NECESSARY AND SUFFICIENT CONDITIONS
FOR WEYL’S THEOREM

Karl Gustafson

1. INTRODUCTION

H. Weyl [26] showed that if T is a bounded self-adjoint operator, then the es-
sential spectrum o.(T) consists of the points remaining in the spectrum o(T) after
one excludes all eigenvalues of finite multiplicity that are isolated points of o(T);
that is,

(*) - 0¢(T) = o(T) - mpo(T).

Using current terminology, one says that Weyl’s theorem holds for the operators T
that satisfy (*); these are the operators, then, whose essential spectra have the
same character, in the sense (*), as in the self-adjoint case. That (*) remains true
for normal operators, by the spectral theorem, was observed by J. Schwartz in [23];
L. A. Coburn [5] showed that (*) holds for hyponormal operators and for Toeplitz
operators; V. Istratescu [13] showed (condition (8) of [1]) that if each point of the
spectrum o(T) is a bare point of o(T), that is, if it lies on the circumference of
some closed disc that contains o (T), and if (condition @ of [1]) the restriction Ty
of T to each of its invariant subspaces M has a normaloid resolvent, that is, if

[(x - Tyt -1 =d(x, 6(Tyy)) for all A not in 0(Ty;), then (*) holds for T. S.K.
Berberian [1] showed that sufficient for (*) to hold is that

(1) (condition (8') of [1]) each eigenvalue of finite multiplicity is a semibare
point of o(T), that is, it lies on the circumference of some closed disc containing no
other point of o(T), and

(1') (condition (@') of [1]) the restriction Tp; of T to each of its reducing sub-
spaces M has a normaloid resolvent. In addition (see [1, Examples 6, 3, Lemma 2,
Corollary 1]) it has been observed that (*) holds for seminormal operators. More-
over, in [1] Berberian proves a general theorem including many of the previous re-
sults, namely, that (*) holds for a bounded operator T on a Hilbert space if

(i) T is reduced by each of its finite-dimensional eigenspaces, in other words,
N(T - A) € N((T - A)*) for all A, and

(ii) the restriction Ty4 of T to each of its reducing subspaces M has the prop-
erty that every isolated point of 0(Tyy) is an eigenvalue of Ty; (this is condition (a¢"')

of [1]).

The purpose of this paper is to determine rather completely when (*) holds for
an arbitrary operator T, by giving several conditions that are both necessary and
sufficient for (*); the first ((1i) of Theorem 1) reflects the viewpoint implicit in
Berberian’s condition (i), namely, that of a certain type of (partial) reducing behav-
ior by the eigenspaces of T. Then, in (2), (3), (4), and (5) of Theorem 1, we present
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several other interesting viewpoints, each yielding conditions that are necessary and
sufficient for Weyl’s theorem to hold; namely, in terms of

(2) discontinuities of the minimum modulus function,

(3) finite ascents and descents,

(4) algebraic versus geometric multiplicities and eigenspace gaps, and
(5) the boundary 90 of the spectrum and poles of the resolvent operator.

We give some other related conditions in the corollaries that follow; also, by means
of examples we indicate the sharpness of the various conditions for (*), and, in par-
ticular, we show that among the classes of normal-like operators the sufficiency of
(*) does not extend significantly beyond seminormal operators.

While the previous investigations of (*) were concerned with bounded operators
T on a (complex) Hilbert space, we shall consider (*) for arbitrary closed operators
T (if T is not closed, (*) holds trivially) that are densely defined in a (complex)
Banach space X; except where we specify the contrary, this will be our setting. In
particular (see Corollary 4), we show that (*) holds for unbounded formally semi-
normal operators in a Hilbert space; this interesting class of operators includes the
formally normal operators studied by Coddington [6] and others.

We use Fredholm theory extensively (where we give no other reference, see
Kato [15], for example). For further information on (*), we refer the reader to
Berberian [2], Schechter [21], Gustafson and Weidmann [11], and the references
therein.

