REPRESENTATIONS OF INTEGRAL RELATION ALGEBRAS
Ralph McKenzie

The main object of this note is to prove the following theorem.

The class of relation algebras that possess vepresentations over a grvoup is not
finitely axiomatizable velative to the class of rvepresentable, integral relation alge-
bras.

Previously it was not known whether the two classes are distinct. (The question
had been stated as an open problem in [2].) To prove the theorem, we shall define
and study an intermediate class of relation algebras. Roger Lyndon suggested an
appropriate generic name for these algebras: permutational. An algebra will be
called permutational if one of its representations admits a transitive group of auto-
morphisms. Probably the most important unsolved problem related to our work is
the question whether every representable, integral relation algebra is permutational.
We shall strengthen some results of R. C. Lydon’s paper [5] to obtain a negative
solution of this problem under the assumption that there exists a finite projective
plane whose order is not a power of a prime integer.

The final section contains the presentation of a nonrepresentable relation alge-
bra having the smallest possible size.

The author is indebted to the referee for the correction of several inaccuracies.

1. PRELIMINARIES

A relation algebra is a universal algebra of the type %A'= <A, +, -, -, 3, 1’>
that satisfies certain postulates due to Tarski (see for example [3, Definition 4.1]):
<A, +, -, - ) is a Boolean algebra, the formulae

x;y);z=x;(y;z) and x;1’=1;x=xXx
hold for all x, y, z € A, and the formulae
(x;y)-z=0, (xv;z)'y=0, (z;y¥)x=0

are equivalent for all x, y, z € A. We use the symbols 0 and 1 to denote the
Boolean null and unit element of %. A relation algebra is 7epresentable if it is
isomorphic to an algebra ® = (D, U, N, ~, | , Y, I), where, for some set X,

< D, u,n, ~ ) is a Boolean algebra of subsets of X X X (whose unit set is not
necessarily equal to X X X), where I is the identity relation on X, and where for any
R and S belonging to D, R] S is the relative product of R and S and R" is the
converse of R. A representation of 9% over the set X is a pair ( D, ¢>, where ®
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is a concrete algebra of binary relations over X, as above, and ¢ is an isomorphism
of % onto D.

A relation algebra U is éntegral if A has more than one element and x =0 or
y =0 for all x, y € A for which x ; y =0. An integral relation algebra is simple (in
the sense of universal algebra). Hence it is easy to see that if such an algebra is
representable, then it has a representation < D, q5> with unit set 1¢ = X X X. From
now on, “representation” will mean representation in this restricted sense. A rela-
tion algebra is vepresentable over a group if it is isomorphic to a subalgebra of an
algebra

%(G) = (P@G), u,n, ~, -, 1, {e}),

called the complex algebra of G, and composed of all subsets of a group G whose
neutral element is e. Here R-S is the complex product of R and S, and

Rl = {x-1: x € R}. Inthis paper, 4 will denote the class of all representable
integral relation algebras, and ¢ will be used for the class of all algebras repre-
sentable over a group.

One can easily prove that ¥ € #. To proceed further we introduce the follow-
ing notions. The automorphism group Aut (D, ¢) of a representation over X is the
group of all permutations ¢ of X such that each member of © is left invariant by
0, in other words,

(x,y) € R <> <xo, y0> € R

for all x,y € X and R € D. For any transitive group K of permutations of a set X,
the set of all subsets of X X X that are invariant under every member of K forms a
relation algebra % (K ; X). This algebra is integral, since the domain and the range
of each nonempty invariant relation are equal to X.

We call a relation algebra % permutational-—-and we write A € & —if it is iso-
morphic to a subalgebra of some algebra % (K ; X) (with K transitive); in other
words, if % possesses a representation whose automorphism group is transitive.

We shall prove that ¥ C #.C 4. The second inclusion is trivial, since every
subalgebra of an algebra in 4 belongs to 4. To prove the first inclusion it is con-
venient to define an equivalent construction of permutational algebras. Let G be an
arbitrary group, and let H be one of its subgroups. Put

A(G,H) = {SCG:H-S-H = S}.

Although it may not contain the member {e} € %(G), this set is closed under the re-
maining operations of the complex algebra of G. One sees that

€(G, H) = {A(G, H),u,Nn,~,+, "}, H)

is an integral relation algebra. Let us call it the algebra of double cosets of H in
G. Of course, if we take H = {e}, then % (G, H) = %(G).

