A CHARACTERIZATION OF ZERO SETS FOR A”
James D. Nelson

1. INTRODUCTION

Let U and T denote the open unit disk {z, |z| <1} and the unit circle
{zl |z] =1}. The space A™ consists of all nonconstant analytic functions f in U
such that for each positive integer n, the nth derivative f(n) is bounded in U.

The following characterization of the possible zero sets for functions in this
class is due to B. A. Taylor and D. L. Williams [3].

THEOREM 1.1 (Taylor and Williams). In ovder that a closed subset Z of
U=UUT be the zero set of a function in A®, it is necessary and sufficient that

(a) the set Z N U = {rkeiek};::l satisfy the condition

(1.1) 27 (1-1r) <=,
k=1
and (b)
‘Tr -
(1.2) S log dist(el?, Z)do > - .

-
The main result of this paper provides an intrinsic characterization of such
zero sets; at the same time, it yields a shorter proof of Theorem 1.1.

THEOREM 1.2. Let Z be a closed subset of G, and put E,=Z N'T. Then Z
is the zero set of a function in A® if and only if (a) holds and

(¢) E, = E; U {elek}le is a Carleson set.

This result clearly depends only on the radial projection of Z on T, modulo the
Blaschke condition (1.1). Our next theorem gives a condition under ‘which (c) is al-
ways satisfied.

THEOREM 1.3. Suppose Z is a closed subset of U satisfying (a) and that
E=272 NT isa Carleson set. If

[~}
(1.3) Y [dist(e'?k, B)]2 <
k=1
Jor some o > 1, then 7 is the zevo set of a function in A™

The hypothesis of Theorem 1.3 appears in [4], where it is shown only that Z is
the zero set of a function whose derivative belongs to H!.
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2. PROOFS OF THE MAIN THEOREMS
A Carleson ooset is a closed subset of T of measure zero whose complementary
open arcs {I,},-; satisfy the condition

o0

27 gy log(1/e,) < |

n=1

where €, denotes the length of I, (n=1, 2, ---). For a closed subset E of T, this
definition is equivalent to the condition

. T
(2.1) S log d(elg, E)do > -« ,
-7

where d(eif, E) = dist(eie, E) denotes the distance from e’ to E. From (2.1) it
follows immediately that a closed subset of a Carleson set is itself a Carleson set.

Before proceeding with the proofs, we state two elementary lemmas. The first
is a direct consequence of the monotonicity of the function g(x) = x log (1/x) on
(0, 1/e). The second follows from the convexity of the function g.

LEMMA 2.1. Let {ex ‘=1 and {61} 1ey be sequences of positive numbers

such that 6y < e for each index k. If Jip.; & log(1/g) < *, then
o0

23 1= Oy log (1/8) < e.

LEMMA 2.2. Let n be a positive integev. Fov each set {xo, X1, ", an} of
n + 2 points in the interval [a, b] that satisfy the condition
(2.2) a=%X0< %X <" <X3<Xpp1= b,
put

-1
(x; - xj.1) log (x5 - x3.1) (x; #x;5.1,

0 (Xi = Xi-l)
. n+1
for i=1,2, -, n+ 1. The maximum value taken by Zizl c; over all sets of n + 2
boints satisfying (2.2) occurs when x| - xg =Xp - X] = *** =Xy - X_] = Xp4] - Xp -

In addition to Lemmas 2.1 and 2.2, we shall also use the inequality
Il-rew{?‘S(l—r)z-l-Q2 0<r<1, -7<6< 7).

Proof of Theovem 1.2. Suppose Z is a closed subset of U satisfying (a) and

3 (e}
(c). Since {elek}k:1 is a set of points on T whose closure is a Carleson set, it
follows by a result of Caughran [1, Theorem 2] that there exists a function f; in A®

i6
whose zero set is the closure of {ri e K}’ ;. Thus the zeros of f, are the points

of Z except those on T that are not in the closure of {rkelek}ﬁzl . Since E; isa
closed subset of Ez, E;j is a Carleson set, and, by a theorem of P. Novinger [2],
there exists f, € A™ such that E; is the zero set of f,. The function f =£;f, is in
A® | and its zero set is Z.
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Now suppose f isin A®, and Z is its zero set in U. Then Z satisfies (a), and
(1.2) follows from the integrability of log |[f| on T and the fact that f satisfies a
Lipschitz condition on U, that is,

|f(zl)-f(zz)| §M|zl-zz| (21,2, € U).