2. NECESSARY AND SUFFICIENT CONDITIONS

The essential spectrum ¢ e(T) in the present paper is identical with the set
o4(T) of [11], with the set 0o (T) of [21], and with the set w(T) = ﬂ o(T + B), the

e
intersection being taken over all compact operators B; that is, the essential spec-

trum o.(T) is the complement in the (complex) scalars of the set
Ay = {)\I A - T is a Fredholm operator with index i(T) = 0} .

We recall that a closed operator T is said to be a Fredholm operator if R(T) is
closed, a(T) =dim N(T) is finite, and B(T) = codim R(T) is finite; if T and R(T) are
closed and if at least one of @(T) and B(T) is finite, T is said to be a semi-Fredholm
operator with index i(T) = a(T) - B(T). In (*), myy denotes the set of values A that
are isolated points of the spectrum B(T) such that 0 < a(A - T) < «; in other words,
Tgg is the set of isolated eigenvalues of finite geometric multiplicity.

It will be convenient to introduce the notation Aj = Aiingular for the values X in
A, that are also eigenvalues (that is, for which a(x - T) > 0); since Aﬁonsmg‘ﬂar is
the resolvent set p(T), we see that for each operator T the scalars constitute the
disjoint union of p, A%, and o, , and that Weyl’s theorem (*) holds for T if and o’nly
if Aj=m7,, .

We now replace Berberian’s condition (i) with the following requirement, which
we denote by ().

(A) In the case of a Hilbert space, the condition (}) is said to be satisfied at a
particular A if
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N(T - A) n N[((T - A)*)"]

is nontrivial, for some positive integer n, which may depend on A; in the case of a
Banach space, the condition (A) is said to be satisfied at a particular A if

{N(T - N} - {R(T - 1"}

is nontrivial, for some positive integer n, which may depend on A.

One might convey the meaning of (A) in words by saying that T is nof ifevatively
eventually anti-veduced by N(T - 1), or (less accurately), that N(T - ) partially ve-
duces T. Alternately, as will become clear in the demonstration of Theorem 1 be-
low, (A) corresponds to a known decomposition of X into “invariant pairs” of sub-
spaces (see [15, p. 240] and the references therein).

We recall the minimum modulus of T, namely,
T) = inf || Tx|{/d(x, N(T)) (x € D(T), x ¢ N(T)),

and for convenience let us denote by y(x) the minimum modulus function y(A - T)
for an operator T under consideration. Also we recall (see for example Taylor
[25]) that the ascent of T at Ay is the smallest n such that

N((xo - T)") = N((xo - T)**) ,
and the descent of T at Ay is the smallest n such that
R((2o - T)™) = R((xo - T .
Also, each Ay in 7y has an algebraic multiplicity dim P(X), where P is the alge-

braic eigenprojection P = (2771)'l S (- T)-l d\; here T denotes any rectifiable

r
simple closed curve containing Ag in its interior and the rest of the spectrum o (T)

in its exterior. Finally, let
6(x, xg) = O(N(T - A), N(T - X)) = sup d(xy, N(T - 1y)) (xp € N(T - ), |x,]| = 1)

denote the gap (see [15, p. 197]) between the subspaces N(T - A) and N(T - Ag), and
let us say that T satisfies the eigenspace gap (lower bound) condition at an eigen-
value Xq if there exists a sequence {1,} such that A, — Ao and either

I)\n - Aol = O(ﬁ(?\n, lo)), or N(T - )Ln) = {0}.

THEOREM 1. Each of the following is a necessary and sufficient condition for
Weyl's theovem (¥) to hold for T.

(1i) Every X\ in A} satisfies (), and
(1ii) every X in wmqgq satisfies the condition y(\) > 0.
(2) v(X) is discontinuous at every X in AZU mgq.
(31) T has finite ascent at every » in A, and
(3ii) T has finite descent at every A in Too -
(4i) Every X in AZ satisfies the eigenspace gap condition, and

(4ii) every X in m,, also has finite algebraic multiplicity.



