APPROXIMATIONS OF DOUBLY SUBSTOCHASTIC OPERATORS

C. W. Kim

1. INTRODUCTION AND PRELIMINARIES

We prove three approximation theorems for positive contractions T on $L_1\left[0,\infty\right)$ having at least one of the two properties T1=1 and $T^*1=1$. The main results concern approximations of such operators by convex combinations of those operators induced by invertible measure-preserving maps on $\left[0,\infty\right)$ in well-known operator topologies.

Let X, \mathfrak{F} , and μ denote the nonnegative real half-line, the class of Lebesgue measurable sets, and Lebesgue measure. On X, we shall consider only \mathfrak{F} -measurable real functions (modulo μ -equivalence), and by a set on X we shall always mean an element of \mathfrak{F} . We shall omit the phrase "almost everywhere," it being understood wherever applicable. We assume $1 \leq p \leq \infty$. Let $L_p = L_p(X, \mathfrak{F}, \mu)$, and let $[L_p]$ be the Banach space of bounded linear operators from L_p into itself. We say that T is a *positive contraction* on L_p if $T \in [L_p]$, $Tf \geq 0$ for each f $(0 \leq f \in L_p)$, and $\|T\|_p \leq 1$.

For each positive contraction T on L_1 , the adjoint T^* determined by the equation $\int_X (Tf) \, g \, d\mu = \int_X f T^* g \, d\mu \ \text{for } f \in L_1 \ \text{and } g \in L_\infty \ \text{is a positive contraction on}$

 L_{∞} . The operators T and T* can be extended uniquely to positive linear operators on the cone of nonnegative numerical functions u and v as follows:

$$\label{eq:tu} {\rm Tu} \, = \, \lim_n \, {\rm Tf}_n \, , \qquad \mbox{where } \, 0 \leq {\rm f}_n \, \in \, {\rm L}_1 \, , \, \, {\rm f}_n \, \stackrel{\uparrow}{\mbox{\downarrow}} \, {\rm u} \, ,$$

$$T^*v = \lim_{n} T^*g_n$$
, where $0 \le g_n \in L_\infty$, $g_n \uparrow v$.

The extensions satisfy the equation $\int_X (Tu) \, v \, d\mu = \int_X u T^* \, v \, d\mu$. In particular, suppose T1 < 1. This condition is equivalent to the condition that

$$\int_{\mathbf{X}} \mathbf{T}^* \mathbf{g} \, \mathrm{d}\mu \, \leq \int_{\mathbf{X}} \mathbf{g} \, \mathrm{d}\mu$$

for $0 \le g \in L_1 \cap L_\infty$, and thus T^* is uniquely extended to a positive contraction on L_1 . The extended operator will also be denoted by T^* . Observe that in this case T is also a positive contraction on L_∞ . We shall always assume that T and T^* represent the extended operators.

Received March 5, 1971.

This work was supported in part by N.R.C. Grant A-4844.

Michigan Math. J. 19 (1972).

Let \mathfrak{D}_s be the set of positive contractions T on L_1 such that $T1 \leq 1$. The elements of \mathfrak{D}_s are called $doubly \ substochastic$ (d.s.s.) operators. Note that T is d.s.s. if and only if T^* is d.s.s. By the Riesz convexity theorem, d.s.s. operators are also positive contractions on L_p (1). A d.s.s. operator <math>T is called $weakly \ doubly \ stochastic$ (w.d.s.) or $weak^* \ doubly \ stochastic$ (w*.d.s.) according as T1 = 1 or $T^*1 = 1$. Let \mathfrak{D}_w and \mathfrak{D}_w^* denote the set of w.d.s. operators and the set of w*.d.s. operators. A d.s.s. operator T such that T1 = 1 and $T^*1 = 1$ is called $doubly \ stochastic$ (d.s.). If we denote by \mathfrak{D} the set of d.s. operators, then $\mathfrak{D} = \mathfrak{D}_w \cap \mathfrak{D}_w^*$. It follows readily that the sets of operators mentioned above are convex semigroups under multiplication. In particular, \mathfrak{D}_s and \mathfrak{D} are self-adjoint, that is, $\mathfrak{D}_s = \mathfrak{D}_s^*$ and $\mathfrak{D} = \mathfrak{D}^*$. Let Φ be the class of measure-preserving maps Φ from (X, \mathfrak{F}, μ) onto itself, and let Φ_1 be the class of maps $\Phi \in \Phi$ that are invertible and measure-preserving. Then each $\Phi \in \Phi$ gives rise to a d.s. operator T_{Φ} that is defined by the equation $T_{\Phi} f(x) = f(\Phi(x))$. For brevity, we also write Φ for $\{T_{\Phi}: \Phi \in \Phi\}$ and Φ_1 for $\{T_{\Phi}: \Phi \in \Phi_1\}$.

The contraction operators defined above have valuable discrete analogs. The idea is to replace L_p by ℓ_p . Then it follows readily that there is a bijection between the set of d.s.s. operators on ℓ_1 and the set of d.s.s. matrices. Similar remarks apply to w.d.s. (w*.d.s., d.s.) operators on ℓ_1 . By a d.s.s. matrix (t_{ij}) we mean an infinite matrix with nonnegative entries t_{ij} such that $\sum_j t_{ij} \leq 1$ for each i and $\sum_i t_{ij} \leq 1$ for each j. A d.s.s. matrix (t_{ij}) is called w.d.s. or w*.d.s. according as $\sum_j t_{ij} = 1$ for each i or $\sum_i t_{ij} = 1$ for each j. By a d.s. matrix we mean a d.s.s. matrix having the row sums and the column sums all equal to 1. A d.s. matrix in which there is exactly one entry 1 in each row and column is called a permutation matrix.

