IDEALS OF COMPACT OPERATORS ON HILBERT SPACE
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This paper is dedicated in sorrow to the memory
of our late colleague, David Topping.

1. INTRODUCTION

Let ¢ be a separable, infinite-dimensional Hilbert space, and let Z(s#¢) denote
the ring of bounded linear operators on &. The two-sided ideals in £(s) were
originally described by J. von Neumann (see, for instance, [2, Section 1]), and since
then a good deal of attention has been devoted to a special class of such ideals,
namely, the norm ideals of R. Schatten [4] (also called s. #. ideals by I. C. Gohberg
and M. G. Krein [3]). Very little seems to be known, however, about the general
ideal structure of £(s¢). For example, it is well known (and easy to prove) that
every proper ideal in £(s#) is contained in the ideal ¢ of compact operators; con-
sequently, if T is an operator on & and if there exists a proper ideal § in Z(¢)
such that T belongs to J, then T is certainly compact. But, given a compact oper-
ator, can we assert that there exist ideals other than ¢ that contain it? The pur-
pose of this note is to make a modest beginning toward a general theory of ideals. In
particular, we answer the preceding question in the affirmative.

In the sequel, all Hilbert spaces are understood to be complex and separable,
and all operators are bounded and linear. Moreover, the term ideal will always be
used to mean two-sided ideal. We remind the reader that if 3 is anideal, and if T
belongs to S, then T* and |T| = (T*T)1/2 also belong to $; moreover, every
proper ideal § is not only contained in the ideal € of all compact operators, but
also contains the ideal § of all operators of finite rank. The von Neumann-Calkin
characterization of the ideals in Z (o) goes as follows. Let C denote the collection
of all the nonnegative real sequences {A,}n-; that tend to zero as n tends to infinity.
Following Calkin, we call a subset J of C an ideal set if it satisfies the following
conditions.

( (i) If {\n} € J andif 7 denotes any permutation of the positive integers, then
A €d
7(n) .

(ii) I {1} and {u,} both belong to J, then so does {\, + i, 7.

(iii) I {An} € J, and if {u,} is any sequence in C such that p, < X, for
every n, then {u,} € J.

Now let S be any proper ideal in 2(o¢). If T belongs to $, then so does |T|, and
since |T] is compact, it has an orthonormal basis of eigenvectors. If the corre-
sponding eigenvalues are arranged into a sequence (counting multiplicities), that se-
quence belongs to C. In this way a sequence in C, determined up to permutation, is
associated with each operator T in . It turns out that the set of all sequences so
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obtained from the various operators in 3 forms an ideal set J, called the ideal set
of 3. Conversely, if J is any ideal set in C and T is a compact operator on &,
we say that T belongs fo J provided the sequence of eigenvalues of |T| belongs to
J. The set of operators belonging to J in this sense forms an ideal J of which J
is obviously the ideal set. Note that this correspondence between ideals and ideal
sets is one-to-one and inclusion-preserving, and that the whole set C is the ideal
set of the maximal ideal €. At the opposite extreme, the ideal set of the minimal
ideal & is the set F of all finitely nonzero sequences. The following lemma sum-
marizes some basic information concerning ideal sets that will be needed later.

LEMMA 1.1. Let {A,} be a sequence belonging to C but not belonging to F,
and let {Akn} denole the subsequence of all the nonzero tevms of {hn}. Then

{1} belongs to a given ideal set J if and only if {)\kn} does so. If {r,} belongs
to an ideal set J, then so does every subsequence {hmn}. On the othey hand, if J
contains some tail {hpm}::l of {\,}, then J also contains {\,}.

The first assertion is precisely the content of Lemmas 1.1 and 1.2 of [2]. The
other two assertions are more or less obvious consequences of the first.

2. ADMISSIBLE FUNCTIONS

We shall consider nondecreasing, real-valued functions f, defined on the half-
line [0, +%) and satisfying the condition

1) i{(0) = 0.

