ui:l D!, then

ml
v-vy= U pr ama v -z

i=m+1 i=1

[
o

Let ¢: X — X be such that
Y(x) (x € Y),
#x) = { x (x€ X-Y'"),
x+b; (x € D} and :{)(D?):D}li,where m+1<i<m').

Then ¢ belongs to &; and is an extension of y. Clearly, Ty =1y Tg. On the other
hand,

T¢ IZ f(X)
(Iy Ty*

This completes the proof.

T¢(x 7 (x)} (%)) = T¢X 7(x) T(pf(x) = Iy T¢f(x) ,

* ko _ ik * _ *

The following is an immediate corollary of Lemma 3.2.
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LEMMA 3.3, Let R, be the opevator on §,, , induced by an (m, m')-w.d.s.
matvix p. Let p be a convex combination of (m, m' }-w.p. matrices T, ; that is, let
p= Eizl c;my. Then theve exist invevtible measuve-presevving maps
viY=UZ DM~ 2, (1 <1<t such that

t
(ZiCTIP )U f=R,UT, (

* _ pk
2 ciTlpi)Unf =R'Uf (felL,).

i=1

Moveover, theve exist ¢y, >, ¢, in ®; such that ¢; =y, on Y for 1 <i<t,

t
EICiTWi <1Z>ICT¢)_1ZiCT

1l
l

and

]

t t
_Z) c; Ty, (ECT$> = —lciIZiTgi.

i=1 i

The following approximation, proved earlier for the case where the underlying
space is the unit interval [5, Lemma 2.5, p. 524], may easily be shown by a minor
modification of the argument given in [5, pp. 524-525].

LEMMA 3.4. Theve exist measurve-presevving maps 6, and 6, from X onfo
itself such that

<2k (k=12 ).

H{%(Tgl +T92)}2~k_ Un, |

Proof of Theorvem 3.1. Let t(x, y) be the kernel for T. By (3.2), we can choose
a positive integer n such that

"T" UnTUn"z = ”T* - UnT*Unllz <e/4.

Let T, be the compressionof T to $, . Note that the w.d.s. matrix (t .) repre-

sents T, and satisfies (3.1). We can therefore choose a positive integer M such
that

D D) < (/)
i>2M j

Put m = 2" M, Define the (m, «©)-w.d.s. matrix (s .) by setting Si; t1J for

1<i<mandj=1, 2, ,and s;; = 0 elsewhere. Let S,, be the operator on @n 2
induced by the matr1x (le) It can easily be seen that

1/2
10,70, - 5,00, = 17,0, 5,00, < (D D ) <en,

>m j

Similarly, |U, T*Uy, - SUL[, = [ TAU, - S3UL||, <e/4.
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By Lemma 3.1, we can choose a positive integer M' > M and an (m, m')-w.d.s.
matrix p = (rIJ) where m' = 2"M', such that El 1 27, ls1J - r13| < &/4, Here

p= E -1 ¢;m;, where ¢; > 0, E -1¢i =1, and the 7; are (m, m')-w.p. matrices.
Let Rn denote the operator on @n’z induced by the matrix p. We have the inequali-
ties

m 1/2 m
”SnUn_RnUn”2_<_ (Ziz |Sij"rij|2) E Islj—rlJ’ <5/4
i= Jj i=1

Similarly, ||S*U - R*U II < &/4. By Lemma 3.3, the operator R, has a dilation
(extension) Q of the form Q = 21 1 C; TIP , where each y; is an invertible
measure-preserving map from Y =[0, M] onto Z; C [0, M']. Moreover, each ¥,

t
admits an extension ¢; € &, with Q =1y (E i=1 ciT(f,.) . Also,
1

t
:?c'rwl EcIZT¢,
i=1 i=1
* *
where Ty, = Tw_l and Ty, = T¢_1. Note that
i i

IR, U, - QU,[, = [RRU, - Q*U,[, =
By Lemma 3.4, we can choose a positive integer k and a d.s. operator
P =%(T31 +Tg,) with 6, 6, € & such that |u, - P#|, < /4 and thus
lQu, - QP%X|, < e/4, [Q*U, - Q*P?N|, <e/4.
Set V = QP2k and W = Q* P2k, From the inequalities above, it follows that
IT-v], <e, |T*-W[, <c¢.
Since P%¥ ¢ ch(®), we may assume without loss of generality that

= 2 d;Ty Ty, _IY(EdT¢T9)

i=1 i=

W= 2d.T T Z)dI T
1 i 7’01_1 91 i1 it Z; ¢ -1 91)

where d; > 0, Eiszl d;=1, 6; € &, and ¢; € &, is an extension of an invertible
measure-preserving map ¥; from Y onto a subset Z;. If we set 0;= 6; o {; and

T; = 0; o ¢;, then 7, € & is an extension of a measure preservmg map 0 from Y
onto a subset A;. In this case, we have the relations T,J, Tg = Tc and

T¢1T91_ TTi , s0 that
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S S

i=1 i=1

S
Note that Ei:l d;T, € ch(®). Similarly, by setting & = 6, 01//-'1 and

n

1

1
;= 0, ° ¢;!, we obtain the equation

S S
W= La;Ty = 2 dl, T, ,
1 i=1 R

i=1

where 7; € ® is an extension of a measure-preserving map §; from Z; onto a sub-
set B;. Recall that Z; = ¢;(Y) and p(Z;) = M. Thus the theorem is proved.
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