Since $\mathfrak{D}_s\subset \bigcap_{1\leq p\leq \infty}[L_p]$, we may topologize \mathfrak{D}_s by various operator topologies for $[L_p]$ $(1\leq p\leq \infty)$. By the L_p -weak (strong, norm) operator topology for \mathfrak{D}_s , we mean the weak (strong, norm) operator topology for $[L_p]$ restricted to \mathfrak{D}_s . J. R. Brown [1, Theorem 4, p. 370] showed that \mathfrak{D}_s is the closure of Φ_1 in the L_2 -weak operator topology, and that it is the closed convex hull of Φ_1 in the L_2 -strong operator topology.

In Section 2, we prove (Theorem 2.1) that \mathfrak{D}_w^* is the closed convex hull of Φ_1 in the L_1 -strong operator topology. It is also shown (Theorem 2.2) that \mathfrak{D} is the closed convex hull of Φ_1 in the L_1 -strong* operator topology, and that the convex hull of Φ_1 is a dense subset of \mathfrak{D} in the L_2 -strong* operator topology (see Section 2 for definitions of strong* operator topologies). The first part of Theorem 2.2 is a continuous analogue of a theorem of B. A. Rattray and J. E. L. Peck [7] as well as an analogue of a theorem of Peck [6] for d.s. operators. The latter part of the theorem is a sharper form of Brown's strong approximation for d.s. operators. In Section 3, we prove the L_2 -norm approximation theorem for w.d.s. operators of Hilbert-Schmidt type. Our results hold also when the underlying space X is the real line.

2. STRONG APPROXIMATIONS

For each positive integer n, let \mathfrak{F}_n be the σ -algebra generated by dyadic intervals $D_i^n = [(i-1)/2^n \ , \ i/2^n) \ (i=1, \ 2, \ \cdots),$ and let U_n be a conditional expectation operator defined by the equation $U_n f = E(f \mid \mathfrak{F}_n)$ for $f \in L_1 \cap L_\infty$, or equivalently by the equation

$$U_n f = \sum_{i=1}^{\infty} \left(2^n \int_{D_i^n} f \, d\mu \right) \chi(\cdot; D_i^n) \quad \text{for } f \in L_1 \cap L_{\infty}.$$

We shall denote the indicator (characteristic) function of a set A by $\chi(\,\cdot\,;A)$. In particular, we shall write $e_i^n=\chi(\,\cdot\,;D_i^n)$. It is easy to see that $U_n\in\mathfrak{D},\ U_n=U_n^*$, and $U_n\,U_m=U_m\,U_n=U_n$ if $n\leq m$. Observe that U_n is a projection on L_2 . Denote the identity operator by I. It follows essentially from the martingale convergence theorem [2, Theorem 4.1, p. 319] that $U_n\to I$ as $n\to\infty$ in the L_p -strong operator topology (L_p -s.o.t.), where $1\leq p<\infty$. Hence TU_n and $U_n\,T\,U_n$ converge to T in the L_p -strong operator topology ($1\leq p<\infty$).

Let n be a fixed positive integer. If we set $\mathfrak{F}_{n,p} = U_n(L_p)$ $(1 \le p \le \infty)$, that is, $\mathfrak{F}_{n,p} = \{U_n f: f \in L_p\}$, then $\mathfrak{F}_{n,p}$ is a closed subspace of L_p that is isomorphic to ℓ_p . Each $T \in \mathfrak{D}_s$ induces in a natural way a positive contraction $T_n: \mathfrak{F}_{n,2} \to \mathfrak{F}_{n,2}$ defined by the condition

$$T_n h = U_n Th$$
 for $h \in \mathfrak{H}_{n,2}$,

or equivalently by the condition

$$T_n U_n f = U_n T U_n f$$
 for $f \in L_2$.

Following P. R. Halmos [3, p. 118], we call T_n the *compression* of T to $\mathfrak{F}_{n,2}$, and T a *dilation* of T_n to L_2 . Since $\mathfrak{F}_{n,1} \subset \mathfrak{F}_{n,2}$, we have also the relation $T_n U_n f = U_n T U_n f$ for $f \in L_1$. In terms of the basis $\{e_i^n\}_i$ for $\mathfrak{F}_{n,2}$, the compression T_n is uniquely represented by the d.s.s. matrix (t_{ij}^n) [where $t_{ij}^n = 2^n (Te_j^n, e_i^n)$] as follows:

(2.1)
$$T_n(U_n f) = \sum_i \left\{ \sum_j t_{ij}^n 2^n (f, e_j^n) \right\} e_i^n \quad (f \in L_2).$$

We write $(f, g) = \int_X f g d\mu$. It is a straightforward exercise to show that T_n^* is the compression of T^* to $\mathfrak{P}_{n,2}$ and

(2.2)
$$T_{n}^{*}(U_{n}f) = \sum_{i} \left\{ \sum_{j} t_{ji}^{n} 2^{n}(f, e_{j}^{n}) \right\} e_{i}^{n} \quad (f \in L_{2}).$$

Clearly, (2.1) and (2.2) hold for each $f \in L_1$. On the other hand, for each d.s.s. matrix (s_{ij}) , we define a positive contraction S_n : $\mathfrak{H}_{n,1} \to \mathfrak{H}_{n,1}$ by the condition

$$S_n(U_n f) = \sum_i \left\{ \sum_j s_{ij} 2^n (f, e_j^n) \right\} e_i^n \quad (f \in L_l).$$

By the Schur test [3, p. 23], S_n extends uniquely to a positive contraction on $\mathfrak{P}_{n,2}$ (denoted also by S_n) so that

(2.3)
$$S_n(U_n f) = \sum_i \left\{ \sum_j s_{ij} 2^n (f, e_j^n) \right\} e_i^n \quad (f \in L_2).$$

We have also the relation

(2.4)
$$S_n^*(U_n f) = \sum_i \left\{ \sum_j s_{ji} 2^n (f, e_j^n) \right\} e_i^n \quad (f \in L_2).$$

We shall show that if (s_{ij}) is a permutation matrix, then the contraction S_n on $\mathfrak{F}_{n,2}$ has a unitary dilation that is induced by ϕ in Φ_1 . By an operator S_n on $\mathfrak{F}_{n,2}$ induced by a d.s.s. matrix (s_{ij}) we shall mean the operator S_n determined by (2.3).