For any such function f we shall denote by M(f) the collection of all sequences
{}\n} in C that are summed by f in the sense that they satisfy the condition

270y < +.

n

If f vanishes in a neighborhood of 0, then every sequence in C is summed by

f: M(f) = C. On the other hand, if lim;—, g4 f(t) # 0, then only the finitely nonzero
sequences are summed by f: M(f) = F. It is desirable to rule out both of these
trivial cases. Accordingly, we restrict our attention to functions f that also satisfy
the further conditions

2) lim f(t)=0
t— 0+

and
3) f(t) >0 for t > 0.

For brevity’s sake, let us call a nondecreasing function on [0, +%) that satisfies 1),
2), and 3) an admissible function. The following two elementary lemmas are cen-
tral to our purposes.

LEMMA 2.1. If {xn} is any sequence in C, theve exist admissible functions f
that sum {r,}. On the other hand, if {\n} is any sequence in C\F, there exist
admissible functions f that do not sum {A,} .
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Proof. We may suppose that {An} has infinitely many distinct, nonzero terms.
Let {v,} denote the result of arranging these distinct terms in decreasing order,
so that

vy > v > > v, > >0,

and for each n, let p,, denote the (finite but positive) number of times v, is re-
peated in the sequence {r_}. Then, if {¢,} is any monotone sequence in C, there
clearly exist admissible functions f satisfying the condition f(v,) = ¢, for all n,
and for any such f{,

271(n,) = 2ip,é,.

Thus, in order to construct an admissible function f that does not sum {X,}, we

need only choose for {¢,} any monotone sequence in C such that En ¢, =+°. On
the other hand, in order to obtain an admissible function f that does sum {x,}, we
may start with an arbitrary summable sequence { an} of positive numbers, set

Yn = %, /Pn, and then define

¢, =N\ Ny, @=12 ).

LEMMA 2.2. If f is an admissible function, theve exist sequences in C\ F that
ave summed by . Indeed, each sequence {hn} in C\F has a subsequence that be-

longs to M(f). On the other hand, theve also exist sequences in C that ave not sum-
med by f. Indeed, each sequence {\,} in C is a subsequence of a sequence that

does not belong to M(f).

Proof. Since lim A, = 0 and lim,_, ¢, £(t) = 0, it is clear that {A,} has sub-
sequences {Ak } such that (A, ) tends to zero with any desired rapidity. Thus the
n n

first half of the lemma is easily disposed of. The second half is equally easy. To
begin with, we may assume that {A,} contains no zeros (for zeros can always be
interpolated as needed; see Lemma 1.1). But then all that is necessary is to con-
struct a new sequence in which each A, is repeated p, times, where p, is a posi-
tive integer chosen so that p, f(a,) > 1.

3. AN ORDERING

It is clear that M(f) depends only on the behavior of f in an arbitrarily small
interval [0, €). Hence, the natural ordering on the set of admissible functions is the
following.

Definition; If £ and g are admissible functions, then f is dominated by g
(f <€ g) provided there exist positive numbers M and & such that
(1) i(t) < Mg(t) (0<t<eg).

It is readily seen that f < g implies M(g) € M(f). As it turns out, the converse
is also valid.

THEOREM 3.1. If f and g are admissible functions and £ is not dominated
by g, then there exist sequences {J\n} that ave summed by g but not by f.



376 ARLEN BROWN, CARL PEARCY, and NORBERTO SALINAS

Proof. Using the fact that (1) does not hold for any positive M and ¢, we can
easily construct a strictly decreasing sequence {I{n} satisfying the conditions

glky) <n"2, f(k)) >nglk,) (=12 ).

For each n, let p, denote the smallest positive integer p for which pg(l{n) > n-2 ,
so that

n~2 < Png(ky) < 2n-2,

and take for {),} the sequence

Kip, **, K1, K, """y Kp, """y Kp, °**y Ky, *°°
\,\~
Py ) Py
Then
Zg(,) = Lpuglcy) < 220072 < 4o,
m n n
while

Ef()\m) > Enpng(xn) > 27 1/n = +o

It may be noted that a more compact way of characterizing the relation f < g is
to say that
£(t)

lim sup —— < +=,
Pat)

We close the discussion of the ordering of admissible functions by giving a simple
example of a pair of functions f and g neither of which dominates the other. Indeed,
if

