SEMINORMAL OPERATORS
Frank Gilfeather

A bounded linear operator T on a Hilbert space is called a seminormal opera-
tor if T*T - TT*=D >0 or D < 0. Several authors, especially C. R. Putnam,
J. G. Stampfli, and S. K. Berberian, have determined conditions that assure the
normality of a seminormal operator. Let 98(H) denote the algebra of all bounded_
operators on a Hilbert space H, and & the ideal of all compact operators. Let T
be the image of T in BH)/ A, under the quotient map, and let o(T) be the spec-
trum of T in the C*-algebra .%(H)/J[ In Section 1, we show that T is normal
whenever T is a seminormal operator and O‘(T) COHSIStS of certain arcs and a
countable set. This will imply that T is normal if it is seminormal and the spec-
trum of a compact perturbation of T lies on certain arcs plus a countable set.
These results extend some results obtained by T. Yoshino [13] the author [4] and
Stampfli [8] to [11].

In Section 2, we use the results of Section 1 to obtain several theorems giving
algebraic conditions under which T is normal. If T is a seminormal operator such
that I - T*T is compact and i(T - AI) = 0 (i is the Fredholm index) for some X with
|a| < ||T[-!, then T is normal. From this we derive conditions on the strong
asymptotic behavior of T and T* that imply the normality of a seminormal operator
T. For a seminormal contraction for which the rank of I - T*T is finite, we present
necessary and sufficient conditions on the asymptotic behavior of T and T* that
imply normality.

1. SPECTRAL CONDITIONS

The Weyl spectrum w(T) of T is defined as ﬂ o(A + K), where the intersection
is taken over all K in < [3].

Our results are based on the relations among o(T), w(T), and o(T). Whenever
H is infinite-dimensional, then o(T) ¢ w(T) € o(T), and each of these sets is a non-
empty, compact subset of the plane. An operator is said to satisfy Weyl’s theorem if
w(T) = 0(T) - 7go(T), where 7mgo(T) is the set of isolated eigenvalues of finite multi-
plicity. L. A. Coburn [3] has shown that hyponormal operators (that is, operators for
which T*T - TT* > 0) satisfy Weyl’s theorem, and S. K. Berberian has shown that
seminormal operators satisfy Weyl’s theorem [1].

Recall that an operator is called a semi-Fredholm [Fredholm] operator if its
range R(T) is closed and its null space N(T) is finite-dimensional [if N(T) and
R(T)! are finite-dimensional]. The semi- Fredholm [Fredholm] operators consti-
tute an open set in #(H). We shall denote the set of Fredholm operators by #. If T
is a semi-Fredholm operator, the index of T is defined to be
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i(T) = dim N(T) - dim R(T)" .

The index is a continuous map, and i(T) is finite if and only if T € #. Finally, T is
a Fredholm [semi- Fredholm| operator if and only if T has an inverse [left inverse]
in #(H)/o¢ . For many of the facts concerning the theory of Fredholm operators, we
refer to [6].

Next we show a relationship between w(T) and o(T). M. Schechter [7] has char-
acterized w(T) as

(-2 ¢gF} U {X]|(T-2)eF and (T - AT) #0}.

From this characterization of w(T) we obtain the following lemma.
LEMMA 1. The boundary of (T) is contained in o(T).

Proof. This lemma follows from the observation that
S={A| AeF and i(A) #0}

is open in #B(H) and the map X — T - AI is continuous from C to #(H); the set S is
open, since it is the intersection of two open sets in % (H).

It follows that if w(T) has empty interior (in particular, if o(T) has empty in-
terior), then w(T) = o(T).

Our theorems will combine the results of J. Stampfli and the algebraic decom-
position of an arbitrary operator into a normal and a completely nonnormal part.
This decomposition is known, and we state it without proof in the following lemma [5].

LEMMA 2. Let T be an opevator on H. Theve exists a unique decomposition
H = H; @ H; into veducing subspaces H) and Hp of T, such that T1 =T | H; is
novmal and T, = T | H, has no veducing subspace on which T, is normal.