LEMMA 2.1. Let S_n be the operator on $\mathfrak{F}_{n,2}$ induced by a permutation matrix (s_{ij}). Then there is a $\varphi \in \Phi_1$ such that

$$S_n U_n f = T_\phi U_n f$$
 and $S_n^* U_n f = T_\phi^* U_n f$ for $f \in L_p$ $(p = 1, 2)$.

Proof. Since (s_{ij}) is a permutation matrix, there exists a bijection σ from the set of positive integers onto itself such that $s_{i\sigma(i)} = 1$ for each i (therefore $s_{ij} = 0$ whenever $j \neq \sigma(i)$). Note that

$$X = \bigcup_{i=1}^{\infty} D_i^n = \bigcup_{i=1}^{\infty} D_{\sigma(i)}^n.$$

Let $\phi: X \to X$ be a point map of the form $\phi(x) = x + b_i$ for $x \in D_i^n$ such that $\phi(D_i^n) = D_{\sigma(i)}^n$ (i = 1, 2, ...). Clearly, $\phi \in \Phi_1$ and T_{ϕ} satisfies the conditions

$$T_{\phi} e_{i}^{n} = e_{\sigma^{-1}(i)}^{n}$$
 and $T_{\phi}^{*} e_{i}^{n} = T_{\phi^{-1}} e_{i}^{n} = e_{\sigma(i)}^{n}$.

Recall that $e_i^n = \chi(\cdot; D_i^n)$ (i = 1, 2, ...). It follows that for each f ϵ L $_p$ (p = 1, 2),

$$T_{\phi}U_{n}f = \sum_{i} 2^{n}(f, e_{i}^{n}) T_{\phi}e_{i}^{n} = \sum_{i} 2^{n}(f, e_{i}^{n}) e_{\sigma^{-1}(i)}^{n} = S_{n}U_{n}f$$
.

Similarly, $T_{\phi}^* U_n f = S_n^* U_n f$.

Clearly, T_{φ} in Lemma 2.1 is a unitary operator on L_2 . Moreover, since $\mathfrak{F}_{n,2}$ is invariant under T_{φ} , that is, since $T_{\varphi}(\mathfrak{F}_{n,2}) \subset \mathfrak{F}_{n,2}$, we see that $U_n T_{\varphi} U_n f = T_{\varphi} U_n f = S_n U_n f$ for $f \in L_2$. Hence the unitary dilation T_{φ} is indeed an extension of S_n to L_2 . The convex hull of $\Delta \subset \mathfrak{D}_s$ will be denoted by $ch(\Delta)$. From Lemma 2.1, we have at once the following proposition.

LEMMA 2.2. Let S_n be the operator on $\mathfrak{F}_{n,2}$ induced by a d.s. matrix (s_{ij}) that belongs to the convex hull of permutation matrices. Then S_n has a dilation (extension) S in $ch(\Phi_1)$ such that

$$S_n U_n f = S U_n f$$
, $S_n^* U_n f = S^* U_n f$ for $f \in L_p$ $(p = 1, 2)$.

When \mathfrak{D}_s is endowed with a topology \mathscr{I} , the closed convex hull of Φ_l will be denoted by $\mathrm{cch}\,(\Phi_l\colon\mathscr{I})$. We shall prove the following approximation theorem.

THEOREM 2.1.
$$\mathfrak{D}_{w}^{*} = \operatorname{cch}(\Phi_{1}: L_{1} - \text{s.o.t.})$$

LEMMA 2.3. For each w*.d.s. matrix (t_{ij}) , for each $\epsilon>0$, and for each positive integer N, there is a d.s. matrix (s_{ij}) in the convex hull of permutation matrices such that

$$\sum_{i} |t_{ij} - s_{ij}| < \epsilon \quad (j = 1, 2, \dots, N).$$

Proof. Suppose N is a positive integer and $0 < \epsilon < 1/2$. Since all column sums of (t_{ij}) are 1 by definition, there exists a positive integer n = n(ϵ , N) such that $\sum_{i>n} t_{ij} < \epsilon/4$ for each j $(1 \le j \le N)$. Choose a positive integer m such that n/m $< \epsilon/4$. Let p_{ij} be a nonnegative integer such that

$$p_{ij}\,<\,mt_{ij}\,\leq\,p_{ij}\,+\,1\ \ \text{when}\ \ t_{ij}\,>\,0\qquad\text{and}\qquad p_{ij}\,=\,0\ \ \text{when}\ \ t_{ij}\,=\,0\,\,.$$

Define the matrix (\mathbf{r}_{ij}) by the formula $\mathbf{r}_{ij} = \mathbf{p}_{ij}/m$. It is easy to show that $\sum_j \mathbf{r}_{ij} < 1$ for each i, $\sum_i \mathbf{r}_{ij} < 1$ for each j, and $0 < 1 - \epsilon/2 < \sum_i \mathbf{r}_{ij} < 1$ for each $j \le N$. We can construct a d.s. matrix (\mathbf{s}_{ij}) of the form $\mathbf{s}_{ij} = \mathbf{q}_{ij}/m$, where \mathbf{q}_{ij} is an integer $(0 \le \mathbf{q}_{ij} \le m)$, such that

$$0 \le s_{ij} - r_{ij} \le 1/m$$
 for i, j = 1, 2,

Since the entries s_{ij} take only finitely many distinct rationals, it follows from a theorem of J. R. Isbell [4, Proposition 2, p. 3] that (s_{ij}) belongs to the convex hull of permutation matrices. For each $j \leq N$,

$$\sum_{i} \left| t_{ij} - r_{ij} \right| \leq \sum_{i < n} \left(t_{ij} - r_{ij} \right) + \sum_{i > n} t_{ij} < n/m + \epsilon/4 < \epsilon/2 ,$$

and

$$\sum_{i} \left| \mathbf{r}_{ij} - \mathbf{s}_{ij} \right| = \sum_{i} \mathbf{s}_{ij} - \sum_{i} \mathbf{r}_{ij} < 1 - (1 - \epsilon/2) = \epsilon/2 ,$$

so that $\sum_i |t_{ij} - s_{ij}| < \epsilon$.

