NONLINEAR HYPERBOLIC PROBLEMS WITH SOLUTIONS
ON PREASSIGNED SETS

Marco Cirina

1. INTRODUCTION AND SUMMARY

This paper is concerned with initial-value problems and mixed boundary prob-
lems for hyperbolic systems of quasi-linear partial differential equations in two
independent variables. The setting is classical: we shall assume that the coeffi-
cients of the equatlons and the data possess continuous first derivatives, and the
solutions will be Cl-functions satisfying the equations everywhere on the1r domains
of definition.

We ‘consider the hyperbolic initial-value problem
(1.1) z, + AR, t, z)z, = f(x, t,2) ((x t) € #(T)),
(1.2) z(x, 0) = ¢(x) (x € R),

where R is the set of real numbers, #(T) is the strip R X [0, T], the function

z = z(x, t) takes values in R, (the real euclidean m-dimensional space), A is a
matrix-valued function, and f, ¢ are vector-valued functions. Our main object is to
consider the following problem.

Problem I. Find conditions on A and f that guarantee the existence of a class
of initial conditions for each T > 0 such that for every ¢ in such a class, the Cauchy
problem (1.1), (1.2) has a solution z on the strip 22 (T).

Results of this type are useful, in particular, in the control theory of hyperbolic
equations; see [2].

It is known (see for instance P. Lax [9], P. Hartman and A. Wintner [7, p. 855],
A. Douglis [6, p. 149], M. Cinquini-Cibrario and S. Cinquini [1, Chapter V]) that if
(1.1) is hyperbolic and A, f, ¢ are prescribed C!-functions that are bounded, to-
gether with their first der1vat1ves then there exist some real number T > 0 and a
(unique) C!-function z = z(x, t) on #(T) satisfying (1.1), (1.2).

However, even if ¢ = 0, the local solution z cannot be extended to an arbitrarily
prescribed strip #2(T') under the above hypotheses. We give a scalar example in
Section 3 to illustrate this fact. On the other hand, we shall prove (Theorem 3.II)
that if A, f satisfy the conditions above and if in addltlon f, = 0, then for each
T'> 0, there is a class of initial data (namely C!l- funct1ons w1th sufficiently small
first der1vatwes) such that if ¢ is chosen in that class the local solution z can be
extended to #(T").
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This result becomes obvious as soon as one realizes that if {, = 0, it is possible
to prove (Theorem 2.IV) that for some real number N, the x-derivative of the solu-
tion satisfies, on its domain of definition, the a priori bound

lz.| < N[g¢1 .

Thus, under the additional hypothesis that fy = 0, the solution of (1.1), (1.2) for the
case where ¢ is a constant exists on the whole plane. Hence the continuation theorem
mentioned above is essentially a perturbation result. Similar a priori bounds and
continuation results hold also for the mixed boundary problem.

We shall now introduce some notation and definitions. By R,,x,, we denote the
usual space of real matrices with m rows and n columns; C(2, R), where 2 C Ry,
is the set of real-valued continuous functions on £, and C1(Q, R) is its subset of con-
tinuously differentiable functions; C1(Q, Ry) and CH®, Ruyxm) denote the natural
elementwise generalizations of C1(f, R). We reserve the symbol l . ] for sup-
norms.

Definition. We define |h| as follows:

absolute value of h (he R),
ma’x{lhi|:i=1’ .“’m} (hz(hi)eRm))
h| :
B} = ¢ max { 2 |bl:i=1, -, mp (b= (hy;) € R
j=1
sup { Ih(x)lz X € X} (h is a function defined on a set X with

values in R, or Ronxm) - w
Suppose ¢ € [0, »] and # C R, ; the set # is defined by the condition
Ro = 1t w:(xt)e # we Ry, |w| < a}.

Definition (the class Z(&, m, @)). Fix # (#CRy), m, ¢ (0 < a < «); we say
that A € Z(®, m, @) if the following holds:

A = A(x, t, w) belongs to C1(#,, Rmxm), and there exists an
S € Cl(e‘%’a , Rme)

such that for some 6 > 0 and k > 0, the following three conditions are satisfied:
(i) |det S(x, t, w)| > 6 for all (x, t, w);

(ii) D(x, t, w) = S(x, t, w)A(x, t, w)S™1(x, t, w) is a diagonal matrix for every
(x, t, w); let d;=d;(x, t, w) (i =1, -=-, m) denote its diagonal elements;

(iii) if B denotes S or D or any of their first partial derivatives, then
|B(x, t, w)| <Xk, for all (x, t, w).

Also, (A, f) € Z = Z(#, m, o) means that A € Z, f = {(x, t, w) belongs to
C(#y , Rp), the partial derivatives fx, f |, **, f ,,, exist and are continuous on
W W

Ry, and if B is f or any of these derivatives, then IB(x, t, w)| <k for all (x, t, w)
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and some k>0, If 6 >0, k > 0 are prescribed, we write (A, f) € Z(®, m, a, J, k)
if (A, f) € Z(®, m, ) and the inequalities above hold for the prescribed 6 and k.