LEMMA 1.1. Let G and H be groups such that H C G. Let X = {H-g: g € G},
and let K be the permutation group on X consisting of the vight translations
H-g = H-g-gg (89 € G). Then

A(G, H) £ A(K ; X).
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Conversely, let K be a transitive pevmulation group on a set X, let x € X, and
let K, = {0 € K: x0 =x}. Then

AK ; X) 2 4(K, K,).

Proof. The isomorphism to establish the first conclusion correlates each
S € A(G, H) with the set {{H-s-g, H-g): s € S and g € G}. The isomorphism
for the second statement maps each relation R, invariant under K, onto the set
{o: <x, xo> € R} cK.

LEMMA 1.2. Let U be a rvelation algebra. A necessary and sufficient condition
for % €9 isthal A possesses a representation <.ﬁ), qS) over a set X such that
Aut (9, ¢) contains a subgroup K that is vegular and transitive on X.

Proof. We can restate the conditionas % = ® ¢ %K ; X) for some set X and
some group K regular and transitive on X. That K is regular means that K, = {e}
for all x € X. By Lemma 1.1 this implies that %(K ; X) = %A(K, {e})= %A(K). Thus
the sufficiency is established. The necessity of the condition follows likewise from
Lemma 1.1 and the fact that every group is isomorphic to a regular transitive per-
mutation group.

LEMMA 1.3. Let G, H, and K be groups with HC G, KC G, and H-K =G.
Then %(G, H) is isomorphic to a subalgebra of A(K, H N K). Furthermove, if L is
a normal subgroup of G and L C H, then %A(G, H) = %A(G/L, H/L). Thus, if His a
normal or a complemented subgroup of G, then A(G, H) € 9.

Proof. Let G, H, and K be given, with H-K = G. Let
¢=(SNK:SeAG,H)).

To verify that ¢ is an embedding of % (G, H) into %(K, HN K), let R, S € A(G, H).
It should be clear from the definitions that R¢ € A(K, H N K), that R"1 ¢ = (R¢)"!,
and that H¢ = H N K. Of course, (R-S)¢ D Ré- S¢. But conversely, if

x=r-s € (R-S)¢, that is, if x € K, r € R, s € S, then we may write s = h-k, where
he Hand k€ K. Since R-H=R and H-S=S, we seethat r-he€ R and k € S.
Thus x=(r-h)-k, where r-h=x-k"! e RN K and k € SN K. In other words,

X € R¢-S¢. Of course, ¢ is a homomorphism for the Boolean operations. To prove
that it is one-to-one, we need only show that R # 0 implies R¢ # 0. This follows
from the relations H-R=R and H-K = G.

Now, if L is a normal subgroup of G and L C H, then we put
v = {{Lr:r e R:Re AG, H) )Y,

and we verify in a similar manner that ¥: %(G, H) £ %(G/L, H/L).

That H is a complemented subgroup of G means that there exists a subgroup K
such that H- K=G and HNK = {e}. Thus the final statement of the lemma follows
from the first and the second.

2. AN EXAMPLE

We can now answer in the negative the question of J6nsson and Tarski [2]
whether ¥ = 4. In fact, every algebra representable over a group obviously satis-
fies the universal implication x ; x¥ <1’ - x%~;x<1°. Let % = %4(G, H), a
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double-coset algebra, and suppose that G contains an element g satisfying the con-
dition g'l ‘H-g> H. We put X =HgH € %, so that X-1.X>H=X-X"1; thus

% ¢-9 if such an element g exists. As an example of such groups G and H and
such an element g € G, let G be the group of all permutations of the set of integers,
let H be the subgroup fixing the nonnegative integers, and let g be the successor
function (ng =n+1).

From our observations and Lemma 1.1 we conclude that ¥ C # C 4.

3. THE MAIN RESULT

Although the definitions of the three classes introduced in Section 1 provide no
means to actually determine whether an abstractly defined relation algebra belongs
to a class, it is known that each of these classes is elementary in the wider sense:
each is characterized by the satisfaction of a set of sentences formulated in the ele-
mentary (first-order) language of relation algebras. In fact, it was shown by A.
Tarski for ¥ and $ (see [9]), and it follows likewise for £, that each of the classes
is characterized as the class of all integral relation algebras satisfying a certain set
of axioms in the form of equations. (A specific set of equations characterizing the
cla[ssi of all representable algebras (not necessarily integral) was published by Lyndon
in [4].)