Remark. Since there is a bijection between the set of $w^*.d.s.$ matrices and the set of $w^*.d.s.$ operators on ℓ_1 , we may topologize $w^*.d.s.$ matrices by the strong operator topology for $[\ell_1]$, called the ℓ_1 -s.o.t. It is easy to show that the set of $w^*.d.s.$ matrices is closed in the ℓ_1 -s.o.t., so that by Lemma 2.3, it constitutes the closed convex hull of permutation matrices in the ℓ_1 -s.o.t.

Proof of Theorem 2.1. Note that both \mathfrak{D}_s and \mathfrak{D}_w^* are closed in the L_1 -s.o.t. It suffices therefore to prove that for each $T \in \mathfrak{D}_w^*$, each $\epsilon > 0$, and each $f \in L_1$, there is an $S \in \text{ch}(\Phi_1)$ such that $\|Tf - Sf\|_1 < \epsilon$. We may assume without loss of generality that f vanishes outside an interval [0, N], where N is a positive integer. Choose an f sufficiently large so that

$$\|Tf - U_n T U_n f\|_1 < \epsilon/3$$
, $\|f - U_n f\|_1 < \epsilon/3$.

Set $n_1 = 2^n N$. Let T_n be the compression of T to $\mathfrak{H}_{n,2}$. Let (t_{ij}^n) be the $w^*.d.s.$ matrix defined by $t_{ij}^n = 2^n (Te_j^n, e_i^n)$. Then

$$U_n T U_n f = T_n U_n f = \sum_{i} \left\{ \sum_{j < n_1} t_{ij}^n 2^n (f, e_j^n) \right\} e_1^n.$$

It follows from Lemma 2.3 that there is a d.s. matrix (s_{ij}) in the convex hull of permutation matrices such that

$$\sum_{i} \left| \left. t_{ij} - s_{ij} \right| \right| < \epsilon/3 \left\| f \right\|_1 \quad \text{ for } 1 \leq j \leq n_1 \,.$$

Let S_n be the operator on $\mathfrak{P}_{n,2}$ that is induced by the matrix (s_{ij}). By Lemma 2.2, S_n has a dilation S ε ch(Φ_1) such that

$$SU_n f = S_n U_n f = \sum_{i} \left\{ \sum_{j \leq n_1} s_{ij} 2^n (f, e_j^n) \right\} e_i^n.$$

It follows that

$$\| U_n T U_n f - S U_n f \|_1 = \| T_n U_n f - S_n U_n f \| \le \sum_{i} \left\{ \sum_{j < n_j} |t_{ij}^n - s_{ij}| (|f|, e_j^n) \right\} < \epsilon/3.$$

On the other hand, $\|SU_n f - Sf\|_1 < \epsilon/3$, and hence $\|Tf - Sf\|_1 < \epsilon$.

The example below shows that \mathfrak{D}_w is not closed in the L_1 -s.o.t.

Example. Let S be an operator on L_1 defined by the equation

$$Sf = \frac{1}{2} \int_{0}^{2} f d\mu \cdot \chi_{[1,2)} + \frac{1}{3} \int_{2}^{5} f d\mu \cdot \chi_{[2,3)} + \frac{1}{4} \int_{5}^{9} f d\mu \cdot \chi_{[3,4)} + \cdots$$

$$= \sum_{n=1}^{\infty} \frac{1}{n+1} \int_{a_{n}}^{b_{n}} f d\mu \cdot \chi_{[n,n+1)},$$

where $b_n = \frac{1}{2}n(n+3)$, $a_n = \frac{1}{2}(n+2)(n-1)$. Then $S \in \mathfrak{D}_S - \mathfrak{D}_W$.

Define w.d.s. operators T_n (n = 1, 2, \cdots) by the relation

$$T_n f = \frac{1}{n+1} \int_0^{n+1} f d\mu \cdot \chi_{[0,1)} + Sf.$$

Then

$$S^*f = \sum_{n=1}^{\infty} \frac{1}{n+1} \int_{n}^{n+1} f d\mu \cdot \chi_{[a_n,b_n)},$$

$$T_n^* f = \frac{1}{n+1} \int_0^1 f d\mu \cdot \chi_{[0,n+1)} + S^* f$$
 (n = 1, 2, ...).

Note that $S^* \in \mathfrak{D}_s - \mathfrak{D}_w^*$ and $T_n^* \in \mathfrak{D}_w^*$. A simple calculation yields the bound

$$\|T_n - S\|_1 \le 1/(n+1)$$
 $(n = 1, 2, \dots)$.

On the other hand,

$$\|T_n^*\chi_{[0,1)} - S^*\chi_{[0,1)}\|_1 = 1$$
 $(n = 1, 2, \dots).$

Let p be fixed (p = 1, 2). Following J. T. Schwartz [9, p. 39], we define the L_p -strong* operator topology (s*.o.t.) for \mathfrak{D}_s as the topology induced by ϵ -neighborhoods, an ϵ -neighborhood of T being defined as the set

$$\left\{\,S\colon \left\|\left(T\,-\,S\right)f_{i}\,\right\|_{p}\,<\,\epsilon\,,\;\; \left\|\left(T^{*}\,-\,S^{*}\right)g_{i}\,\right\|_{p}\,<\,\epsilon\,,\;\;i\,=\,1,\,\cdots\,,\,n\,\right\}\,,$$

where f_i , ..., f_n and g_i , ..., g_n are arbitrary elements in L_p . We can easily show that both \mathfrak{D}_s and \mathfrak{D} are closed in the L_1 -s*.o.t. In the L_2 -s*.o.t., \mathfrak{D}_s is closed; but it is not clear whether \mathfrak{D} is also closed. The L_1 -s*.o.t. for \mathfrak{D}_s has a discrete version, called the ℓ_1 -s*.o.t. for the set of d.s.s. matrices. In this topology, a neighborhood base at a d.s.s. matrix (t_{ij}) consists of sets of the form

$$\left\{ (s_{ij}): \sum_{i} |t_{ik} - s_{ik}| < \epsilon, \sum_{j} |t_{kj} - s_{kj}| < \epsilon, k = 1, 2, \dots, n \right\}.$$

We state without proof a theorem of Rattray and Peck [7].