1 (1/2 <1),
f(t) =
1/(2n + 1)! (1/(2n + 2)! <t<L 1/(2n)!),
while
1 1<t),
g(t) =
1/(2n)! (1/(2n + 1)! <t<L 1/(2n - 1)!)
for n=1, 2, ---, and if {An} and {un} denote the sequences
%, 1/41, -+, 1/41, =, 1/(2n)1, -, 1/(20)1, -
e ——TT T ——— e ——T TN —————
3! (2n-1)!
and
1, 1/31, 1/31, 1/51%, ===, 1/51, »=- 1/2n+1)!, ***, 1/(2n+ 1)1, -,
—— e~ —— e ——TTT T ————

41 (2n)!
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then it inay readily be verified that {hn} is summed by f but not by g, and similar-
ly that {,} is summed by g but not by f.

4, THE MAIN CONSTRUCTION

While the set M(f) of sequences summed by an admissible function f need not
be an ideal set in the sense of Section 1, it is clear that M(f) does possess both
properties (i) and (iii) of ideal sets. Moreover, if {\,} and {u,} are two se-
quences belonging to M(f), then f(x,V u1,) =1f(x,) V f(1,); this shows that
{A,V u,} also belongs to M(f). But then so does {(r, + 1,)/2}. Thus we see
that a necessary and sufficient condition for M(f) to be an ideal set is that {2x,}
should belong to M(f) along with {A,}, or equivalently, that 2M(f) should coincide
with M(f). On the other hand, it is clear that if M(f) = o M(f) for a single o #1,
then M(f) = @ M(f) for every a (0 < a < +«), Thus we have the following result.

LEMMA 4.1. A necessary and sufficient condition for M(f) to be an ideal set is
that theve should exist a positive number « diffevent from 1 such that o M(f) = M(f).

Using Theorem 3.1, we can easily translate this condition on M(f) into a condi-
tion on f itself.

THEOREM 4.2. Let f be an admissible function. Then a necessary and suffi-
cient condition for M(f) to be an ideal set is that theve should exist some o > 1
such that

(2) flat) < 1(t).

Proof. The set M(g) summed by the function g(t) = f(at) coincides with
(1/a) M(1).

All of the better known ideals in £(o#) (with the exception of $ and ¢ them-
selves) correspond to ideal sets that are of the form M(f) for some f satisfying (2).
In particular, of course, the so-called p-ideals of Schatten [4] are the ideals corre-
sponding to the sets M(fp), where fy(t) = tP (1 < p <+). In connection with ideal
sets of the form M(f), where f is an admissible function, two interesting questions
arise that we have not been able to resolve. The first is whether the collection of
ideal sets {M(f): f is admissible} is linearly ordered under inclusion. (Later, we
show that the collection of all ideal sets is not linearly ordered.) The second is
whether every ideal set of the form M(f) arises from a continuous function, in the
sense that there exists an admissible function f' continuous in a neighborhood of the
origin such that M(f) = M(f').

The main observation of this paper is that even though the sets M(f) may not be
ideal sets themselves, they can always be used to construct ideal sets.

THEOREM 4.3. If f is an admissible function, then the union

s@) = U am@
a>0

and the intevsection

o) = (1 am@)
a>0

ave both itdeal sets.
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Proof, 1t is easy to verify that both S(f) and D(f) have the properties (i) and
(iii) of ideal sets. To see that S(f) also has property (ii), suppose that both {a,}
and {u, } belong to S(f), and choose @ and B so that {A,} € @ M(f) and
{un} € BM(@E). If y=a Vg, then both {A,} and {u,} belong to yM(f). But then,
as we noted above, {(A, + 1,)/2} also belongs to y M(f), so that

{An+un} € 2yM().

Finally, to see that D(f) also has property (ii), let both {An} and {un} belong to
D(f), and let @ be positive. Since both {A,} and {pn,} belong to (a/2)M({), it fol-
lows as before that {(A, + 1,)/2} belongs to (a/2) M(f), and therefore {Ap+ un}
belongs to o M(f).

Since the family {aM(f)} 5., is increasing with @, it is clear that in forming
S(f) we need only consider large values of «. In particular, S(f) = Ua> ;@ M(f).

