ON EXTREME DOUBLY STOCHASTIC MEASURES
James R. Brown and Ray C. Shiflett

1. INTRODUCTION

This paper deals with the problem of extremality in the convex set of doubly
stochastic measures defined on the unit square X X X with the Lebesgue structure.
By m and m?2 , we shall denote one- and two-dimensional Lebesgue measure. A
doubly stochastic measure is a positive Borel measure u defined on X X X such
that

n(AXX) = p(XXA) = m(A)

for every measurable A.

The major results of this paper are called theorems, and the technical results
are called propositions. We use the Douglas-Lindenstrauss Theorem:

Let u be a doubly stochastic measure. The measure | is extreme if and only
if the subspace consisting of all functions of the form h(x, y) = £(x) + g(y)
(f, g € Li(m)) is norm-dense in Li(u).

R. G. Douglas [1] and Joram Lindenstrauss [4] discovered this theorem inde-
pendently. It is the only known characterization of the extreme points of the set of
doubly stochastic measures.

The authors would like to express their gratitude to the referee whose com-
ments were very helpful.

2. RESULTS

Every example, known to the authors, of an extreme point in the set of doubly
stochastic measures has the mass concentrated along line segments. In fact, there
exist examples in which the mass seems to be concentrated on points.

Definition 1. The point (x, y) is a point of density of the set E, relative to the
measure [, if

pl([x-h, x+h]lx[y-h, y+h])Nn E]>0
for every h > 0.

The set of density points of E that are in E forms a closed subset of E in its
relative topology. This collection is essentially the support of p restricted to E.
However, there may be points of density for E that are not in E. Proposition 1 and
its corollaries are addressed to this larger collection of points.
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Let D(E, p) denote the set of all points of density of E relative to . Note that
when E C F, we have the inclusion D(E, p) € D(F, p). Let X(E, 1) denote the set of
x such that (x, y) isin E N D(E, u) for some y. Finally, let Y(E, p) denote the
set of y such that (x, y) isin E N D(E, p) for some x.

PROPOSITION 1. If E is measurable, then pu(E) > 0 if and only if
E N D(E, n) # @.

Proof. If u(E)=0, then D(E, p)=@. If E N D(E, ) = @, then for every (x, y)
in E, there exists an h(x, y) > 0 with

pl([x-h x+h]X[y-h,y+h]) NE]=0

for h > h(x, y). Countably many such squares cover E. Using this countable col-
lection, we have the inequalities

u(E) = u[U([x-h,X+h]><[y-h,y+h])ﬂE:|

< 2 p[([x-hx+h]x[y-h, y+h])NE]=0. m

COROLLARY 1.1. If E is measurable, then u[E - D(E, u)] = 0; that is, almost
every point of E is a density point of E.

Proof. Let F=E - D(E, i1). Then FCE and D(F, 1) C D(E, ). Thus
F N D(F, 1) = @ and, by Proposition 1, p(F)=0. =

Definition 2. The marginal measures A and v of a measurable rectangle
A X B, determined by a doubly stochastic measure p, are defined by the relations
A(C) = u(C x B), where C is a measurable subset of A, and v (D) = u(A X D), where
D is a measurable subset of B. If u(A X B)> 0, then A X B is called a full
rectangle, relative to u, if the marginal measures A and v are equivalent to m
on A and B, respectively.

Note that A(C) < m(C) and v(D) < m(D), for every C and D.
COROLLARY 1.2. If A X B is full relative to |, then

m[A - X(AXB, u)l = m[B-YAXB, u)] =0.
Proof. By Proposition 1, we have that
AMA-X(AXB, p)] = p([A- X(AxB, u)]xB) =0.

Since A is equivalent to m on A, we have that m[A - X(A X B, ¢)] = 0. The other
equality can be proved in the same way. B

The idea of sequences of exceptional points has been used by Lindenstrauss 4]
and Jaffa [3]. In this paper, a path is a sequence of points ((xi, yi)> for which
X2k = X2k+1 and y2k-1 =y¥2k. A path of length k exits in a set E if x) isin E
when k is even, or if yx is in E when k is odd.

PROPOSITION 2. Let <~Ai X Bi> be a sequence of full rectangles relative to

the doubly stochastic measure |, with Ay = Ajryq and Bpyx_1 = Bpx. Let Ei = Ay
Jor even k or Ey = By for odd k. If E is a set such that m(Ey - E) = 0, then for
[m]-almost every y; in B, there exists an x| in Ay such that (x},y;) starts a
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path of length k with (x;, y;) in (A; X B;) N D(A; X Bi, i), and [m]-almost every
point in E, is an exit point for such a path.

Proof. The proof is by induction. If k = 1, then the result follows from Corol-
lary 1.2.

