ON POLYNOMIAL RINGS OVER A HILBERT RING
Robert Gilmer

1. INTRODUCTION

Let K be a field with algebraic closure K, let {X;}] be a finite set of indeter-
minates over K, let £, f;, fz, -+, f. € K[X], ", Xyl, and let A be the ideal of
K[X;, -+, X,] generated by {f;}]. Many equivalent forms of Hilbert’s Nullstellen-
satz are known; among these equivalent statements are the following (see [7], [9, p.
19], [10], [12, pp. 5-6], and [13, pp. 164-167]).

(HN 1) If f vanishes at each common zevo of f1, £,, -+, { over each extension
field L of K, then f € VA.

(HN2) If f vanishes at each common zevo of f,, f,, ---, I over f(-, then
fe VA,

(HN 3) If the polynomials f; have no common zevo over K, then
A=K[X,, -, X]

(HN4) If Xlay, =, a,l is a field, then each a; is algebraic over K.

(HN5) K[X,, -+, X,]/M is algebraic over K for each maximal ideal M of
K[Xl b ...’ Xn]’
(HN6) Each maximal ideal of K[X |, **, X,| is of the form
(X1 -t1, ", Xn-tn)
Jor some ty, -+ t, € K.

(HN'7) Each proper prime ideal of K[X;, -+, X, is an intersection of maximal
ideals of K[X|, -+, X,l.

O. Goldman [7] and W. Krull [10] (see also [9, Chapter 1, Sections 1 to 3]) have
developed an elegant approach to the Nullstellensatz, using the concept of a Hilberi
ring, defined as follows (Goldman uses the term Hilbert ring; Krull’s terminology is
Jacobson ring). A commutative ring R with identity is a Hilbert ring if condition
(HR 1) is satisfied in R.

(HR 1) Each proper prime ideal of R is an intersection of maximal ideals of R.

Again, several equivalent forms of (HR1) are known, including the following
(see [1, Chapter 5, Section 3, No. 4], [7], [9, Chapter 1, Sections 1 to 3], [10]).

(HR 2) The Jacobson vadical of R/P is zero for each propev prime ideal P
of R.

(HR 3) If P is a nonmaximal proper prime ideal of R, then P is the intersec-
tion of a set of prime ideals of R properly containing P; equivalently, the pseudo-
radical of R/P is zevo for each nonmaximal proper prime ideal P of R. (If S isa
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commutative ring, the pseudoradical of S is the intersection of the set of nonzero
prime ideals of S; see [3].)

(HR4) R[X] is a Hilbert ring.
(HR5) For each maximal ideal M of R[X], M N R is a maximal ideal of R.

For polynomial rings in infinitely many indeterminates, the situation concerning
Hilbert’s Nullstellensatz and Hilbert rings is quite different from the case of poly-
nomial rings in finitely many indeterminates. For example, if K is a field and
{X)} is an infinite set of indeterminates over K, then K[{X,}] need not be a Hil-
bert ring [10, Section 3], [1, Exercise 10, pp. 86-87], [11], and in fact, none of the
conditions (HN2) to (HN7) need hold in K[{X) }]. The most general result of this
paper is the following theorem (Theorem 3.3):

If R is a commulalive ving with identity and if {X;L} reA IS an infinite set of
indeteyminates over R, then R[{X;\}] is a Hilbevt ving if and only if R is a Hilbevt
ring and |A| < |R/M| for each maximal ideal M of R. (We use |S| to denote the
cardinality of the set S.)

The relation of the preceding theorem to the conditions (HN1) to (HN7) is sum-
marized in Theorem 2.10 of Section 2.

2. POLYNOMIAL RINGS IN INFINITELY MANY INDETERMINATES

Throughout this section, R denotes a commutative ring with identity, {X)}rea
is a set of indeterminates over R, and S=R[{X)}]. We are concerned primarily
(but not exclusively) with the case where A is infinite.

2.1. PROPOSITION. If M is a prime ideal of S and if P=M N R, the following
conditions ave equivalent.

a) S/M is algebraic over R/P.

b) M N R[X\]D P[Xy] for each ) in A.

Pyroof. a) — b): For each X in A, we let x, = X, + M. By hypothesis, there

n -
exist elements ry, ry, -+, r in R, with r ¢ P, such that EO rixi = 0. Hence
n N .