In his paper [7], Monk showed that no class & such that ¢ C & C 4 can be de-
fined by a finite set of elementary sentences. In this section, we shall prove that
there exists no finite set A of elementary sentences by which ¢ could be character-
ized as the subclass of & consisting of the algebras that satisfy A. This is part of
the content of Theorem 3.2—which follows directly from Theorem 3.1 by virtue of
the fundamental theorem that every elementary sentence is preserved under the
formation of ultraproducts (Theorem 5.1 of (6]).

THEOREM 3.1. There exists an ultvaproduct U of algebras U, € P ~ G such
that % € G.

THEOREM 3.2. If o is an elementary class (in the widev sense) containing &,
then % is not finitely axiomatizable velalive to €.

It would certainly be of interest to have a reasonably elegant system of first-
order axioms characterizing <, #, or ¢. In this direction we contribute the follow-
ing observation:

PROPOSITION 3.3. & is the class of all integral velation algebras satisfying
every equation that is true in every complex algebra of a group and does not involve
the symbol 1°.

The proof of the proposition uses standard techniques of model theory, together
with Tarski’s method of converting every universal sentence into an equation that is
equivalent to it in integral relation algebras [9]. Letting % be an integral relation
algebra satisfying the mentioned equations, we see that there exists a group G and
an algebra B8 = % such that <B, +, °, -3, V) is a subalgebra of %(G) when the
nullary operation 1’ is disregarded. ¥ H =1’ in 8, then we find that H is a sub-
group of G and that 8 € %(G, H). Hence, by Lemma 1.1, 4 = 8 € #. The converse
assertion that every permutational algebra satisfies the mentioned equations is clear,
in the light of Lemma 1.1.

Now, to begin the proof of Theorem 3.1, we first state an easy lemma. For each
t € T, where T is a nonempty set, let G, be a group. Let D be an ultrafilter over
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T. If X; is a subset (or a subgroup) of G, for each t € T, then the ultraproduct

II teT Xt/D is not, strictly speaking, a subset of the group II te T G¢/D. However,
it can be identified with the subset (or subgroup, respectively) consisting of the f/D
such that {t € T: f, € X,} € D. We make this identification in the following asser-
tion. i

LEMMA 3.4. Let G=II, 1+ G./D ana u=1I, .1 H,/D, where H, and G,
(H, € G,) are groups for each t € T. Then theve exists an algebra B C U(G, H)

such that 11, ¢ 1 %(G,, H;)/D = 3.

In fact, it is easily seen that the formula

((XzteT)/D)p = Il x,/D

teT

defines a map ¢ that is an isomorphism from Il %(G;, H;)/D into %(G, H).

For the remainder of this section, D will denote a fixed, nonprincipal ultrafilter
over the set P of all odd prime natural numbers. We define below two systems of
groups Hy and Gp (Hpg GP) for every p € P. Let H and G be the respective
ultraproducts of these systems. The following two lemmas will be proved.

LEMMA 3.5. For each p, %(Gp, Hp) ¢ 9.

LEMMA 3.6. H is a complemented subgroup of G.

From Lemmas 3.6 and 1.3 it will follow that %(G, H) € 9; hence, by Lemma
3.4, Hpep A(Gy, Hy)/D € 9, although each algebra (G, H )€ &~ G by Lem-
ma 3.5. Thus Theorem 3.1 will be proved.

Let now p be any odd prime. The group G, to be defined is a certain spht ex-
tension of the dihedral group of order 2 -p? by the cyclic group Z 2 of order p

(Thus it has order 2 - p4 ) We define it concretely as follows: The elements of G
are the ordered triples (i, €, j) of integers, w1th equality defined by

(i, e, j) =(k, v, £) if and on1y1f i =k (mod p2), € =y (mod 2), and j = £ (mod p2).
Mu1t1phcat1on in the group is defined by the formula

(3.7) G, & §)- &, v, 2) = G+k+2@y - €k) - 4¢jy, e +y, ]+ 2)

whenever (i, €, j), (k, ¥, £) € Gp and 0< ¢, ¥ <2. Thus (0, 0, 0) is the neutral
element of the group, and )

(3.8) G, ¢, i)t = (45 - i, &, -j).