74 KARL GUSTAFSON

(51) Ay C 90, and
(5ii) every A in myq is a pole of the vesolvent operator.
Proof. If x € A, then N[((T - 2)*)™] = R((T - M)™ (see [9]), and consequently
the Hilbert-space version and the Banach-space version of condition (X) coincide;
therefore we shall consider only the Banach-space version. Let Ay be in AZ; then

all A in a small neighborhood of Ay are also in AZ , and moreover one knows (see
[15, pp. 241-242]) that a(x - T) is constant for all A in a small deleted neighbor-
hood of Ag, and that a(x - T) < a(rg - T) in that neighborhood if and only if (\g)
holds. Supposing then that every X in A} satisfies (1), pick some A] # Ao within
this deleted neighborhood, and suppose a(x; - T) # 0; then, for all X in a sufficiently
small deleted neighborhood of A, it follows from (x;) that a(x - T) < a(x; - T),
and this contradicts the constantness of a(Xx.- T) in the original deleted neighborhood.
Conversely, if (*) holds, then A% C Tgg, and by the same reasoning, (1) holds for
each Ay in Aj. Thus (1i) holds if and only if A§ C my,. Again by the same reason-
ing, we see that myq C A} if and only if (1ii) holds; for if Wmgg) > 0, then

i(Ag - T) =i(x - T) = 0 for each Aj in mg and for all nearby A, so that 7y C Aj;
and since always y(AZ) >0, mgo C AZ implies that y(mgq) > 0.

Concerning (2), suppose (1) is discontinuous at every X in A%, and, in particu-
lar, at Xg in Aj. Since y(A - T) > 0 for all X near Ag, it follows from [10, Corol-
lary 5.74] that a(x - T) < a(xg - T); for otherwise, ¥ would be continuous at \g.
Since all nearby values X are also in AZ , the discontinuity of ¢(A) requires that
a(x - T)=0 in A}, as in the proof of (1i) above; hence A§ C myp. To see that
Too C Ay if and only if ¥()) is discontinuous at each A in mgq , we note that if A is
in myq , then necessarily ¥(A) = ||(x - T)-1]|-1 — 0 as X — Xy ; hence the discontinu-
ity of ¥ on 7w,y is equivalent to the condition '}/(11'00) > 0, which by (1ii) is equivalent
to the inclusion myg C A§. Similarly, if A§C 7y, then necessarily 7{(xg) > 0 and
y(A - T) = 0 as X — Ay for each Ay in AJ; this completes the argument for (2).

From a result of M. Schechter [21, Theorem 1.1] it follows that A} C mgq if and
only if (31i) holds (observe that in the notation of [21], p(xg) < « if and only if T has

finite ascent at 2gy). From a theorem of Lay [16] (see also Taylor [25] and the
references therein), it follows that if T has finite descent at Ay in 7gq, then Ay is a
pole of the resolvent operator, and hence (see the discussion concerning (5) below)

Moo C AZ if and only if (31ii) holds.

The eigenspace gap condition of (4i) is motivated by a result given by R. Bouldin
[3] (Corollary 6 below). If some Ay in AJ is not in 7y, then all A in some small
neighborhood of Ay are also eigenvalues of T, and by the gap order condition there
exist sequences {2 } and {x,} such that A, — XAy, x,, lies in N(T - A,), and

(T - ag)x, || /dx, , N(T - xp)) =[x, - 2p]/ 800, , 2o) — 0;

this contradicts the fact that (T - 7‘0) > 0. The necessity was artificially taken care
of by the second condition N(T - A ) = {0}. The main point of (4) is to observe that
Too C A if and only if (4ii) each Mg in 7y also has finite algebraic multiplicity.
The sufficiency of this assertion follows from the well-known fact that when

dim P < o, then Ag - T is a Fredholm operator, and then i(Ag - T) = 0, because of
the nearby resolvent points. To establish the necessity, we note that if dim P = o«
then the approximate nullity @'(Arg - T) is also infinite [15, p. 239]; but the closed
range R(rg - T) implies that a@'(Ag - T) = a(rp - T) < .