Suppose the result were true for k=2n - 1. ¥ m(A, - E) =0, then
(A, N E)X By, is full. Let E' be the collection of those y for which there exists
an x such that (x, y) isin (A, N E) X Bp,. By Corollary 1.2, we have that
m(B,,_; - E') =0, since B,, =B, _;. By the induction hypothesis, [m]-almost
every element of B; connects to an element of E' by a path of length 2n - 1, and
therefore, by the definition of E', [m]-almost every element of B, starts a path of
length 2n that exits in E.

Furthermore, the induction hypothesis states that [m]-almost every y,, in
B,, = B,,_1 is an exit point for a path of length 2n - 1 that exits in E'. Therefore,
[11]-almost every point in the set of density points of (A,,, N E) X B, connects to a
path of length 2n - 1, forming a path of length 2n that exits in E. Hence [m]-almost
all points of A, are exit points of paths of length 2n that exit in E.

A similar argument proves the case where k =2n. H

Definition 3. A sequence of rectangles A; X By, -, Ay, X By, each of which
is full with respect to a doubly stochastic measure p, is a loop if

B1=B2, A2=A3, B3=B4, ”.’BZH-].:BZH? and AZnCAl'

We shall call a loop inwvariant if there exists a set D; C B; such that
m(D;) > 0 and such that for [m]-almost every y; in D, the path given by Proposi-
tion 2 satisfies the condition x; = x5,,.

THEOREM 1. If u is an extreme doubly stochastic measuve, then u has no
invariant loops.

Proof. Let A} X By, -, Aap X By, be an invariant loop for the doubly
stochastic measure p. Let D; C B; be the set described above. Then, for [u]-
almost all (x;, y;) in the set of density points of A; X D;, there exists a path end-
ing in the set of density points of A, X B, .

If © were extreme, the Douglas-Lindenstrauss Theorem states that we could
approximate the characteristic function of A} X B in the Lj(u)-norm by functions
f(x) + g(y), where f and g are in L(m). In this case, we could find a sequence
( f(x) + gn(y)> that converged in the mean to the characteristic function of
A} X By, and, consequently, we could find a subsequence that converged [u]-almost
everywhere. Therefore, [1]-almost all points in the paths that start with a y; in
D, are points of convergence of this subsequence. Choose one such path
(x1,¥1), =, (¥1, y25)- For this finite set of points, there exists, for each € > 0,
an N such that f_(x;) +g,(y;) (m > N) differs from the characteristic function of
A} X B; in absolute value by less than €. For fixed M (M > N), we have the in-
equalities .

|1 - f(x) - e )| <&, [Emx2) +em))| < e,
[f0x) Fepa)| <&, o, lfpx) +eum,)] <e.

Combining these inequalities, we obtain the relation 1 < 2ne for arbitrarily small ¢
and fixed n. Thus the measure p can not be extreme. B
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THEOREM 2. If p is an extreme doubly stochastic measure, then for every
A XB with m(A)m(B) > 0 there exists a set (C XD) C (A X B) with m(C)m(D) > 0
and pw(C XD)=0.

Proof. Suppose there are no such subsets in A X B. Let (C X D) C (A X B) be
such that m(A - C)m(B - D) > 0. Form CXD, (A-C)xD, (A-C)X(B- D), and
CX(B-D). Let A and v be the marginal measure of C X D. Then A < m and
v <m. ¥ ME)=0 (E c C), then u(E X D) = 0; thus m(E)m(D) = 0 by our assump-
tion. Therefore m < A. Similarly, m < v, and thus C X D is full. The same
argument shows that (A - C) XD, (A- C)X (B - D), and C X (B - D) are full.

By Proposition 2, for [m]-almost all y; in D, there exists a path (x1, y1),
(%2, v1), (x2, y3), and (x4, y3). Since (x;, y]) is a density point of C X D, we have
that m([x, - h, x; +h] N C) > 0. Similarly, m([y3 - h, y3+h] 0 (B - D)) > 0. Thus
it follows from the assumption that

N[([Xl - h, X1+h]X[Y3'h, y3+h]) N (Cx[B-D])] > 0.

Hence, for [m]-almost all y; in D, there is a path (x;, y1), (x2, y1), (X2, ¥3), and
(x1, ¥3). By Theorem 1, we see that p is not extreme. m

The proof of the following corollary is now trivial.

COROLLARY 2.1. If u is an extreme doubly stochastic measure, then every
nonempty open set U in X X X contains a rectangle E X F for which m(E)m(F) > 0
and L(E X F)=0.

We need the next two technical results to obtain the final two major results. We
use a concept similar to that of a loop.