In this paper we shall consider only curves I' in the plane that have the follow-
ing two properties:

1) T has a continuous second derivative at every point,
2) T has a countable set of crossing points.

J. Stampfli has shown that if ¢(T) lies on such a curve I'" with only a finite set of
crossing points and if T is hyponormal, then T is normal [11]. His result can be
extended to the case of a countable number of crossing points, by means of a result
of the author [4, Proposition 4].

Let I be as described above, that is, let a countable number of crossing points
be allowed. The following proposition gives a quite general condition for normality
of a seminormal operator.

PROPOSITION 1. If T is a seminovmal opevatoy and T is a cuyve (as de-
scribed above) such that o(T) - T" is countable, then T is normal.

Pyroof, Let T =T) @ T, be the decomposition of T, as in Lemma 2, into nor-
mal and completely nonnormal parts, and let H = H; (D H, be the corresponding de-
composition of H. Assume that H, # {0}, contrary to the proposition. Without loss
of generality, we can also assume that T is hyponormal.

If the operator T, has any isolated points in its spectrum, then T has a re-
ducing subspace on which it is normal [8]. Hence we can assume that ¢(T;,) has no
isolated points.
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In the complex plane there exists no nonempty countable set each of whose
points is a limit point of the set; that is, there exists no nonempty, countable, per-
fect subset of the plane. Combining this with the observation that ¢(T,) has no iso-
lated points, we conclude that o(T,) lies on the curve I'. Furthermore, if o(T})
contained any simple segments of the curve then, by [11, Theorem 1], T, would have
a nontrivial reducing subspace on which it is normal. Therefore we may conclude
that o(T2) C {A| A is a crossing point of I'}. This is a countable set, and by [4,
Proposition 4], the operator T, must be normal. This contradicts our assumption
that H, # {0}. Therefore the proposition is proved.

We say that a closed curve in the plane encloses a point A if A lies in a
bounded component of the complement of the curve. We can restate Proposition 1 in
terms of the Calkin spectrum of the operator T.

PROPOSITION 2. Let T be a seminormal operator, and let T' be a curve (as
described above) such that the set o(T) - T is countable. If every closed curve in
o(T) encloses a point not in o(T), then T is normal.

Proof. Since the spectral conditions are satisfied for T* as well as for T, it
suffices to assume that T is hyponormal. First we show that as a subset of the
plane, w(T) contains no interior. If w(T) has an interior, then Lemma 1 implies that
o(T) contains a closed curve, and each point enclosed by that curve is in w(T). Since
o(T) D w(T), such a situation is impossible, by our last hypothesis. Applying Lemma
1, we conclude that ®(T) = o(7).

By Weyl’s theorem for hyponormal operators,
o(T) = w(T) U 75o(T) = o(T) U m(T) .

Since mgo(T) is countable, T satisfies the hypotheses of Proposition 1, and therefore
T is normal.

The next results are direct corollaries of Propositions 1 and 2; special cases of
them are already known. The following is a slight generalization of [11, Theorem 1].

PROPOSITION 3. Suppose T is seminovmal and T = B + K, wheve K is com-
pact. If theve exists a curve T such that o(B) - T' is countable, then T is novmal.

Proof. Since g(’i‘) C o(B), T will satisfy the hypothesis of Proposition 2 if each
closed curve in o(T) encloses a point not in o(T). However, w(T) = w(B) C o(B),
hence each closed curve in w(T) encloses an open set of points not in ¢(T). By
Weyl’s theorem for seminormal operators, we conclude that each closed curve in
o(T) enclosed a point not in ¢(T), and therefore the same is true for each closed

curve in ¢(T). Thus T is normal, by Proposition 2.
As a direct corollary of Proposition 3 we obtain [13, Theorem 1].

COROLLARY 1. If T is a seminovmal opevatoy and T = N + K, wherve K is
compact and N is quasinilpotent, then T is novmal.