Define Hj, to be the cyclic subgroup of G, whose elements are (0, 0, ip)
(0 <i<p); and let Ly be the subgroup cons1st1ng of all elements of the form
(0, 0, m), so that Hy CL C Gp

Proof of Lemma 3.6. Our convention implies that H C L C G, where

L= Hp €P Lp/ D. L is an.abelian group and H is a divisible abelian group; this
follows from Theorem 5.1 of [6] and the fact that for each integer n > 0 all but
finitely many groups H, satisfy the sentence Vxdy (y" = x). A well-known theorem
concerning abelian groups implies that H is complemented in L; therefore we can
choose a group H' C L sothat H-H'=L and HN H'= {e}.
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To complete the proof we simply remark that it is easy to show that the elements
((1p, €p, jph P € P>/D of G such that <(0, 0,jpkpe P>/D belongs to H' con-
stitute a subgroup K satisfying the requirements H- K=G and HN K = {e} .

Proof of Lemma 3.5. Let p be an odd prime. If x belongs to some relation

algebra, let xP denote the p-fold relative power x ; x; --- ; x. If x, y, and
Xp, **, Xp are elements of the complex algebra of a group K, then the conditions

Xp:l’: y;&O’ y;x;y‘):Z}Xa

jointly imply that xg 2> 1’ for some «. (In fact the first condition implies that

X= {g}, where g € K and gP = e; hence some xy contains an element
k=h-g-h-l (h € y) such that kP = e.)

We proceed to show that the above implication fails in QI(GP, Hp), from which
we infer that this algebra cannot be embedded in a complex algebra.

In A(Gp, Hp) consider the elements
R=Hp'(0,0,1):Hy, S=Hp(0,10)H,, and
Roy = H,"2(-ap-1),0,1)'H, for 1<a<p.
Using formulas (3.7) and (3.8), we find that
RP = H,*(0, 0, p)"H, = H,

(because (0, 0, 1) belongs to the centralizer of H,, and its pth power belongs to H )
and we note that the last member is the relative identity element of % (Gp , Hp)
Also,

S'R-8°! = H,-(0,1,0)-Hy,*(0,0,1) Hy,- (0, 1, 0)-H,,
= H," (0, 1, 0)-H," (0, 0, 1) (0, 1, 0)"H,

p-1
= U 8,-0,1,0)0,0,ip) (2, 1. 1) H,
i=0

p-1
= U Hy(-2ip-2,0,1)(0,0,ip) H, = 2 R,
i=0 o

Finally, to conclude the argument we show that RE P Hp for each . Note that
(3 7) implies that (2-(p - ap - 1), 0, 1) belongs to the centrahzer of H,. Thus
R} = H, (2p(p - ap - 1), 0, p). Since 2p(p - ap - 1) # 0 (mod p2), the desn‘ed result

follows.
N
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4. LYNDON ALGEBRAS

In this section we consider the question whether &# = &, This appears to be a
difficult problem; nevertheless we can give a sufficient condition for the answer to
be negative.

Lyndon [5] defined an important class of integral relation algebras derived from
finite projective planes. The Lyndon algebra %,, (m > 3) has 2™*2 elements and
m + 2 atoms, 1’ and agy, ***, a,,. It is completely specified by the relations

ay = 2y, Aag;aw =ag+1’, and

ay ;ag = E{ayz'y#a,ﬁ} if @ 28.

In [5], Lyndon studied the representations of his algebras. He proved that

A, € ¢ if and only if m is a power of a prime integer, and that %,, € 4 if and
only if there exists a projective plane of order m (that is, a projective plane with
m + 1 points on each line). In fact, he showed that there is a canonical correspond-
ence between the affine planes of order m and the representations of the algebra
AL ’

Making use of Liyndon’s work and an old theorem of Frobenius on permutation
groups we prove the following theorem, which implies that %4,,, € § ~ & in case m
is not a prime power and there exists a projective plane of order m.

THEOREM 4.1. If m is not a prime power, then U is not permutational.