LEMMA 2.4 (Rattray and Peck). The set of d.s. matrices is the closed convex hull of permutation matrices in the ℓ_1 -s*.o.t.

THEOREM 2.2.
$$\mathfrak{D} = \operatorname{cch}(\Phi_1: L_1-s^*.o.t.) \subset \operatorname{cch}(\Phi_1: L_2-s^*.o.t.).$$

Proof. The proof is similar to that of Theorem 2.1. Let p be fixed (p = 1, 2). Let f be a continuous function with compact support [0, N], where N is a positive integer. Given $T \in \mathfrak{D}$ and $\epsilon > 0$, we choose a positive integer n sufficiently large so that

$$\|\,Tf\,-\,U_n\,T\,U_n\,f\,\|_p\,<\,\epsilon/3\,,\qquad \|\,T^*f\,-\,U_n\,T^*\,U_n\,f\,\|_p\,<\,\epsilon/3\,,\qquad \|\,f\,-\,U_n\,f\,\|_p\,<\,\epsilon/3\,.$$

Set $n_1 = 2^n N$. Let T_n be the compression of T to $\mathfrak{H}_{n,2}$, and let (t_{ij}^n) be the d.s. matrix that represents T_n as (2.1). Then T_n^* is represented by the transpose of (t_{ij}^n) as (2.2). It follows from Lemma 2.4 that there is a d.s. matrix (s_{ij}) in the convex hull of permutation matrices such that

(2.5)
$$\sum_i \left|t_{ik}^n - s_{ik}\right| < \epsilon/3c \;, \quad \sum_j \left|t_{kj}^n - s_{kj}\right| < \epsilon/3c \;,$$

where $k=1,2,\cdots,n_1$ and $c=n_1\|f\|_{\infty}$. Let S_n be the operator on $\mathfrak{F}_{n,2}$ induced by the matrix (s_{ij}) . By Lemma 2.2, S_n has a dilation S in $ch(\Phi_1)$. Using (2.5) and the inequalities $\|f\|_1 < \|f\|_2 \sqrt{N} < \|f\|_{\infty} N$, we obtain the bounds

$$\| \mathbf{U}_{n} \mathbf{T} \mathbf{U}_{n} \mathbf{f} - \mathbf{S} \mathbf{U}_{n} \mathbf{f} \|_{1} \le \epsilon/3 \cdot 2^{n}, \quad \| \mathbf{U}_{n} \mathbf{T} \mathbf{U}_{n} \mathbf{f} - \mathbf{S} \mathbf{U}_{n} \mathbf{f} \|_{2} \le \epsilon/3\sqrt{2^{n}},$$

and thus

$$\|\mathbf{U}_{n} \mathbf{T} \mathbf{U}_{n} \mathbf{f} - \mathbf{S} \mathbf{U}_{n} \mathbf{f}\|_{p} < \epsilon/3$$
.

Similarly, it follows that

$$\left\|\,U_{n}\,T^{*}\,U_{n}\,f\,$$
 - $S^{*}\,U_{n}\,f\right\|_{\,p}\,<\,\epsilon/3$.

We see at once that

$$\left\| Tf - Sf \right\|_p < \epsilon \,, \quad \left\| T^*f - S^*f \right\|_p < \epsilon \,,$$

so that $\mathfrak{D}\subset\operatorname{cch}(\Phi_1;L_p\text{-}s^*.o.t.)$. Since \mathfrak{D} is closed in the $L_1\text{-}s^*.o.t.$, it follows that $\mathfrak{D}=\operatorname{cch}(\Phi_1;L_1\text{-}s^*.o.t.)$. This completes the proof.

3. NORM APPROXIMATION

By a d.s.s. operator T with kernel t(x, y) we mean a d.s.s. operator T of the form

$$Tf(x) = \int_{Y} t(x, y) f(y) d\mu(y) ,$$

where t(x, y) is a nonnegative measurable function on the product space $X^2 = X \times X$, and where $\int_X t(x, y) \, d\mu(y) \le 1$ and $\int_X t(x, y) \, d\mu(x) \le 1$. Furthermore, we say that

the operator T is of *Hilbert-Schmidt type* if its kernel t(x, y) belongs to $L_2(X^2, \mu^2)$, where $\mu^2 = \mu \times \mu$. Given such a $T \in \mathfrak{D}_s$, we see readily that $U_n T U_n$ has the kernel $t_n(x, y)$ of the form

$$t_n(x, y) = \sum_i \sum_j 2^n t_{ij}^n e_i^n(x) e_j^n(y)$$
,

where $e_i^n = \chi(\cdot; D_i^n)$ and

$$t_{ij}^{n} = 2^{n} (Te_{j}^{n}, e_{i}^{n}) = 2^{n} \int_{x^{2}} t(x, y) e_{i}^{n}(x) e_{j}^{n}(y) d\mu^{2}(x, y)$$
.