Similarly, D(f) = ﬂo < a<1 @M(f). It may be worthwhile to note that S(f) consists
of all sequences {A,} in C with the property that {@X,} is summed by f for
some sufficiently small o, while D(f) consists of all sequences {An} in C with the
property that {a 2, } is summed by f for every a > 0.

Theorem 4.3, together with the pair of admissible functions f and g constructed
at the end of Section 3, yields immediately the following corollary, which we believe
to be new.

COROLLARY 4.4. The ideals in Z(s¢) are not linearly ovdeved. In particular,
theve exist admissible functions { and g such that neither S(f) D S(g) nor
S(g) D s({).

Proof. 1t clearly suffices to prove the second assertion of the corollary. Let f
and g be the admissible functions constructed at the end of Section 3, and let {An}
and { p.n} be the sequences exhibited in Section 3 after the definition of f and g.
We have already seen that

A} e M), {rx,} ¢M(g), {un} e M), and {p,} ¢ M.

A calculation shows that for fixed o (0 < a < 1), f(au,) = f(un) and glar,) = g(An)
for sufficiently large n. This shows that {A,} ¢ (1/a)M(g) and that

{un} ¢(1/a)M(f).

Hence, by definition, {7, } ¢ S(g) and {p,} ¢ S(f). Since {1,} € S(f) and
{un} € S(g), the proof is complete.

Before stating the next theorem, we need to strengthen Lemma 2.2.

LEMMA 4.5. For each countable collection ® of admissible functions,
theve exist sequences in C\F that ave summed by every f € &. Indeed, each se-
quence {1,} in C\F has a subsequence with this property. On the other hand,
theve also exist sequences in C that ave not summed by any f € &. Indeed, each se-
quence in C is a subsequence of such a sequence.

Proof. We may assume & to be arranged into a sequence {fn}:lozl . The latter
assertion of the lemma may be proved by a simple modification of the construction
used in Lemma 2.2 in the case of a single f. We assume the given sequence {An}
to be free of zeros, and we construct a new sequence with the desired property by
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first repeating A p; times, where py-fi(x;) > 1, then repeating A, p, times,
where pz-f;(A) and p-f2(A;) both exceed 1, and so forth. To prove the first part
of the lemma, we take recourse to the fam111ar diagonal procedure. The sequence
{An} has a subsequence {x{1)} that is summed by f;. This sequence, in turn, has

a subsequence {A{2)} that is also summed by f,. Continuing in this way, we obtain
an infinite sequence {)\(k)} of sequences such that each {h(k)}n 1 is summed by
£y, fp, -+, fx, and such that (for k > 1), each is a subsequence of its predecessor.
But then the diagonal sequence {A(n)}n 1 is summed by every fy .

THEOREM 4.6. If {)\,} is any sequence in C\'F, then theve exist ideal sets J
and XK such that

F+#JCK=#C

and such that {1,} belongs to K\ J.

Proof. According to Lemma 2.1, there exist admissible functions f and g such
that f sums {A,} and g does not. By replacing f by f A g if necessary, we may
arrange matters so that f < g. We then define J = D(g) and K = S(f). Since
{xa} € M) \ M(g), it is clear that {A,} € K\ J, and it is also clear that J is con-
tained in K. In order to verify that K is distinct from all of C, we employ Lemma
4.5, Indeed, if {an} is a sequence of positive numbers that tends to infinity (for
example, if @, = n), then

s@) = U e,M(),

n=1

so that S(f) is the set of sequences in C that are summed by at least one function in
a countable family of functions. Similarly, if {ozn} is a sequence of positive num-
bers tending to zero (for example, if o, = 1/n), then

D(g) = N a, M(g),

n=1

so that D(g) coincides with the set of all sequences in C that are summed by every
function in a countable family of admissible functions, and consequently J # F, by
Lemma 4.5.

THEOREM 4.6'. If T is a compact operator of infinite vank on K, then theve
exist ideals § and & in L(H) such that
F#£#JC K #6

and such that T € & \ S

It is now clear that the question posed in the introduction is to be answered in
the affirmative.