Proof. Let the pair < D, ¢> be a representation of %,, over a set X such that
Aut (9, ¢) = G acts transitively on X. We shall see that G contains a regular transi-
tive subgroup. Then, by Lemma 1.2, %, € ¢, and by Corollary 2.3 of [5], m isa
power of a prime.

For 0 < @ < m, let us put Ey = (1’ +ay) ¢, where the a, are the atoms of %,
other than 1’. From the defining relations of %,, we deduce that the E, are equi-
valence relations on X, and that E, | Eg = XXX and Eg NEg =1 (the identity
relation on X) whenever ¢, 8 <m and a # 8. Furthermore,

U{e,: ¢ <m} = xxx.

Now I claim that every transformation ¢ € G that fixes two distinct points x
and y must fix all points. For let ¢ € G be such that the fixed set F of ¢ contains

at least two points. ¥ x, y € F and if <x, u> € E4 and <y, u> € Eg (a #p) for
some u, then u € F. To see this, we observe that (x, u0> € E4 and

<y, uo> € Eg, since the equivalence relations Eq and Eg are invariant under o,
and that therefore <u, u0> € Eqg N Eg. Thus it follows that u =uo.

Without losing generality, we may assume that x,y € F, x#y, and
<x, y ) € Eg. Pick z so that {(x,2z) € Ej and (z,5) € Ep (E1 | E2 = X X X).
By the argument above, z € F. Now let u € X. Choose «, 8, ¥y < m so that
<x, u} € Eg, {(y,u) € Eg, and {2z,u) € Ey. If any two of @, B, y are distinct,
then u € F by the above argument. But if @ = 8 = v, then

<x,y>eEoﬂEa, <x,‘z>eElnEa, <z,y>eEana.
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Then @ =0, since x #y. This implies that x=z =y, since E; N Eg =E, N Ej =1
This contradiction shows that u € F and proves the claim.

I also claim that X is finite (§ = m¢?). This follows from Theorem 1 of [5]; it
can also be shown directly.

The desired result now follows from the two claims above and from the theorem
of Frobenius (Theorem IV, p. 334 in [1]), which states that in a finite, transitive
permutation group containing no nonidentity transformations that fix fwo or more
elements, the identity element together with the transformations that move all points
constitute a regular transitive subgroup.

5. EXAMPLES AND PROBLEMS

We now construct a “minimal” algebra that satisfies Tarski’s axioms for rela-
tion algebras and fails to be representable. Our example has 16 elements and one
can show that no such algebras with fewer than 16 elements exist. We do not know
whether any other such algebras of this size exist. It is interesting to note that our
example (and also the smallest previously known example, Lyndon’s algebra %) is
an integral algebra.

The Boolean part of the algebra ¢ is to be the subset algebra of a 4-element
set; C = P(4). Let the atoms of the algebra be 1’°, Cy, C;, C». Then define
1’¥=1, Cy=C;, CI=Cop, C3=Cz,
and put
P;x=x3;17=x%x, Co;C =Co, C;;C =20y,

C2;Cz="Cz (=1°UCpUCy),
Cp;C1 =C; ;Co =1, Cu;Cp=Cp;Cq=CaUC, (ae€ {o,1}).
There exists exact,‘ly one way to extend these operations so that
C= <C, U, N, ~,5,N, 1’>

is a relation algebra ( ; and “~ must be additive operations). The verification that
¢ is in fact a relation algebra is routine.

Now, to obtain a contradiction, suppose that € is representable. Since it is
integral we then have a representation < D, <;b> where 1¢ is of the form X X X. If
we let R = Cg ¢, the defining relations imply that R is a partial ordering of X under
which every pair of elements has an upper and a lower bound, and two given elements
are comparable if and only if they are both incomparable to some third element. It is
a trivial matter to show that these assumptions are contradictory.

A final remark: the smallest example currently known by the author of a per-
mutational algebra that is not representable over a group is a certain 7-atom sub-
algebra of the double-coset algebra %(Ag, A3), where Ag and A3z are the alternat-
ing groups. (The algebras %A(A_,,, A,) associated with alternating groups where
n > 3 all belong to %.)

Problem 1. Does # = F?
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Problem 2. Consider the class of pairs <G, H> such that %A(G, H) € .
These pairs can be construed as relational structures <X, -, "1, P> with two basic

operations and a singulary relation P. Is this class elementary in the wider sense?
Does it have any “constructive” characterization?
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