Because (1.2) holds, E; =Z N T is a Carleson set, and it remains to show that

E,=E, U {e'?%15| is a Carleson set. We show that this is implied by (1.1) and
(1.2).

Without loss of generality, assume that 1 is in E; . We shall first prove the

theorem under the assumptions that elek ¢ E; for any k and that 6y # 6j if k #j.
In the remainder of the proof, E; will be considered as a subset of [-7, 7] in the
usual manner.

Since E] is a Carleson set, it follows that [-7, 7]\ E; is the countable union of
disjoint open intervals,

[-7, 71\ E; = U (ay, bn)
n=1
and

(2.3) 22 (b, - ay)log (b, - a.n)'1 < oo,

n=1

For each positive integer n, let {63}, denote the terms of {6, }5-; that lie in
(an, by). For positive integers k and n, let I = (w., 6})), where wl is the greatest
element of E, less than 6. If b, is not a limit point of {6} },, let J, denote the

interval (w,, b,), where w, is the greatest element of E, less than b, . It now
follows that

[>0] 0 [>e]

n

[-r,7]\E, =( U U Ik)U(U JS),
n=1 k=1 s=1

the intervals in this union being pairwise disjoint.

Relabel the collection of intervals {I}n -1, and denote it by {I,}7-1; denote
the right-hand endpoint of I, by 6,, the length of I, by £,, and the length of J, by
Pn .

For each integer s, J, C (ag, b.), hence p, < b, - a5, and from (2.3) and
Lemma 2.1 it follows that Eosoz 1 Ps log(1/pg) < <. Thus it will suffice to show that
E:lozl gn log(1/e,) < .

To this end, denote by {m;} f;l the subsequence of the positive integers for
which

1-rp S €my log(l/smk) ,

and by {n; }n-; the subsequence for which
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1- T > €nye log(l/snk)

[+ o]
Clearly, Z}kzl Eny 108 (l/snk) < o,

If N is a positive integer, then

7
4
© > S log ———— E 5 —d0
-7 d(et?, Z)Z - d(el‘9 7,)2
> 2 log |elf —zmkl ae > Z) S log[(1-r_ ) +(6-6 k)z]'ldB
k=1 VI Iy,
N
2 2 2 -1
> Z_:l 5‘1 log[smk log (1/8mk)+smk] do
= my
N
= E}l © log[sfnk log? (l/smk) + sfnk]‘1
N N
= - 2
2 Z_) € e log(l/smk) ? €m, log (1 + log (l/smk))
k=1 k=1
N N
>2 2 e log (1/€m, ) - 2 const. 22 &m, log log(1/em,)
k=1 K k=1
;} const. log Iog(l/smk)
=2 (€, log(1/e, N1 -
k=1 k k log (l/cmk)
Since

( const. log log(l/smk) )
lim 1- =1
Kk — o0 log (1/€ ) -

0
it follows that Ziy.| Epm, 10g(1/em, ) <. Therefore, Zin-) €, log(1/e,) < «, and
E, is a Carleson set.

The assumptlons on the sequence {rke }k ; in the proof cause no problem.
If {zx}x-1 does not satisfy these conditions, choose a subsequence {an}k , such

if,
that the conditions are satisfied and E2 = E; U { e k}k=1 . The integral in (1.2)
will still be finite if we replace Z by Z' = E, U {znk} ‘1’:: 1- This completes the
proof of Theorem 1.2.

We have shown that (1.1) and (1.2) imply that E, is a Carleson set. An applica-
tion of the result of Caughran now proves the sufficiency in Theorem 1.1.
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i6
Proof of Theovem 1.3. We show that E U {e k};o:l is a Carleson set, and we
again apply the result of Caughran [1], as in the proof of Theorem 1.2.

Assume that E C [-n, 7] and {6y }pr=; is a sequence in [-7, 7]\ E. The condi-
tion (1.3) is equivalent to the condition

[>e]

(2.4) 22 [d(6y, B)]® < .
k=1

Furthermore, it is no loss of generality to assume that @ > 1.

We now define a new sequence { ¢y }roe; in [-7, 7]\ E such that

{6121 € {1 }1e1, and we show that E U {e k}k | is a Carleson set. Since
every closed subset of a Carleson set is a Carleson set, it will follow that
if

EU {e k}::l is a Carleson set.