COROLLARY 4.7. The ideal G is the union of the set of all ideals $ G €.
Dually, the ideal T is the intevsection of the set of all ideals 2 S.

The argument used to prove Theorem 4.6 can be made to yield more. The fol-
lowing sharper result, which says roughly that we may at will adjoin or delete one
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operator at a time, is useful for various purposes. (See [1, Theorem 3.2] for exam-
ple.)

THEOREM 4.8. Let J be any ideal set in C distinct from F, and let {)\,} be
any one sequence belonging to I \ F. Then theve exists an ideal set J' such that

FEJ'CJ

and such that {\n} does not belong to J'. Dually, if d is any ideal set distinct
Jrom C and if {\,} is a sequence belonging to C \ F, then theve exists an ideal set

J" such that
J C JII g C

and such that {)\,} belongs to J".

Proof. The first of the two assertions turns out to be the simpler. Let g be
any admissible function that does not sum {A,} (Lemma 2.1), and set

Clearly, J' is an ideal set that is contained in J and does not contain {A,,}. On the
other hand, by Lemma 4.4, {A,} has a subsequence {An} that does not belong to F
but is summed by every functlon gm(t) = g(mt) (m =1, 2, ---). Since this subse-
quence belongs to J (by Lemma 1.1) as well as to D(g) 1t belongs to J', and there-
fore J' # F.

For the proof of the other half of the theorem, we shall need a lemma.

LEMMA 4.9. LetJ and K be ideal sets. Then the smallest ideal set J VV K
containing both J and K coincides with the set L of all sequences of the form
{?Ln\/ “'n}: where {An} € J, {lu'n} € K.

Proof. It is simple to verify that L. contains both J and K, and that it satisfies
conditions (i) and (iii) of ideal sets. Moreover, it is clear that any ideal set contain-
ing both J and K must also contain L. Thus the lemma will be proved if we verify
that L satisfies (ii). To see this, let {A,} and {u,} belong to J and K, respec-
tively. Then {2r,} and {2u,} do so too; consequently, {2(x,V u,)} belongs to
L, and therefore, by (iii), so does {A,+ un}. But now, if {A} } and {u)} are two
additional sequences belonging to J and K, respectively, then {n, + AL} € J and
{itn+ in} € K; by what has just been shown, {A,+ A, +pu,+ 1L} € L, and the
lemma follows. ; '

Remark. It is implicit in the proof above that J V K also coincides with the set
J +K of all sequences {An+ pnt ({An} € J, {un} € K).

Completion of the proof of Theorem 4.8. Let J be an ideal set, and let {1, } be
a sequence in C that does not belong to J. Since {A,} is certainly not in F, it pos-
sesses infinitely many nonzero terms. Let {A]} denote the sequence of nonzero
terms in {A_}, arranged in decreasing order, and let {1} denote any strictly de-
creasing sequence such that A}, <A for all n., By Lemma 1.1, it suffices to con-
struct an ideal set J" that contalns J and {A}} andis distinct from C. Hence we
may assume that A, = A%, in other words, that {1,} itself is a strictly decreasing
sequence. Let f be. any fanction that sums {2} (see Lemma 2.1), and set

J" =JVSs().
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Clearly, J" is an ideal set containing both J and {)\n}, and therefore the proof will
be complete if we show that J" # C. To see this, define fi(t) = f(t/k) for
k=1,2, ---, and as in Lemma 4.4, construct the sequence

Ay, ".)Al’ AZ, ...’AZJ T, An, Ty An, *7
N\ N

in which each ), is repeated p, times, where p, is chosen so that p,fi(r,) > 1 for
k=1,2, -, n. As it turns out, this sequence (call it {u,}) does not belong to J".
Indeed, suppose, on the contrary, that {u,} € J". Then, by the preceding lemma,

there exist sequences {v, } and {v!} in C such that p, = vy V v} for all n,

where {Vr'l} belongs to J while {V{l{]} is summed by fko for some kg . Considg—:-r
any fixed term Ano of the original sequence, and suppose it does not appear in the
sequence {Vr'l} Since Ano appears pp times in the sequence {v) V v!}, there
must be p, 0 repetitions of Ano in {VI';} . If now there exists an infinite subse-
quence {Ank}:zl of {A,} such that no term of the subsequence appears in {v] },

then each A, would have to appear Pn, times in {v]'}, and since
Py " flig(Any) > 1

for n; > kg, this would contradict the fact that fko sums {v]}. Thus every infinite

subsequence of {A,} must have terms in common with {v}}; from this it follows
at once that all of the terms of some tail {hn}:f:mo of {1A,} must appear in {v}}.