2o X, € (M NR[X]) - P[X,].

We note that S/M =(R/P)[{x) }]. Since R/P is an integral domain, it follows
that S/M is algebraic over R/P if and only if each x, is algebraic over R/P [5, p.

489]. The implication b) — a) then follows if we reverse the steps in the proof that
a) implies b).

2.2. PROPOSITION. Let the notation be as in Proposition 2.1. Then S/M is
integral over R/P if and only if M contains a monic polynomial in R[XA] Jor each
Ain A.

Proof. We observe that S/M = (R/P)[{x, }] is integral over R/P if and only if
each x) is integral over R/P. Then Proposition 2.2 follows from the proof of
Proposition 2.1.

2.3. COROLLARY. If R is a field and if M is a maximal ideal of S, the jollow-
ing conditions are equivalent.

a) S/M is algebraic over R.
b) M N R[X,] # (0) for each X in A.
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2.4. COROLLARY. If R is an algebraically closed field and if M is a maximal
ideal of S, then the conditions

a) M = ({X, - tp}) for some elements t) in R,
b) S/M is algebraic over R,
c) S/M=R

are equivalent,

Proof. The implications a) — b) and b) — c¢) are clear. If c¢) holds, then for
each A in A, there exists t) in R such that X, =t) (mod M). Hence
({X) - ta}) € M, and since ({Xy - t)}) is maximal in S, M = ({X, - ty }).

2.5. THEOREM. If F is a subfield of the field K, if K/F is transcendental,
and if S is a subset of K such that K = F[S], then |S| = |K].

Proof. The set S contains a transcendence basis B # @ for K/F. Hence, if
s € S - B, there exists a nonzero polynomial hy(X) in F[BﬁX] such that hy(s) = 0.
We let dg denote the leading coefficient of hg(S); then K = F[S] is integral over
F[B][{1/d.,};c5.p]- Therefore F(B)= F[B U {1/d }]. Moreover, |K| = | F(B)],
since K/F(B) is algebraic and F(B) is infinite [8, p. 143]. We prove that

| {1/ds}ses-B| > | F[BI|; this inequality suffices to prove Theorem 2.5, since

|K| = | F(B)| = |F[B]| and since |{1/ds}ses-B| < |S-B| <|s|.

We let B= {Yq}aea. Then |F[B]| = |F| |A| 89. We prove that if & isa
complete set of nonassociate prime elements of F[B], then |#| = |F[B]|. Itis
well known that if F and A are finite, then F[Y,] (and hence F[B]) contains an
irreducible polynomial in Y, of any positive degree k. Hence |g | =80 = |F[B]|
if F and A are finife. If F or A is infinite, then |F[B]| = [F| |A], and
{Y, -t] @ € A, t € F} is a set of nonassociate prime elements of F[B] of cardi-
nality |A| |F|. Hence |#| > |F[B]|, and equality holds: |#| = |F[B]|. We let
F={fy}enm- Fix p in M. Since F(B) = F[B][{1/d,} e s_gl, there exists a
finite subset Sy of {1/ds} such that 1/f, € F[B][S,], and this implies that f},
divides dg in F[B] for some dg such that 1/dg isin S, . For each 1/dg, we let
H_ denote the finite set of elements of & that divide dg. We have just proved that

F = U Hg . Hence
l#1 = 7Bl = |Un,| < sol{astses-sl -
Finally, | {dg}se S—B| is infinite, by [9, Theorem 21], and hence

8o {dstses.sl = [{dstses-nl -

This completes the proof of Theorem 2.5.

2.6. PROPOSITION. If R is a field, then S/M is algebraic over R for each
maximal ideal M of S if and only if |A| < |R| 8.

Proof. We assume first that |A| < |R| 8. If R is finite, this implies that A
is finite, and (HN 5) implies that S/M is algebraic over R for each maximal ideal M
of S. If R is infinite, we consider a maximal ideal M of S. If x) = X, + M for each
A in M, then §/M = R[{x)}] is a field; moreover; | {x;}| < |A| < |R| < |s/M].
Theorem 2.5 then implies that S/M is algebraic over R.
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¥ |A| > IRI 80, then there exists an R-homomorphism ¢ from S onto R(Y),
since |R(Y)| = |R[Y]| = |R| 8o . Hence the kernel M of S has the property that
S/M is isomorphic to R(Y), a field not algebraic over R.