Remark. After this paper was submitted, the author received a preprint from
C. R. Putnam, An inequality for the area of hyponormal spectra. The propositions
in Section 1 can be deduced from Putnam’s beautiful inequality.
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2. ALGEBRAIC CONDITIONS

In this section, we restrict our attention to nonspectral conditions on a semi-
normal operator that imply normality. A contraction T is an operator such that

Il <1
THEOREM 1. Let T be a seminovmal contraction on a Hilbevt space H, and let

I- T*T be compact. Then T is normal if and only if i(T - AI) = 0 for some \ with
M| <1. I T is mormal, then o(T) N {x| || <1} = {N}je 7 is countable and

T=Ty® 2 @®NI,

jeT

wherve H=Hg @ 20 jeJ @ H; is the covrvesponding decomposition of H by veducing
subspaces of T, Tq is unitary, each Hj is finite-dimensional, Ij is the identity
operator on H;, and |hj| — 1.

Proof. If T is normal, then N(T) = N(T*). Since I- T*T is compact, T is a
semi- Fredholm operator, and i(T) = 0.

Conversely, we shall show that under the conditions of the theorem T is nor-
mal. By Lemma 2 we may assume, without loss of generality, that T is completely
nonnormal, and prove the theorem by showing a contradiction. First we show that

T - Al is a semi-Fredholm operator whenever |A| < 1. Define
Sy = (1-[A®)Y2@-a1)!  and Ty = @-AT) (T - AD).

The relation I - T{T, = SY(I - T*T)S, is easily verified. The hypothesis that
I- T*T is compact implies that I - TY T, is compact. Since

Ty = (I-AT) YT - AD

is a semi-Fredholm operator and I - AT is invertible, the operator
(I - AT)T, =T - Al is also a semi-Fredholm operator.

If i(T - XI) = 0 for some |A| <1, then either T - XI is invertible or
© > dim N(T - AI) = dim N(T* - aI) > 0.

Since we assume that T is completely nonnormal, we can show that the relation
dim (T - AI) = dim N(T*- AI) > 0 cannot occur. Either T or T* is hyponormal, and
hence either T - AI or T* - AI is hyponormal. Thus either N(T - AI) € N(T™* - AI)
or N(T* - AI) € N(T - AI). In either case, we must get equality, so that

N(T - AI) = N(T* - AI). If we let M = N(T - AI), then M # {0}, and M reduces T.
This contradicts the fact that T is completely nonnormal. Hence we conclude that
X ¢ o(T) whenever i(T - AI) = 0.

A~

Because T is an isometry, we know that either o(T) = {r| |A] <1} or
o(T) c {A| |A| =1}. Since there exist u ¢ o(T) with |,u] < 1, we have the inclu-
sion o(T) c {h] IAI = 1} . Hence T satisfies the hypothesis of Proposition 2, and
therefore T is normal. This contradicts our assumption that T is completely non-
normal, and the proof of the theorem is complete.

Remark 1. In general, the requirement that i(T - AI) = 0 for some A (|A| <1)
is weaker than the condition that there exists a A (|A| < 1) such that A ¢ o(T).



SEMINORMAL OPERATORS 239

However, in the third paragraph of the proof of Theorem 1 we show that under the
hypothesis of the theorem, the two conditions are equivalent.

Remark 2. We can remove the condition that || T|] <L 1 if we modify the hy-
pothesis by replacing the condition that i(T - AI) = 0, for some |7\l < 1, with the
same condition for some || < ||T| L.

Remark 3. The simple unilateral shift V is hyponormal, and I - V*V is com-

pact but V is not normal. For each A, |A] <1, i(V - AI) = -1, and
o(v)={x| [x] <1}.

We shall call on operator T quasi-isometvic if I - T*T is compact. Thus
Theorem 1 gives necessary and sufficient conditions for a quasi-isometric semi-
normal operator to be normal.