Definition 4. A near loop is a sequence A; X B;, -+, A, X B, of full rec-
tangles, with respect to some measure u, such that B; € B, A, C Ajz,
B3 C By, ***, B, _» € B, 1, and m(A,, N A;) > 0; moreover, for every other
combination of i and j, we have the relation m(A; N Aj) = m(B; N B;) = 0.

PROPOSITION 3. If (A X B) > 0, then there exists a full rectangle C XD con-
lained in A X B with u(C X D) = (A X B).

Proof. Suppose A and v are the marginal measures of A X B. Let C be the
set of x (x € A) for which d\/dm is positive, and let D be the set of y (y € B) for
which dv/dm is positive. Then

0.

L[(A-C)XB] = A(A-C) = { @/am)am
A-C
Similarly,
pl(A-C)x(B-D)] = pulAxB-D)] =0.

Thus u(C X D) = u(A X B). The preceding argument also shows that A and v are
equal to the marginal measures of C XD on C and D, respectively. Thus C XD is
full. m

PROPOSITION 4. If u has no near loops, then for each full vectangle A X B
and each € > 0, there exist two functions f and g in L (m) such that

S | X axg & ¥) - £(x) - g(y)| dp < €
XXX
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and such that £(x) = 0 for each x in A.

Proof. Assume that u has no near loops. Let A; X B; be a full rectangle. Let
X and v, be the marginal measures of (X - A})XB). If A, is the set of x in
X - A; for which dx,/dm is positive and B, is the set of y in B; for which
dv,/dm is positive, then, as was shown in the proof of Proposition 3, A, X B, is
full, provided pu [(X - Ap) X Bl] > 0. If the measure of this set is zero, we take
f(x) = 0 and g as the characteristic function of B;. The conclusion follows.

In the same manner, we construct the full rectangle of A, X (X - By). We call
this full rectangle A3 X B3. In this manner, we construct a sequence of full rec-
tangles such that

Bor CBpr.; and Appy) CApr  (k=1,2 ).

Since there are no near loops, we have for every other combination of i and j
(i # ]) that m(Bi N BJ) = II](A._'L N AJ) = 0.

Let Ag= A; (i=2,3, ) and Bo=UB; (i=1,2, ). Then
pl(X-Ap-A))xBgl = “([ (X' UAzi) n(X"Al)]XUBZi-l)
E#[([X‘Allﬂ[UX'AZi])XBZi-lj

< plX-A1-A)XB]+upl(X-A)-Ay-A)XB3l+-=0 (=12 ).

IN

Similarly, p[Ag X (X - Bp)] =0, and p(A; x B;) =0 for j> 2. Now let -f be the
characteristic function of Ap, and let g be the characteristic function of Bg. Then
f(x) + g(y) equals the characteristic function of A} X B; [u]-almost everywhere. m

THEOREM 3. If the doubly stochastic measure y has no neayv loops, then | is
an extrveme point.

Proof. Let u have no near loops, and suppose (A X B) > 0. By Proposition 3,
there exists a full rectangle A; X B} in A X B such that p(A; X B}) = p(A X B).
Thus the characteristic functions of A X B and A; X B; are equal l[u]—almost every-
where. In the proof of Proposition 4, two sets, Ay and B, were found, for which -f
was the characteristic function of Ay and g was the characteristic function of By,
and thus f(x) + g(y) was equal to the characteristic function of A; X B; [p]-almost
everywhere. Hence, every simple function &(x, y) over the algebra of finite unions
of measurable rectangles is of the form ¥(x) + I'(y), where ¥ and T are simple
functions. By the Douglas-Lindenstrauss Theorem, p is extreme. R

J. Feldman conjectured that if p; and p, are doubly stochastic measures with
By < g, andif p, is extreme, then p) = g,. Among those who have considered
this problem is R. G. Douglas [2] who proved the following result:

If F is a vector-lattice that is weak*-dense in Leo(u), if p is extreme in the
set of doubly stochastic measures, and if v is a doubly stochastic measure with

v < p such that
S fdv = S fdu
X X

for all bounded f in F, then v = pu.
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The next theorem proves that Feldman’s conjecture holds for a class of extreme
doubly stochastic measures that contains every example of an extreme doubly
stochastic measure known to the authors.

THEOREM 4. If ) and p, ave doubly stochastic measures such that u, has
no neay loops and P K Wy, then hy=ly.

Proof. We form the doubly stochastic measure tu; + (1 - t)i2, which is abso-
lutely continuous with respect to p, for each t in [0, 1]. It is simple to prove that
if u, has no near loops, then every measure absolutely continuous with respect to
K> has no near loops. Thus, tit; + (1 - t)u2 has no near loops and is, by Theorem
3, extreme for every t in [0, 1]. Thus p;=u,. m
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