2.7. COROLLARY. If R is an algebraically closed field, then each maximal
ideal of S is of the form ({X, - t, }) for some elements t, in R if and only if

Al <|R].
2.8. COROLLARY. Suppose that F is a subfield of K, that K/F is algebraic,
and that {XA}MA is a set of indetevminates ovev K. If Dp= F[{X)L}] and

Dk = K[{X;}], then Dr /M is algebraic over F for each maximal ideal M of Dy
if and only if K and Dy satisfy the analogous condition.

Proof. I F is finite, then |K| <8¢ and |F| 8 = |K|8¢; if F is infinite, then
|K| = |F| and again [F| 8o = |K| 8o . Hence Corollary 2.8 follows from Proposi-
tion 2.6.

Using Propositions 2.1 and 2.2, we can prove the following generalization of
Corollary 2.8.

Suppose that R is a commutative ving with identity, that T is a commutative
unitary ovevving of R such that T is integval over R, and that {X)\}reA is a set of
indeterminates over T. Let My be a prime ideal of T[{X)}], and define M, , P,
and P; by

M, =M, nR[{X,}], P,=M,0T, P, =M,NR=M NR.

Then T[{X)}]/M, is algebraic (integral) over T/P, if and only if R[{X, }]1/M;
is algebraic (integral) over R/P.

The proof is straightforward, and we omit it.

2.9. THEOREM. If R is a field, then S is a Hilbert ving if and only if
|A] <[R[8,.
Proof. 1f |A| > |R| 8o, then there exists a homomorphism from S onto

R[Y]y), for |R[Y]y)| = [R[Y]| = |R| 8¢ . Since R[Y]y) is not a Hilbert ring, it
follows that S is not a Hilbert ring.

We assume that |A| < |R|R8g. If A is finite, then S is a Hilbert ring; if A is
infinite, we prove that S is a Hilbert ring by showing that each maximal ideal M of
S[Y] meets S in a maximal ideal of S. Thus, if P=M N S, then R C §/P C S[Y]/M.
Proposition 2.6 shows that S[Y]/M (and hence S/P) is algebraic over R. Therefore
S/P is a field, and P is a maximal ideal of S.

In summary, we assert the following. For 1 <i< 17, let (HNi)' be obtained from
(HN1i) by the following modifications. In (HN1), (HN2), and (HN 3), we take an arbi-
trary set {fy} of elements of K[{X)}], and we take A = ({fo}). (Since each ideal
of K[{X;}] has a basis of at most IAI 8o elements, we could restrict to considera-
tion of sets of cardinality at most IAI 8o .) (HN4)' is the statement that whenever
K[{a)}real is a field, then each a) is algebraic over K. For 5 < i <7, we obtain
(HNi)' by replacing {X,, ---, X} throughout (HNi) by {X)}. We define (HN8)'
to be the statement |A| < |K| 8. Results 2.4, 2.6, 2.7, 2.8, and 2.9 of this section

show that conditions (HN5)' to (HN8)' are equivalent. It is clear that (HN4)' is
equivalent to (HN5)'; the implication (HN2)' — (HN3)' is likewise clear. Since
(HNT7)' implies (HN5)', (HN7)' implies (HN2)'. Finally, we observe that (HN 3)'
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implies (HN5)'. Thus, take a maximal ideal M of K[{X;L}] and take a basis {fa,}
for M. Since ({f5})=M CK[{X,}], (HN3)' implies that the polynomials f, have

a common algebraic zero {t) },ep over K. Consequently,
M-K[{X)\}] C ({Xy-t}) =M,
a maximal ideal of K[{X, }]. Therefore M =M N K[{X; }], and
K ¢ K[{X}/M c K[{x}I/M =K.

It follows that K[{X, }]/M is algebraic over K. We have proved the following re-
sult (S. Lang [11] establishes the equivalence of (HN2)', (HN3)', (HN4)', and (HNS8)'
under the assumption that K is algebraically closed).

2.10. THEOREM. If K is a field with algebraic closure E, and if {XA}AGA is
a set of indeterminates over K, then the conditions (HN2)' to (HN8)' are equiva-
lent.