Moreover, we have the relations

(3.1)
$$\sum_{i} \sum_{j} (t_{ij}^{n})^{2} = \int_{X^{2}} t_{n}^{2}(x, y) d\mu^{2}(x, y) \leq \int_{X^{2}} t^{2}(x, y) d\mu^{2}(x, y) < \infty$$

and

(3.2)
$$\|T - U_n T U_n\|_2 = \|T^* - U_n T^* U_n\|_2$$

$$\leq \left(\int_{X^2} |t(x, y) - t_n(x, y)|^2 d\mu^2 \right)^{1/2} \to 0 \quad (n \to \infty).$$

If $Y\subset X$ and ψ_{α} is a measure-preserving map from Y onto a subset $Z_{\alpha}\subset X$, then ψ_{α} induces a d.s.s. operator $T_{\psi_{\alpha}}$ defined by the equation

(3.3)
$$T_{\psi_{\alpha}} f(x) = \begin{cases} f(\psi_{\alpha}(x)) & \text{on } X, \\ 0 & \text{on } X - Y. \end{cases}$$

The set of such d.s.s. operators will be denoted by $\Phi(Y)$. Let $\Phi_1(Y)$ be the set of operators $T_{\psi_{\alpha}} \in \Phi(Y)$ induced by invertible measure-preserving maps $\psi_{\alpha} \colon Y \to Z_{\alpha}$. It is easy to see that $T_{\psi_{\alpha}}^* = T_{\psi_{\alpha}^{-1}} \in \Phi_1(Z_{\alpha})$ when $T_{\psi_{\alpha}} \in \Phi_1(Y)$. For each $A \subset X$, we define I_A by the equation $I_A f(x) = \chi_A(x) f(x)$. Then I_A is a self-adjoint d.s.s. operator: $I_A = I_A^*$. We state the following L_2 -norm approximation theorem.

THEOREM 3.1. Suppose T is a w.d.s. operator of Hilbert-Schmidt type, and $\epsilon > 0$. Then there exist a positive integer M and a d.s.s. operator $V = \sum_{i=1}^s \ d_i T_{\sigma_i} \ \epsilon \ ch(\Phi \ [0,M]) \ such \ that$

$$\|\mathbf{T} - \mathbf{V}\|_2 < \epsilon$$
.

Moreover, there exist $T_{\xi_i} \in \Phi(Z_i)$ with $\mu(Z_i) = M$ $(1 \le i \le s)$ such that

$$\left\|T^* - \sum_{i=1}^s d_i T_{\xi_i}\right\|_2 < \epsilon$$
 .

The proof of the theorem follows readily from the following four lemmas. We begin with some notions on w.d.s. matrices [8, p. 188]. A d.s.s. matrix (t_{ij}) will be called an (m, ∞) -w.d.s. matrix if $\sum_j t_{ij} = 1$ for $1 \le i \le m$ and $t_{ij} = 0$ for i > m and $j \ge 1$. By an (m, n)-w.d.s. matrix (t_{ij}) we mean an (m, ∞) -w.d.s. matrix (t_{ij}) such that $t_{ij} = 0$ for $1 \le i \le m$ and j > n. It is easy to show that $n \ge m$ for each (m, n)-w.d.s. matrix. An (m, n)-w.d.s. matrix having only 0 and 1 as its entries is called an (m, n)-weak permutation (w.p.) matrix. The following result follows from the proof of Lemma 9 of [8, pp. 192-194].

LEMMA 3.1 (P. Révész). Let (s_{ij}) be an (m, ∞) -w.d.s. matrix. For each $\epsilon > 0$, there exist a positive integer $k_0 = k_0(\epsilon) \geq m$ and (m, k)-w.d.s. matrices $\rho = (r_{ij})$ in the convex hull of (m, k)-w.p. matrices for which

$$\sum_{i=1}^{m} \sum_{j} \left| \mathbf{s}_{ij} - \mathbf{r}_{ij} \right| < \epsilon \quad \text{whenever } k \geq k_0.$$

We shall establish an analogue of Lemma 2.1 for an (m, m')-w.p. matrix. In the following lemmas, we assume that n is a fixed positive integer.

LEMMA 3.2. Let R_n be the operator on $\mathfrak{F}_{n,2}$ induced by an (m, m')-w.p. matrix (r_{ij}) . Then there exists an invertible measure-preserving map ψ from $Y = \bigcup_{i=1}^m D_i^n$ onto a subset Z of X such that for $f \in L_2$, the d.s.s. operator T_{ψ} defined by (3.3) satisfies the conditions

$$T_{\psi}U_nf = R_nU_nf$$
 and $T_{\psi}^*U_nf = R_n^*U_nf$.

Moreover, ψ can be extended to $\phi \in \Phi_1$, with

$$\mathbf{T}_{\psi} = \mathbf{I}_{\mathbf{Y}} \mathbf{T}_{\phi} = \mathbf{T}_{\phi} \mathbf{I}_{\mathbf{Z}} \quad and \quad \mathbf{T}_{\phi}^{*} = \mathbf{I}_{\mathbf{Z}} \mathbf{T}_{\phi}^{*} = \mathbf{T}_{\phi}^{*} \mathbf{I}_{\mathbf{Y}}.$$

Proof. Since $m' \ge m$, there exists an injection

$$\sigma: \{1, 2, \dots, m\} \rightarrow \{1, 2, \dots, m'\}$$

such that $r_{i\sigma(i)}$ = 1 for $1 \le i \le m$ and hence all other entries r_{ij} are 0. Let

$$Y = \bigcup_{i=1}^{m} D_i^n$$
 and $Z = \bigcup_{i=1}^{m} D_{\sigma(i)}^n$.

Let ψ : $Y \to Z$ be a point map of the form $\psi(x) = x + b_i$ for $x \in D_i^n$, with $\psi(D_i^n) = D_{\sigma(i)}^n$, where $1 \le i \le m$. Clearly, ψ is an invertible measure-preserving map from Y onto Z. Note that

$$T_{\psi} e_{j}^{n} = \begin{cases} e_{i}^{n} & \text{if } j = \sigma(i) \text{ for some } i \ (1 \leq i \leq m), \\ 0 & \text{otherwise.} \end{cases}$$

It follows that

$$T_{\psi}U_{n}f = \sum_{i=1}^{m} 2^{n}(f, e_{\sigma(i)}^{n})e_{i}^{n} = R_{n}U_{n}f.$$

Similarly, we prove the equation for T_{ψ}^* .