NECESSARY AND SUFFICIENT CONDITIONS FOR WEYL’S THEOREM 75

By the arguments used above, (5i) holds if and only if A} C Tyo (for sufficient
conditions for Aj C 30, see Corollary 8). It is well-known that if (5ii) is satisfied
and Ay in 7gg is a pole of order n, then R(P) = N((xy - T)"). Since N((ry - T)") is
finite-dimensional, mgg C A}, as in (4ii). Conversely, if mgg C Aj, then dim P < =
for each XAy in mgq; it follows that R(P) = N((x, - T)") for some n = n(};), for each
Ao in mgg, so that (g - T)™ P =0 for all m > n; therefore X\ is a pole.

We remark that the closed-range theorems provide other ways of verifying the
basic condition '}/(7700) > 0. For example, each of the following is a sufficient condi-
tion for y(rg) > 0: R(x, - T) is closed, R((x, - T)*) is closed, »((x, - T)*) >0,
R(Ay - T) = *N((xg - T)%), R((Ay - T)*) =N(xy - T)*, a'(xy - T) is finite, B(xy - T)
is finite.

3. COROLLARIES AND EXAMPLES

Earlier investigations of (*) have proceeded (roughly) along two different lines
of development, namely, the consideration of the various classes of normal-like
operators, and the placing of special conditions on the spectrum, for example, the
Eoz)j (a'), (@), (a"), (B), (B"), (Gy), (G]), and reducibility conditions of [1], [2], [3],

13].

Let B(H) denote the set of all bounded operators on a Hilbert space H. As con-
cerns the first of the two directions mentioned above, the principal classes of
normal-like operators on a Hilbert space are (in order of increasing generality) the
classes of normal, quasi-normal, subnormal, hyponormal, seminormal, linearly
normaloid, normaloid or convexoid, and spectraloid operators (see [8] for a brief
summary). We recall that T (T e B(H)) is hyponormal if |Tx| > | T*x]|, semi-
normal if either T or T* is hyponormal, linearly novmaloid if aT + 8 is normaloid
for all scalars « and B, normaloid if the numerical radius |W(T)| is equal to the
operator norm ||T|, convexoid if the convex hull of o(T) is the closure of the nu-
merical range, and speciéraloid if the spectral radius |o(T)| is equal to the numeri-
cal radius |W(T)|.

The following general result, mentioned in the introduction, combines both di-
rections of development.

COROLLARY 1 (Berberian [1]). If T € B(H) is a bounded operator on a Hilbert
space satisfying (i) and (ii), then Weyl's theovem (3) holds for T.

Proof. Condition (i) implies (1i) of Theorem 1, and (i) and (ii) together imply
(1ii) of Theorem 1; for if Ay is in g, then

vxo) = inf [ - T)m|/|m]| >0,
m€N(A,-T)+
since Ag - T restricted to N(xg - T)* is invertible, by (ii).
COROLLARY 2 (Coburn [5]). If T € B(H) is hyponovmal, then (*) holds for T.

Proof. As in [1], this follows from Corollary 1, since hyponormal operators are
known to satisfy (i) and (ii) (see Stampfli [24]). For later reference, we now give
another proof,

Since T - X is also hyponormal, we have the inclusion N(T - A) < N(T - A)*, and
hence Aj C Tgg, by (11); let us note that || (T - ?\)x”'2 < “ (T - A x", so that a
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hyponormal operator has ascent 1 at every eigenvalue, and that therefore (3i) also
applies. If Ag € mgg and I" =C is a sufficiently small circle of radius r and center
Xo, then ||[(x - T)-1||-1 =r for X in C (see [24]), and therefore

||(T-AO)P|]=§1—7; S -2 -T)lan | <r
C

Hence R(P) = N(T - 1), and consequently nyo C Aj by (4ii).

COROLLARY 3 (Berberian, Schechter, see [1]). If T € B(H) is seminormal,
then (*) holds for T.