Let {(an, bn)};:)= 1 be the set of complementary intervals of E, and let
€En=Dbp -an (n=1,2, --). Set B =1/(a - 1), and for each positive integer n, let s,
be the least positive integer for which sI’I‘6 <eg, /2. Denote by p and w the functions
p(x) = 1/x and w(x) = x log (1/x).

Now consider the set consisting of the union of the sequence {6y }r.1, the se-

quence of midpoints {(a,+b,)/ 2}:10:1 , and the countable collection of sequences

O RV R ()

For each positive integer n, let {(an}m 1 be a decreasing enumeratlon of the
elements of this set that belong to (a,, a, + £,/2), and let {¢) }m=1 be an in-
creasing enumeration of those in [b, - €, /2, by).

Note that for each positive integer n,

2.5) 2 [da,+k B, B)]% = 2 xP% < const. X p(x)B*1dx < const. g~!
k=s, k=s, s

Thus it follows from (2.5) that

(2.6) 2 2 [d{pni, BN < Z[d(8x, E)]* +const. g7 Lep+2% T £ < w .
n=1 k=1 k=1 n=1 n=1

Fix an integer n. Without loss of generality, assume that a, = 0, so that
d(¢,), E) = ¢,5.. We now obtain a bound on

[+e]

(2.7) 27 (g - bn,k+1) -
k=1

All constants obtained will be independent of n. Let M{ denote the number of terms
of {¢nk}k | that lie strictly between s;® and &,/2, and MY the number between
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(s, + k)R and (s, +k - 1)'3 (k =1, 2, -=*). Since we seek a bound on (2.7), we may
by Lemma 2.2 assume that the points of {¢nk}1.;°:1 between (s, +k - 1)-B and

(s, +k) B (k=1, 2, *+) are distributed evenly, likewise those between s;ﬁ and
&,/2. Redistributing the points in this manner will not destroy condition (2.6).

Now,
2 (¢~ bnird = M5+ Dw[M)+1)7 (en/2 - 57P)]
k=1
+ D M+ D[(ME+1) 7 (sy +k - 1)7P - (s, +K)P)]
k=1
(2.8) = (log(Mj + 1)) (e, /2 - s2B) + w(e_ /2 - s7P)

+ 22 [log My, + D][(s, +k - 1R (s, +k)"8]
k=1

oC

+ 2 wl(s, +k- )P - (s, +1)7P].
k=1

We estimate the terms of the right-hand side of (2.8). First,

(2.9) (log (M2 +1))(e_/2 - s7P) < (MR +1)((s,, - VP - s7P) < const. (M5 + 1) 7P

Likewise,
(2.10) 2 [logME+ D][(s, +k - 1)F - (s_ +X)P] < const. 2 (M2 +1) (s, +k) P,
k=1 k=1
Furthermore,
(2.11) (Mp +1)s;P% + 20 (Mp + 1) (s, +0)7PY < 20 9%,
k=1 k=1
Finally,

2 wl(s, +k - 1)7F (sp +k)_B]
k=1

< const. 2J w[(sn+k)'1'B]+const. 2 (sn+k)'1"6

(2.12) k=1 k=1

[~}
< const. S w(x'ﬁ'l)dx + const. g1 €y
+1

= const. B2 (w (s, + 1)+ (s, +1)P) + const. gL ¢,,.
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From expressions (2.9) to (2.12) we see that

21 Wy, - $n, 1)
k=1
< const. 27 ¢§’k + const. ¢ + const. w [(sn + I)B] +w(e, /2 - S;B) .
k=1

Our assumption that a, = 0 implies that ¢% = [d(¢yx, E)]¥. Similar estimates on
each interval (a,, a, +¢&,/2] (n=1, 2, --) yield the bound

27 20 oy - $ne1) < const. 20 27 [d(dye, E)]® + const. 20 &
n=1 k=1 n=1 k=1 n=1
(2.13) w w
+ const. 2 wl(s, + 1)7B] + const. 27 w(e, /2 - S;IB),
n=1 n=1

and each series on the right side of (2.13) is convergent. The last two series con-
verge, by Lemma 2.1, and convergence of the first two is clear.

Similar estimates on the points {¢j,}n.m=1 are possible, and it follows that

Eu {e1 ek}::zl is a Carleson set. This completes the proof of Theorem 1.3.
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