We remark that condition (HN1)' is satisfied in K[{X, }] for any set {X)} of
indeterminates over K; hence (HN1)' does not imply the conditions (HN2)' to
(HN 8)'.

3. A MORE GENERAL THEOREM

We turn to the problem of determining when R[{X) }aea] (where R denotes a
commutative ring with identity) is a Hilbert ring. We need consider only the case
where A is infinite, and since a homomorphic image of a Hilbert ring is again a
Hilbert ring, R is a Hilbert ring if R[{X, }] is a Hilbert ring. A further necessary
condition for R[ {XA}] to be a Hilbert ring is implied by our next results.

3.1. PROPOSITION. If |A| > |R/M| 8, for some maximal ideal M of R, then
R[{X)}] is not a Hilbert ving.

Proof. By Theorem 2.9, the ring R[{X, }]/M[{X,}] is isomorphic to
(R/M)[{X; }], which is not a Hilbert ring. Hence R[{Xy }] is not a Hilbert ring.

Before proving that R[{X, }] is a Hilbert ring whenever R is a Hilbert ring
and IA] < IR/M | 8o, we need a basic lemma.

3.2. LEMMA. Suppose that R is a commutative ving with identity, that R, is
a commutative unitary overving of Ry such that R, /R is integval, that P3 is a
prime ideal of Ry, and P1 =Py N R). Then P is the intevsection of the set of
prime ideals of R, that properly contain P, if and only if P is the intevsection of
the set of prime ideals of R that prvoperly contain P, .

Proof. R,/P;, is an integral domain that is integral over the domain R, /P,
and hence Lemma 2 of [3] and the observation that each nonzero ideal of R, /P,
meets R)/P; in a nonzero ideal imply that the pseudoradical of R, /P, is zero if
and only if the pseudoradical of R; /P is zero. This assertion, however, is equiva-
lent to the conclusion of the lemma.

3.3. THEOREM. The ving S = R[{X;\}] is a Hilbert ving if and only if R is a
Hilbert ving and IA] < |R/M | Ro for each maximal ideal M of R.

Proof. By (HR3), it suffices to prove that each nonmaximal proper prime ideal
P of S is the intersection of a set of prime ideals of S that properly contain P. By
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passage to (R/P') and to (R/P)[{Xp}]~ S/P'[{X;}] where P'=P NR, we can
assume that R is an integral domain and that PN R =(0). If R is a field, then
Theorem 2.9 shows that S is a Hilbert ring, and hence P is the intersection of a set
of prime ideals of S properly containing P. If R is not a field, then we denote by K
an algebraic closure of the quotient field K of R, and by R the integral closure of R
in K. Since R[{X; }] is integral over R[{X, }] (see [1, Proposition 12, Section 1,
No. 3] or [4, Theorem 8.7]), there exists a prime ideal P' of R[{X)}] lying over
P. Moreover, |[R/M|80>|R/(M n R)|R¢ > |A| for each maximal ideal M of R.
By Lemma 3.2, it suffices to consider the case where R =R and P = P'. (We note
that if (P' N R) NR =P N R = (0) where the domain R is integral over R, then

P' N R =(0).) Thus we assume, without loss of generality, that R is integrally
closed, K is algebraically closed, R #K, and P N R = (0).

We set S=R[{X,}] and N=R - {0}. Then Sy =K[{X,}] and PSy isa
proper ideal of Sy . Now IA] < IR] = |K| = ]KI 8o, so that Sy is a Hilbert ring,
by Theorem 2.9. If PSy is not maximal in Sy, it follows that there exists a family

{P,} of prime ideals of S properly containing P such that PSy = N 2 P, Sy, and

hence P = ﬂa P, . Corollary 2.7 shows that if PSy is maximal in Sy, then PSy; is

the set of elements of Sy that vanish at £ = {£,} for some elements £) in K. We
denote by ¢ the K-homomorphism from K[{XA}] onto K determined by the condi-
tion X, — &, for each A. Then

P=PSyNS = {fes|¢e(f) = 0}.
We denote by {Vg }ge> the set of nontrivial valuation rings on K that contain R,
and by M, the maximal ideal of V; (for each ¢ in Z). Then {Mg N R}geyx is

the set of nonzero prime ideals of R. Thus ﬂcez (Mg N R) = (0), since R is a
Hilbert ring and (0) is not maximal in R. Further, ncez Mgy C nVc, = R, so that

Ny, =( Ny ) nr =Nty nr) = 0.