Proof. As in[1], this follows immediately from Corollary 2 after it is estab-
lished [1, Examples 6 and 3, and Lemma 2] that 7y0(T*) = 74((T), since the sym-
metry condition always implies (see [10], for example) that o, (T*) = 0. (T). An al-
ternate proof, to be used later, is as follows.

Since by Corollary 2 above, (*) already holds for hyponormal T, let T* be
hyponormal. Each A, in the set

AY(T) = A(T*) = 74,(T*)

is an isolated point of the spectrum, with @(xy - T) = @((xy - T)*); hence
AY(T) C mgo(T). I Xy € mpg, then

(T - 2)P| < r?max ||[(x - T) Y| = rZ max |[(A - )Y =r,
" AEC AEC

so that R(P) = N(T - 1), and hence 7y C A}, by (41ii).

In the present context (of unbounded operators) we should ask whether (*) holds
for some unbounded analogues of the seminormal operators. We shall say that a
closed operator T in a Hilbert space is formally hyponormal if | Tx| > | T*x|| on
D(T) c D(T*), and we shall say that an operator T defined on a dense subspace in a
Hilbert space is formally seminovrmal if either T or T* is formally hyponormal.
We note that the formally hyponormal operators include closed operators T for
which D = D(T* T) = D(TT*) and for which T* T - TT* > 0 on D; the verification of
this is similar to that for normal operators: since D is a core for both D(T) and
D(T*), since T dominates T* on D, and since T* is closed, it follows that
D(T) < D(T*) and || Tx” > |[ T*x“ on D(T) as well. The formally seminormal oper-
ators constitute a nontrivial class, and in particular, the class of formally hyponor-
mal operators includes the class of formally normal operators (H Tx” = “T*x“ on
D(T) € D(T*); see E. A. Coddington [6] and E. Nelson [17], and the references there-
in). The class of formally normal operators in turn includes the unbounded self-
adjoint, normal, and closed symmetric operators; that (*) holds for a closed, sym-
metric, nonself-adjoint operator T can be seen directly from the deficiency index
theory, from which it is easily verified that both 7y(T) and A3(T) are empty.

COROLLARY 4. If T is a formally seminormal opevator in a Hilbevl space,
then (*) holds for T.

Proof. That (*) holds for formally seminormal operators follows exactly as in
the proof of Corollary 3 given above, once we know that (*) holds for formally hypo-
normal operators and that (A - T)-! is hyponormal for each A in the resolvent set
near ig € mo(T), for a formally hyponormal operator T. We first establish the
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latter fact (our proof differs from that given for bounded T in [24]). Because formal
hyponormality is preserved under translation, it suffices to consider the case where
T is formally hyponormal and T-! € B(H); letting A = (T-1)* T, we see that the hy-
ponormality of T-1 is equivalent to the condition |A|| < 1. The operator A is
bounded, for A* = T*T-1 has domain D(A*) = H, since D(T) € D(T*); and

|All = [|a*]| <1, because || T* T-!x| < |x| for all x. That (*) holds for formally
hyponormal operators follows exactly as in the proof of Corollary 2 given above.

Another useful version of 0, is 0¢(T); 0 ¢(T) is 0.(T) plus all limit points of
the spectrum, and hence we may, as Weyl did, regard o ¢(T) as the set of limit points
of the spectrum, if we include all eigenvalues of infinite algebraic multiplicity. Let
us note that o ¢(T) is identical with the set og(T) of [11], with the set o,.,,(T) of

[21], and with the set o of [4].

Since 0, - 0, consists of the values A in AZ that are not isolated points of the
spectrum, we can state the following result; the second part generalizes [2, Proposi-
tions 5.3 and 5.5]. The verification is straightforward but tedious, and is therefore
omitted.

COROLLARY 5. 0. = 0y whenever (*) holds for eithey T or T*, and if and
only if A§C mgg. Let 7 and 7' be defined as in [2] for those T € B(H) that ave
reduced by their finite-dimensional eigenspaces; then o9 =0,> 7> 7'; and if (*)
holds, then cp=17".