If we set $Y' = \bigcup_{i=1}^{m'} D_i^n$, then

$$Y' - Y = \bigcup_{i=m+1}^{m'} D_i^n$$
 and $Y' - Z = \bigcup_{i=1}^{m'-m} D_{j_i}^n$.

Let $\phi: X \to X$ be such that

$$\phi(x) = \begin{cases} \psi(x) & (x \in Y), \\ x & (x \in X - Y'), \\ x + b_i & (x \in D_i^n \text{ and } \phi(D_i^n) = D_{j_i}^n, \text{ where } m + 1 \le i \le m'). \end{cases}$$
 belongs to Φ_1 and is an extension of ψ . Clearly, $T_{i/i} = I_V T_{i/i}$. On the

Then ϕ belongs to Φ_1 and is an extension of ψ . Clearly, $T_{\psi} = I_Y T_{\phi}$. On the other hand,

$$\begin{split} T_{\phi} I_{Z} f(x) &= T_{\phi} (\chi_{Z}(x) f(x)) = T_{\phi} \chi_{Z}(x) T_{\phi} f(x) = I_{Y} T_{\phi} f(x) , \\ (I_{Y} T_{\phi})^{*} &= T_{\phi}^{*} I_{Y}^{*} = T_{\phi}^{*} I_{Y} , \quad \text{and} \quad (T_{\phi} I_{Z})^{*} = I_{Z} T_{\phi}^{*} . \end{split}$$

This completes the proof.

The following is an immediate corollary of Lemma 3.2.

LEMMA 3.3. Let R_n be the operator on $\mathfrak{H}_{n,2}$ induced by an (m,m')-w.d.s. matrix ρ . Let ρ be a convex combination of (m,m')-w.p. matrices π_t ; that is, let $\rho = \sum_{i=1}^t c_i \pi_i$. Then there exist invertible measure-preserving maps $\psi_i \colon Y = \bigcup_{j=1}^m D_j^n \to Z_i \ (1 \le i \le t)$ such that

$$\left(\sum_{i=1}^{t} c_i T_{\psi_i}\right) U_n f = R_n U_n f, \quad \left(\sum_{i=1}^{t} c_i T_{\psi_i}^*\right) U_n f = R_n^* U_n f \quad (f \in L_2)$$

Moreover, there exist φ_l , ..., φ_t in Φ_1 such that φ_i = ψ_i on Y for $1 \leq i \leq t$,

$$\sum_{i=1}^{t} c_i T_{\psi_i} = I_Y \left(\sum_{i=1}^{t} c_i T_{\phi_i} \right) = \sum_{i=1}^{t} c_i T_{\phi_i} I_{Z_i},$$

and

$$\sum_{i=1}^{t} c_{i} T_{\psi_{i}}^{*} = \left(\sum_{i=1}^{t} c_{i} T_{\phi_{i}}^{*}\right) I_{Y} = \sum_{i=1}^{t} c_{i} I_{Z_{i}} T_{\phi_{i}}^{*}.$$

The following approximation, proved earlier for the case where the underlying space is the unit interval [5, Lemma 2.5, p. 524], may easily be shown by a minor modification of the argument given in [5, pp. 524-525].

LEMMA 3.4. There exist measure-preserving maps θ_1 and θ_2 from X onto itself such that

$$\left\| \left\{ \frac{1}{2} \left(T_{\theta_1} + T_{\theta_2} \right) \right\}^{2k} - U_n \right\|_2 \le 2^{-k} \quad (k = 1, 2, \dots).$$

Proof of Theorem 3.1. Let t(x, y) be the kernel for T. By (3.2), we can choose a positive integer n such that

$$\|T - U_n T U_n\|_2 = \|T^* - U_n T^* U_n\|_2 < \epsilon/4$$
.

Let T_n be the compression of T to $\mathfrak{H}_{n,2}$. Note that the w.d.s. matrix (t_{ij}^n) represents T_n and satisfies (3.1). We can therefore choose a positive integer M such that

$$\sum_{i>2^{n}M}\sum_{i}(t_{ij}^{n})^{2}<(\epsilon/4)^{2}.$$

Put m = 2^n M. Define the (m, ∞)-w.d.s. matrix (s_{ij}) by setting $s_{ij} = t_{ij}^n$ for $1 \leq i \leq m$ and $j = 1, 2, \cdots$, and $s_{ij} = 0$ elsewhere. Let S_n be the operator on $\mathfrak{F}_{n,2}$ induced by the matrix (s_{ij}). It can easily be seen that

$$\| \mathbf{U}_{n} \mathbf{T} \mathbf{U}_{n} - \mathbf{S}_{n} \mathbf{U}_{n} \|_{2} = \| \mathbf{T}_{n} \mathbf{U}_{n} - \mathbf{S}_{n} \mathbf{U}_{n} \|_{2} \leq \left(\sum_{i \geq m} \sum_{i} (t_{ij}^{n})^{2} \right)^{1/2} < \epsilon/4.$$

Similarly, $\left\| \mathbf{U}_{n} \, \mathbf{T}^{*} \, \mathbf{U}_{n} - \mathbf{S}_{n}^{*} \, \mathbf{U}_{n} \right\|_{2} = \left\| \mathbf{T}_{n}^{*} \, \mathbf{U}_{n} - \mathbf{S}_{n}^{*} \, \mathbf{U}_{n} \right\|_{2} < \epsilon/4$.