B. Sz.-Nagy and C. Foiags have introduced a classification of contraction opera-
tors that depends on the asymptotic behavior of the iterates of T and T* [12, Chap-
ter II, Section 4]. A contraction T belongs to class

Cy. if T" —» 0 strongly,
C,. if T"h + 0 for each h #0,
C,, if T*" — 0 strongly, and

C,, if T*™ 4 0 for each h #0 .

Furthermore, one denotes by C,}, the operatorsin C, N C, .

COROLLARY 2. If T is a quasi-isometric seminovmal contraction in class
C;;, then T is normal.

Proof. Since T"h + 0 for each h # 0, we see that N(T) = {0}. Similarily,
N(T*) = {0}, and hence i(T) = 0. Therefore, by Theorem 1, T is normal.

Now we shall prove the same result under the assumption that I - T*T has
finite rank and T € Cyqg . For this, we need the following two lemmas.

LEMMA 3. Let T be any opevator; then I - TT* = W(I - T*T)W* + P, where W
is a pavtial isometry and P is the projection on N(T¥).

Proof. By the polar decomposition of an arbitrary operator T, we see that
T =W |T|, where |T| =(T*T)!/2 and W is a partial isometry with initial domain
[(T*T)H] and final domain [TH]. Then T*= |T|W* and

I-1T*

I-w|T| |T|W* = W - |T|2)W*+1 - ww*

W(I - TFT)W* +1 - Ww™ .
Now WW* is the projection on [TH], so that I - WW* is the projection on
(TH)* = N(T*). This completes the proof.
It will be convenient to use the symbol 61 for the rank of I - T*T.
LEMMA 4. If T is any opevator, then 61+ dim N(T*) = 64 +dim N(T).

Proof. In Lemma 3, we showed that I - TT* = W(I - T*T)W* + P, where W is
the partial isometry between [T*TH] and [TH], and where P is the projection on
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N(T*). Since W is an isometry with final domain [TH], it is clear that
W(I - T*T)W*H is in the orthogonal complement of PH. Therefore

dim (I - TTMH = dim(W(I - T*T)W*H + PH)

= dim W(I - T*T)W*H + dim PH .

Next we shall show that dim (W(I - T*T)W*H) + dim N(T) = 6. Since W is a par-
tial isometry and (I - T*T)W™*H is in its initial domain, we see that

dim (W(I - T*T)W*H) = dim (I - T*T)W*H
Also, dim (I - T*T)W*H = dim (I - T* T)W*WH, since [WH]L = N(W¥). If we set
(I-T*T)H = @I - T*T)W*WH + (I - T*T)(I - W*W)H ,

then the ranges of the two operators (I - T*T)(W*W) and (I- T*T)(I - W*W)
are orthogonal; for the former is contained in [T*TH], and the latter is simply
N(T) = N(T*T). Thus we can conclude that & = dim ((I - T*T)W*H) + dim N(T).

Now we can finish the proof of Lemma 4 by considering two cases, depending on
whether N(T) is finite- or infinite-dimensional. If N(T) is infinite-dimensional,
then dim (I - T*T)H = 6 is infinite, and the equality is trivially satisfied. If N(T)
is finite-dimensional, then we may subtract dim N(T) from both sides of the equality
6 =dim ((I - T*T)W*H) + dim N(T), which we obtained above. Thus
dim ((I - T*T)W*H) = 6 - dim N(T), and substituting this in the equality
6 = dim ((I - T*T)W*H) + dim N(T*) also obtained above, we deduce the desired

equality.

We can now give necessary and sufficient conditions for the normality of a semi-
normal contraction T with 61 < eo.

THEOREM 2. Let T be a seminovmal contraction with 6t <. Then T is
normal if and only if T € Cyq U Cy; or T is the direct sum of two operators, each
in COO U Cll .

Pyroof, I T is normal, then the decomposition given in Theorem 1 shows that T
is the direct sum of two operators, one in C;; and the other in Cqg .