For 0 € Z, we let Py = {f € SI qbg(f) € Mcr}- We prove that Py is a prime ideal of

S properly containing P and that ﬂoez P; = P. It is easy to verify that Py is an
ideal of S, and clearly P C P; . The inclusion is proper, since (0) CM N R C Py,
while PN R = (0). Also, Py is prime in S, since the condition q‘bg(fg) = ¢g(f) ¢€(g)
in My implies that qbg(f) or qbg(g) is in Mg, the maximal ideal of a valuation ring
on K. Finally

naEEPG = {f€ S| o£(f) € noEZMU} = {1 e s be(f) = o} = p.

This completes the proof of Theorem 3.3.

3.4. COROLLARY. If R is a Hilbert ving, then R[{X)}] is a Hilbert ving if
and only if (R/M)[{X,}] is a Hilbert ving for each maximal ideal M of R.

Proof. Apply Theorems 2.9 and 3.3.

In connection with (HR4) and (HR5), we remark that if each maximal ideal of
R[{X,}] meets R in a maximal ideal, then R is a Hilbert ring, but R[{X» }] need
not be a Hilbert ring. Such an example occurs if R is a field and |R| < |A1 . More
precisely, we have the following result.
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3.5. THEOREM. If R is a commulative ving with identity and if {X)}ren is a
set of indeterminates over R, then conditions (1) and (2) ave equivalent; these condi-
tions imply that R[{XA}] is a Hilbert ring, but not conversely.

(1) For each maximal ideal M of R[{X, }], the ideal M N R is maximal in R,
and R[{X)\}]/M is algebraic over R/(M N R).

(2) For each maximal ideal M of R[{X; }], the vesidue field R[{X)}]/M is
integral over R/(M N R).

Proof. (1) and (2) are equivalent because if a field is integral over a subring,
then the subring must be a subfield.

We prove that (1) implies that R[{X, }] is a Hilbert ring. First we show that R
is a Hilbert ring, by proving that for a fixed element ¢ of A each maximal ideal M
of R[Xs;] meets R in a maximal ideal of R. Since

MR[{X)}] = M[{X) }h#o] © R[{X)}],

M is contained in a maximal ideal M) of R[{X, }], and consequently

M; N R[XG] =M, sothat M; N R=M N R. By (1), it follows that R is a Hilbert
ring. To prove that R[{X, }] is a Hilbert ring, it suffices, by Corollary 3.4, to
prove that (R/P) [{XA}] is a Hilbert ring for each maximal ideal P of R. The
maximal ideals N of (R/P)[{X,}] are in one-to-one correspondence with the max-
imal ideals N of R[{X)}] that contain P[{X,}], and NN R = P for any such N.

Therefore (1) shows that {(R/P)[{X)}]}/N (which is isomorphic to R[{X; }]/N)

is algebraic over R/P for each N. By (HN5)' of Theorem 2.10, (R/P)[{X,}] isa
Hilbert ring.

As we shall show, the hypothesis that R[{Xy }] is a Hilbert ring does not gen-
erally imply that M N R is maximal in R for each maximal ideal M of R[{X, }].

(It is true, however, that if R[{X) }] is a Hilbert ring and M is a maximal ideal of
R[{X;}] such that M N R is maximal in R, then R[{X, }]/M is algebraic over
R/(M N R); this statement follows from Corollary 3.4 and (HN5)' of Theorem 2.10.)
Thus, we take C to be the field of complex numbers, we take S to be the multiplica-
tive system in C[X] generated by {X - a| @ € C - Z}, and we take R = C[X]s.
Then R is a one-dimensional Hilbert ring with the following properties. The set
{M; }i2 _» of maximal ideals of R is countable (we can take M; = (X - i) R for each
i), and R/M; ~ C for each i. By Theorem 3.3, R[{X;}7] is a Hilbert ring, and
since

cx) = R[{1/x- 0} ],

there exists an R-homomorphism ¢ from R[{X;}T] onto C(X). The kernel of ¢ is

a maximal ideal M of R[{X;}T] such that M N R = (0), where (0) is not maximal
in R.
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