In other words, for some mg the tail {X,, 0+n} of {1} is a permutation of a sub-

sequence of {v},} By Lemma 1.1, the tail itself (and with it the whole sequence
{1, }) must belong to J. This contradiction shows that the hypothesis {u,} € J" is
untenable, and the proof is complete.

THEOREM 4.8'. Let S be any ideal in Z() other than §, and let T be an
arbitrary opevator in 3\ §. Then theve exists an ideal ' such that

%c;‘:s' c g

and such that T does not belong to S'. Dually, if S # € andif T is a compact
opevator not belonging to 3, then theve exists an ideal " such that
Sc8'ge

and such that T belongs to $".

5. COMBINATIONS OF IDEAL SETS

Once some ideal sets have been constructed, it is always a simple matter to
construct others. Thus, if & is any nonempty collection of admissible functions,
then the intersections
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f1oe ana [ s

fed fed

are both ideal sets, which we may denote by Ds(®) and Si(®), respectively. In the
dual direction, the following result is of interest.

LEMMA 5.1. The union of two ideal sels is an ideal set if and only if one of
them is included in the othev. A sufficient condition for the union of a collection of

ideal sets to be an ideal set is that it should be divected upward with vespect to in-
clusion,

Proof. Let J; and J; be ideal sets, and suppose that neither is a subset of the
other, so that there exist sequences {A,} and {pun} in J; \J, and J,\ J, re-
spectively. Then, since {A,+ p,} cannot belong to either J; or J,, we have the
relation {2, +p,} ¢ J; UJ,, sothat J; UJ, is not an ideal set. The final asser-
tion of the lemma is obvious.

It is an immediate consequence of Lemma 5.1 that if & is a collection of ad-
missible functions and & is directed downward with respect to <<, then

Ufeq) D(f) and UfecI) S(f) are also ideal sets, which we may denote by Dy (®) and
Sg(®). In this connection, the following simple result is of interest.

LEMMA 5.2. If {f and g ave admissible functions, then M(f V g) = M(f) N M(g),
while M(f N\ g) coincides with the set of all sequences {}\n \/un} , Where
{an e M), {n,} e M(g).

Proof. For any sequence {A,} in C, we construct sequences {A{!)} and
{;412)} by setting

An  (fxn) <8(y)),

Al =
0 () > g(ry),
o 0 O <s00,

A (Hap) > g(ry)

for all n. Suppose now that {hn} is summed by both f and g. Then in particular
En g()\l(ll )) and Zn f(?\r(lz)) are both finite, and since

EV )0 = e +1(1{2)

for every n, it follows that {An} is summed by fV/ g. This shows that
M(f) N M(g) c M(f V g), and since the reverse inclusion is obvious, the first asser-
tion of the lemma is proved. To verify the second part, suppose { hn} is summed

by £ Ag. Then, since f(A{!)) < (£ A g) (1) for all n, it follows that {A{)} isin
M(f). Similarly, {2{?)} is in M(g), and since a_=2{l) Vv A2) we have expressed
{An} in the prescribed fashion. Since it is clear that every such sequence is sum-
med by {f A g, the proof is complete.

THEOREM 5.3. For any two admissible functions f and g,

SfVg)=8SE)NSg and SEAg) = SV S(g).
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Proof. If a{hn} is summed by f and B{hn} is summed by g, then 7{An} is
summed by both f and g for y = a /A 8. But then, by the preceding lemma, 'y{hn}
is summed by fV g, so that {A,} belongs to S(f V g). This shows that
S(f) N S(g) C S(f \V g), and since the reverse inclusion is obvious, the first assertion
of the theorem is proved. Similarly, for the second part, it suffices to show
S(EN g) € S(f) V S(g). Butif {An} belongs to S(f A g), then a{A,} € M(f A g) for
some & > 0, and hence, by Lemma 5.2, o, = u,V v, where {un} € M(f) and
{v,} € M(g). But then

A, = (1) pyV (1/a) v,

and this shows that {1,} is in S(f) V S(g).
COROLLARY 5.4. For any collection ® of admissible functions, the smallest

ideal set V ¢e¢a S(f) containing all of the ideal sets S(f) coincides with the union
Sg(T), wheve T denotes the collection of all infima £,/ ---/\ £, of finile collections
of functions f,, -+, f). selected from &.