By Lemma 3.1, we can choose a positive integer M'>M and an (m, m')-w.d.s. matrix $\rho = (r_{ij})$, where m' = $2^n M'$, such that $\sum_{i=1}^m \sum_j \left| s_{ij} - r_{ij} \right| < \epsilon/4$. Here $\rho = \sum_{i=1}^t c_i \pi_i$, where $c_i > 0$, $\sum_{i=1}^t c_i = 1$, and the π_i are (m, m')-w.p. matrices. Let R_n denote the operator on $\mathfrak{P}_{n,2}$ induced by the matrix ρ . We have the inequalities

$$\|\mathbf{S}_{n}\mathbf{U}_{n} - \mathbf{R}_{n}\mathbf{U}_{n}\|_{2} \leq \left(\sum_{i=1}^{m} \sum_{j} |\mathbf{s}_{ij} - \mathbf{r}_{ij}|^{2}\right)^{1/2} \leq \sum_{i=1}^{m} \sum_{j} |\mathbf{s}_{ij} - \mathbf{r}_{ij}| < \epsilon/4.$$

Similarly, $\|S_n^*U_n - R_n^*U_n\|_2 < \epsilon/4$. By Lemma 3.3, the operator R_n has a dilation (extension) Q of the form $Q = \sum_{i=1}^t c_i T_{\psi_i}$, where each ψ_i is an invertible measure-preserving map from Y = [0, M] onto $Z_i \subset [0, M']$. Moreover, each ψ_i admits an extension $\phi_i \in \Phi_1$ with $Q = I_Y \left(\sum_{i=1}^t c_i T_{\phi_i}\right)$. Also,

$$Q^* = \sum_{i=1}^{t} c_i T_{\psi_i}^* = \sum_{i=1}^{t} c_i I_{Z_i} T_{\phi_i}^*,$$

where $T_{\psi_i}^* = T_{\psi_i^{-1}}$ and $T_{\phi_i}^* = T_{\phi_i^{-1}}$. Note that

$$\|R_nU_n - QU_n\|_2 = \|R_n^*U_n - Q^*U_n\|_2 = 0.$$

By Lemma 3.4, we can choose a positive integer k and a d.s. operator $\mathbf{P} = \frac{1}{2}(\mathbf{T}_{\theta_1} + \mathbf{T}_{\theta_2})$ with θ_1 , $\theta_2 \in \Phi$ such that $\|\mathbf{U}_n - \mathbf{P}^{2k}\|_2 < \epsilon/4$ and thus

$$\left\| \mathbf{Q} \mathbf{U}_n - \mathbf{Q} \mathbf{P}^{2k} \right\|_2 < \epsilon/4 \,, \qquad \left\| \mathbf{Q}^* \, \mathbf{U}_n - \mathbf{Q}^* \, \mathbf{P}^{2k} \right\|_2 < \epsilon/4 \,.$$

Set $V = QP^{2k}$ and $W = Q^*P^{2k}$. From the inequalities above, it follows that

$$\|T - V\|_{2} < \epsilon$$
, $\|T^{*} - W\|_{2} < \epsilon$.

Since $P^{2k} \in ch(\Phi)$, we may assume without loss of generality that

$$V = \sum_{i=1}^{s} d_i T_{\psi_i} T_{\theta_i} = I_Y \left(\sum_{i=1}^{s} d_i T_{\phi_i} T_{\theta_i} \right),$$

$$W = \sum_{i=1}^{s} d_{i} T_{\psi_{i}^{-1}} T_{\theta_{i}} = \sum_{i=1}^{s} d_{i} I_{Z_{i}} T_{\phi_{i}^{-1}} T_{\theta_{i}},$$

where $d_i > 0$, $\sum_{i=1}^s d_i = 1$, $\theta_i \in \Phi$, and $\phi_i \in \Phi_1$ is an extension of an invertible measure-preserving map ψ_i from Y onto a subset Z_i . If we set $\sigma_i = \theta_i \circ \psi_i$ and $\tau_i = \theta_i \circ \phi_i$, then $\tau_i \in \Phi$ is an extension of a measure-preserving map σ_i from Y onto a subset A_i . In this case, we have the relations $T_{\psi_i} T_{\theta_i} = T_{\sigma_i}$ and

$$\mathbf{T}_{\phi_{\mathbf{i}}}\mathbf{T}_{\theta_{\mathbf{i}}} = \mathbf{T}_{\tau_{\mathbf{i}}}$$
 , so that

$$V = \sum_{i=1}^{s} d_i T_{\sigma_i} = I_Y \left(\sum_{i=1}^{s} d_i T_{\tau_i} \right).$$

Note that $\sum_{i=1}^{s} d_i T_{\tau_i} \in ch(\Phi)$. Similarly, by setting $\xi_i = \theta_i \circ \psi_i^{-1}$ and $\eta_i = \theta_i \circ \phi_i^{-1}$, we obtain the equation

$$W = \sum_{i=1}^{s} d_{i}T_{\xi_{i}} = \sum_{i=1}^{s} d_{i}I_{Z_{i}}T_{\eta_{i}},$$

where $\eta_i \in \Phi$ is an extension of a measure-preserving map ξ_i from Z_i onto a subset B_i . Recall that $Z_i = \psi_i(Y)$ and $\mu(Z_i) = M$. Thus the theorem is proved.

REFERENCES

- 1. J. R. Brown, Doubly stochastic measures and Markov operators. Michigan Math. J. 12 (1965), 367-375.
- 2. J. L. Doob, Stochastic processes. Wiley, New York, 1953.
- 3. P. R. Halmos, A Hilbert space problem book. Van Nostrand, Princeton, 1967.
- 4. J. R. Isbell, *Infinite doubly stochastic matrices*. Canad. Math. Bull. 5 (1962), 1-4.
- 5. C.-W. Kim, Uniform approximation of doubly stochastic operators. Pacific J. Math. 26 (1968), 515-527.
- 6. J. E. L. Peck, Doubly stochastic measures. Michigan Math. J. 6 (1959), 217-220.
- 7. B. A. Rattray and J. E. L. Peck, *Infinite stochastic matrices*. Trans. Roy. Soc. Canada, Sect. III. (3) 49 (1955), 55-57.
- 8. P. Révész, A probabilistic solution of Problem 111 of G. Birkhoff. Acta Math. Acad. Sci. Hungar. 13 (1962), 187-198.
- 9. J. T. Schwartz, W*-algebras. Gordon and Breach, New York, 1967.

Simon Fraser University Burnaby, British Columbia, Canada