Conversely, we have already seen by Corollary 2 that if T € C;,;, then T is
normal. Thus we need only consider the case where T € Cgg . It follows from the
theory of unitary dilations, and specifically from [12, Theorem II. 1.2 and Proposi-
tion I. 2.1], that 61 = 6 whenever T € Cyp and 61 < ». Lemma 4 implies that
6 + dim N(T*) = 614+ dim N(T). Since 6T« is finite, the rank of I - TT* is finite,
and hence dim N(T¥) is finite. Subtracting dim N(T* and 6|x from both sides of
the equation, we conclude that 0 = 6 - 6% = dim N(T) - dim N(T*) = i(T). There-
fore it follows from Theorem 1 that T is normal.

Now we present an example to show that the conclusion of Theorem 2 cannot be
extended to operators with 6 = «. Let T be the unilateral weighted shift with
weights w; (if H is a separable Hilbert space and {el} i=1 is an orthonormal basis
for H, then T is the operator that maps e; to wjej;]). Let us choose for T the
weights w; = i/(i +1). J. Stampfli has shown that with these weights T is semi-
normal. In fact,
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(T*T-TT*)ei _ (i_ii)z_(i-;l)zzo

oC
when i > 1 and (T*T - TT¥e; = 1/4. Since the infinite product II;_; (1 - iil)
does not converge, one can show that T belongs to the class Cg .. All unilateral
shifts belong to the class C_,, and therefore T belongs to Cyq. Furthermore, the
rank of I - T*T is infinite, and T is not normal. In fact, the operator I - T*T be-
longs to the Hilbert-Schmidt class of compact operators. Thus we see that Theorem
2 cannot be extended to the case 6 =, even when I - T*T is a Hilbert-Schmidt
operator.

M. S. Brodskil and M. S. LivSic have studied operators T whose imaginary part
ST = zii(T - T% is compact. If T is seminormal and T is compact, we can give
the complete structure of T.

COROLLARY 3. If T is a seminormal operator with compact imaginary pavt,

then T is normal and

T=T,® 2 @\,
i>1

wheve H=Hy@® 2 ® H; is the corvesponding decomposition of H by reducing
spaces of T, Tg is selfadjoint, each 1j is the identity opevator on H;, no A; is veal,
and each H; (i > 1) is finite-dimensional. Fuvthevmove, the only possible limit
points of {\;} are veal.

Proof. By Proposition 2, T is normal. Let {);} be the set of nonreal points in
o(T). By Weyl’s theorem and Lemma 1, we conclude that the only accumulation
points of {A;} are real and that for Ay € {);}, the corresponding eigenspace Hy is
finite-dimensional and reduces T. Since T is normal, H; L H; if i #j. Suppose

K=2J @ H; and Hy=H®K. Then K and H, reduce T, and Ty=T | Hy is self-
adjoint. Therefore T =Ty ® 2@ AL
The fact that in this corollary T is normal is [13, Theorem 3].

For the sake of completeness we present the following corollary of Proposition
1. An operator T is called polynomially compact if there exists a nonzero poly-
nomial p such that p(T) is compact.

COROLLARY 4. If T is a polynomially compact, seminormal operator, then T
is normal. T has a decomposition

T=T1® DTk,
wheve H=H; @ *-- @ Hy is the corresponding decomposition of H, and theve exists
a set {x;, =+, A} C 0(T) such that each T; - \;1; is a compact novmal operator.

Proof. The author has given the structure of polynomially compact operators in
[4]. In particular, o(T) is countable. By Proposition 1, we can conclude that T is
normal. The structure of a polynomially compact, normal operator is given in [4,
Theorem 2].
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Remark. Let T be any polynomially compact operator, and let
k

p(z) = II (z - Ai)ni

i=1

be the polynomial of minimum degree and with leading coefficient 1 such that p(’i‘)
is compact. Then w(T) = o(T) = {A;, ***, Ax}. S. K. Berberian [2] has pointed out
that if T is normal, then w(T) is a finite set if and only if T is polynomially com-
pact.

The author wishes to thank S. K. Berberian for discussions of these topics, and
he gratefully acknowledges his assistance on this paper.
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