Proof. By an obvious extension of the foregoing theorem,
S(fl JANRRE /\fk) = S(f]_) VoV S(fk)

for any admissible functions f;, ---, fi.. From this it is clear that the ideal S;(T)
contains every S(f) (f € ®), and therefore it contains \/feq, S(f) as well. On the

other hand, the same equation shows that S(g) C \/feq, S(f) for every g in T, and
the proof is complete.

Remark. 1t is natural to inquire whether counterparts of these results also hold
for the ideals D(f) and D(g). As regards f V g, there is no difficulty. That
D(f V g) = D(f) N D(g) for any two admissible functions f and g may be proved by a
more or less obvious modification of the corresponding part of the proof of Theorem
5.3. As regards f/\ g, however, things are unclear. It is evident that the inclusion
D(f) V D(g) < D(f A g) always holds, but at the present we do not know whether there
exist admissible functions f and g such that D(f /\ g) is properly larger than
D(f) V D(g). '

6. OPEN QUESTIONS

This paper raises many more questions than it answers. An obvious example is
the question just asked: can D(f A g) differ from D(f) V D(g)? This question is
distinguished by having to do with the very apparatus of construction techniques
under discussion—by being what might be called an “internal” question. A similar
query is the following: can an ideal set S(f) coincide with an ideal set D(g) in a
nontrivial way? To clarify the question, recall that if f satisfies condition (2) of
Theorem 4.2, then S(f) = D(f) = M(f). The question is: can S(f) = D(g), where either
f or g fails to satisfy (2)?

A different—and intrinsically more interesting—class of questions concerns the
relations between the ideal sets constructible by the methods discussed above and
the ideal structure at large. For example, is every ideal set of one of the forms
So (@), S5(®), Dy (®), D5(®)? (The p-ideal sets are of this form, for trivial reasons.
On the other hand, C = Sg (&), where & denotes the system of all admissible func-
tions, and similarly F = Dg(®).) Can the ideal set corresponding to a norm ideal be
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nontrivially of the form Sg(®) (or any of the other three forms) for a countable
family ®? We do not know. In a different direction, we may ask whether there
exists a sequence {A,} in C\ F such that the principal ideal set ({An}) generated
by {A,} coincides with the intersection of all the ideal sets S(f) such that f sums
{An}. Alternatively, does there exist a sequence {A,} in C\ F for which this is
not the case? Again, we do not know. In a different direction, we may ask: for a
given ideal set J, does there exist as admissible function f such that J ¢ M({f), or,
alternatively, such that M(f) C J? In this connection, to sound faintly a positive
note, we mention the following fragmentary result, which is to be compared with
Theorem 4.6.

PROPOSITION 6.1. For each sequence {),} in C\ F, theve exist admissible
Sunctions f and g such that {\,} belongs to D(f) but not to S(g).

Proof. To establish the assertion concerning f, we first choose a sequence
{a, } that tends to infinity so slowly that u, = @, - X, still belongs to C, and then
we construct f so that {u,} is summed by f. To establish the assertion concerning
g, choose any sequence {an} of positive numbers that tends to zero, and then con-
struct g so that it does not sum the sequence {a, - A,}.

Finally, there remain many open questions concerning the ideal structure of
Z(o) that have nothing to do with the constructions of this paper but are neverthe-
less suggested by them. For example: do there exist two ideals different from ¢
whose join is €? (If either of them corresponds to an ideal set of the form S(f),
then the answer is no; this is intrinsic in the proof of Theorem 4.7.) Is ¢ the join
of a countable family of strictly smaller ideals? How about the dual questions?
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