Thus one can use any of the five criteria in Theorem 1 to determine whether
0e =0y . For example, Bouldin [3] defines N(T - 1) to be “not an asymptotic eigen-
space” provided there exists some 6 <1 such that |(f, g)l < 6 whenever
f € N(T - 2), ”fH =1= ||g|| ,and g is an eigenvector for some eigenvalue distinct
from A, and he gives the following result.

COROLLARY 6 (Bouldin [3]). If T is an operator on a Hilbevt space, and if T
possesses no finite-dimensional asymptotic eigenspaces, then o (T) = 0 o(T).

Proof. T satisfies the eigenspace gap condition (4i); for if some Ag in Ai is
not in 7y, , then for all A near A, and for all x) in N(x - T) with H X)\ | = 1, we
have the uniform lower bound &(x, Ag) > d(x, , N(T - Ag)) > (1 - 5)1 /2

COROLLARY 7. If meas(0(T)) =0, then o, =0, , and then (*) holds if and
only if y(my,) > 0.

Proof. Whenever meas(A}) =0, then A C 7 .

Concerning the second direction of investigation of (*), we note that the weakest
pair of special conditions on the spectrum mentioned in [1] are (a¢™) and (8'), and,
as Berberian observed in [1, after Corollary 2], (*) holds for an operator satisfying
(a™), (B'), and (G,); for the meanings of (@™) and (B8'), see the introductory com-
ments; T is said to satisfy (G,) if " (r-T)-! H -1 = d(x, o(T)) for all A in the resol-
vent set for T. We observe next (Corollary 8, below) that a generalization of (8')
and a variant of (@™) are necessary and sufficient for (*) to hold. Consider the
conditions

(B") each eigenvalue of T of finite (geometric) multiplicity lies in the boundary
of the spectrum 20 (T), and

(B™) AX(T) c 30(T);

We have the sufficient conditions (8') => (8") = (8"), and as we saw in (5i), (8")
holds if and only if AZ C 7y
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On the other hand, (1ii) implies that Toog © AZ if and only if T satisfies the
condition

m

(ag) ¥(xg - T) >0 for each Ay in 7yq;

in the case of a bounded operator T on a Hilbert space, this is equivalent to the con-
dition that the restriction of T - Ay to N(T - 2y)* has a bounded inverse for each
Ao in mgg. A stronger condition is

(a'é) ” (T - 2)-1 || = O(r ™) for some n, where r =d(x, o(T)), for all A suffi-
ciently close to Ay, for each Ay in 7 ;

stronger yet, but generalizing the behavior of the resolvent operator for a hyponor-
mal operator, is the condition

(ag) (A - T)-! is spectraloid in a neighborhood of 7 ;
denote the previously mentioned condition G; by (@), that is,

(ag) (x - T)-! is normaloid for all X in p(T);

LIt

then (ag) = (ag) = (ag) = (ag). To see the sufficiency of (oz'c'}) and (a'G), recall
that

fr =20 Pl < e max - 75

under (a'&), we then have the bound || (T - AO)nP” < Mr, and hence
R(P) = N((T - 2g)") ,

which is finite-dimensional for g in 7. In considering (ag), let k denote the
equivalence ratio between the numerical radius and the operator norm; it is known
that 2 <k < e, the exact value of k depending on the particular Banach space and
numerical range under consideration. Using the spectral mapping theorem, one ob-
tains the relations

I(T - 2)P| < kr? max [W((x - T)™1)| = ke max [o((x - D] = ke,
C C

so that R(P) = N(T - r,). We also note that since (T - 2o)" P is quasi-nilpotent, and
since clearly a quasi-nilpotent operator is zero if and only if it is spectraloid, one
can replace (@) by the weaker condition that some (T - XA)" P is spectraloid.
Summarizing, we have the following proposition.

COROLLARY 8. (*) holds for T if and only if T satisfies (ag) and (B"); the
other special conditions on the spectvum mentioned above ave also sufficient for (*).

By means of the following examples we indicate the sharpness of the 'various
conditions for (*).

Let T, be any left-shift operator with nonzero weights of magnitude not greater
than 1 and decreasing to zero, so that T is quasi-nilpotent and

for example, let Te; = {0}, Te, = n~! e, (mn=1,2,-). Then (*) does not hold

for T;, even though T, (vacuously) satisfies both (a'™) and (B'), the weakest pair of
conditions mentioned in [1]. ‘ .
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Although it is necessary that (x) hold for all A in mgq in order that myq C A],

it is not sufficient, as may be seen by letting T, be the direct sum of T3 and T4,
where T is a one-dimensional zero operator and T, is any right shift weighted in
the same way as T, above; then o(T,) = 0,(T,) = 750(T,) = {0}, even though ({0})
holds. This explains the appearance of the stronger condition (1ii). Similarly, T,
shows that although it is necessary that T have finite ascents on myg for (*) to

. hold, it is not sufficient, since N(T,) = N(T%); for this reason, one needs the stronger
(descent) condition (3ii).

Finally, since (*) is true for all seminormal operators and all Toeplitz opera-
tors, and since these operators are convexoid and the convexoid property is transla-
tion-invariant, it is natural to ask whether (*) extends to all convexoid operators.
The following example shows that this is not the case, and it also shows that among
normal-like operators, (*) does not extend appreciably beyond the seminormal ones,
since, by this example, (*) does not even extend to the linearly normaloid operators
(nor, for that matter, to the class Cs of [12]).

Let Tg be an “annulus” normal operator with
0(Tg) = 0.(Ts) = A, = {A] 0<a<|r] <1};

for example, take Ty to be a diagonal operator whose diagonal elements constitute a
dense countable subset of the annulus A_, and let Ty be the direct sum of T, and
T Then

5 .

O’(Té) = Ge(Té) = AaU {0} ,

while the closure of the numerical range W(Tg) is the unit disc. Clearly, T¢ is con-

vexoid and normaloid. Moreover, T¢ is linearly normaloid; W(Tg) is a spectral set
(in the von Neumann sense; see von Neumann [18] and [20, p. 437]) for T¢ , and
therefore T , being in the class Cg of S. Hildebrandt [12], is linearly normaloid.
But (*) does not hold for T , because {0} is an isolated eigenvalue of finite (geo-
metric) multiplicity.

C. R. Putnam [19] has recently shown that if meas ¢(T) =0 and T is seminor-
mal, then T is normal; in that context, we remark that Ty with a =1 provides an
example of a nonnormal but linearly normaloid C; operator with meas ¢(T) = 0.

Additional Remavk. The author would like to thank S. K. Berberian for pointing
out two recent papers that also are concerned with unbounded seminormal operators.
In [14], an operator T is called Zyponormal if it is closed and densely defined, and if
D(T) = D(T*) and T*T - TT* > 0. As was shown above Corollary 4, closed opera-
tors T for which D = D(T*T) = D(TT*) and for which T*T - TT* > 0 on D form a
(proper) subclass of our formally hyponormal operators. In [7], an operator T is
called seminormal if it is closed and densely defined, and if either T or T* is hypo-
normal [T is called hyponormal if it is closed and densely defined, and if
D(T) = D(T*) and || T*x| < || Tx|| on D(T)]. The following is an equivalent restate-
ment of this definition of seminormality: An operator T is seminormal if it is
closed and densely defined, and if D(T) = D(T*) and either ||Tx| > [|T*x| every-
where on D(T) or ” Tx|| < H T*X” everywhere on D(T). This class of operators is
clearly a (proper) subclass of our formally seminormal operators.

Recently, M. Schechter [22] has also obtained necessary and sufficient conditions
for (*) in a setting of closed operators in a Banach space, as in the present paper.
Although there is some overlap with our results (for example, Theorem 2.1 of [22] is
our Corollary 8, by the closed-range theorem), in [22] the emphasis is on reducing
subspaces, as in [1] and [2]. [22] also contains a proof of the fact that (*) holds if A
is seminormal and A € B(H). '
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