Note that (i) and (ii) amount to the definition of the statement “the system (1.1)
is hyperbolic on 22, ,” and that in view of (i), condition (iii) implies that S-! and A
are bounded, together with their first partial derivatives, where S-! is the map
(x, t, w) — (S(x, t, w))~1. Also, if # is compact and @ is real, then in the definition
of A € Z(®, m, o), condition (iii) is redundant, and it is enough that (i) holds for
6=0.

2. INITIAL-VALUE PROBLEM: A PRIORI ESTIMATES

It is known (see Lax [8, p. 97], [9, p. 242], Douglis [6, p. 127], Cinquini-Cibrario
and Cinquini [1, Theorem 6, p. 397]) that if z solves (1.1), (1.2), then, roughly
speaking, the first derivatives of z satisfy initial-value problems in diagonal form
and hence certain systems of integral equations. The next lemma recalls this fact.

LEMMA 2.I. Let #=Rx[0, »), (A, f) € Z(®, m, <, 6 k), 6 € CHR, R,), and
suppose there exists z € Cl(gz(T) R,,) satisfying (1. 1) and (1.2). Define v on
R (T) by the condition
v(x, t) = S(x, t, z(x, t))z.(x, t),

and for (x,t) € R(T), let £;(s) = &i(s; x,t) (1=1, -, m) be defined by the condi-
tions

£ 5(65) = i), 8, 2(55(8), 8) (s € [0,t]), &) =

Under the hypotheses above, theve exist bounded continuous functions h = h(x, t, w)

from R to Ry, and H = H(x t,w), HL=Hi(x, t, w) (i=1, -+, m) from &, to
Rinxm such that for each (x, t) € R(T) and each integer i (i=1, -**, m), we have
the relation
. » t . - -
2.1) vi(x, t) = vi(£,(0), o)+5 [{v, Hiv) + (Hv) +hi]ds .
0

Heve HY, H, and h' are evaluated at (£i(s), s, z(Ei(s), s)) [thus, for instance, H!
stands for H1(§ (s), s, z(&;(s), s))]; wi denotes the ith component of w (w € Rp,); v

stands for v(§;(s), s); and <u, w) = Eizl ulwi, providedu, w € Ry,. Further-
movre, h is given by the expression

hix, t, w) = S(x, t, w)f,(x, t, w) .

Remark 2.I1. If z is twice continuously differentiable, the content of the lemma
amounts essentially to the computation in [8, p. 97], the difference being that here we
seek the diagonal system satisfied by the derivatives of Sz, rather than that satis-
fied by the derivatives of Sz,. The procedure for obtaining such a diagonal system
can be summarized as follows: multiply the identity (1.1) by the left eigenvectors S
of A(x, t, z), introduce v and u = S(x, t, z)z;, and differentiate with respect to the
geometmc variable x; in the result, repla.ce Zx, Zw, and ux by their obvious equiva-
lent in terms of v, namely, by S~ 1 v, by f - S-1 Dv, and by the expression for uy
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obtained by differentiating u and v and using the identity zy¢ = z¢,. The result thus
obtained has the form

vitdvl = (v, Hv) + @)i+nl (=1, -, m; (x, ) € #(T)),

v(x, 0) = S(x, 0, ¢(x)) ¢'(x) (x € R),

where the functions Hi, H, h are independent of v, and, together with the eigenvalue
d;, are evaluated at (x, t, z(x, t)). Hence v satisfies a quadratic initial-value prob-
lem in diagonal form. Specializing (x, t) to (£;(s), s), using the chain rule, and in-
tegrating, we obtain (2.1). These integral identifies hold even if z is only assumed
to be of class C!; this is proved in [1, Theorem 6, p. 397] and can be proved as in-
dicated in [6, p. 127]. As for the functions appearing in the diagonal system above, it
is useful to retain that each entry of h(x, t, w), H(x, t, w), H(x, t, w)

(i=1, .-+, m) is a finite sum of finite products of the entries of

s, s, b, f,S,8,D,,f,8 ;,D ., f. (i=1,, m)

1? 1? 1

(2 .2) W w w

evaluated at (x, t, w) .

Thus the functions h, H, H* are defined and continuous, whenever the functions (2.2)
are defined and continuous, and this is true if (A, f) € £ = Z(®, m, <, §, k). More-
over, for such (A, f), one can easily see that there exists a real number

M = M(m, &, k) > 0, depending solely on m, 6, and k, such that

(2.3) max(]s-1], |n|, |HD) <M, |H] <X G=1, -, m),

(2.4) [(u, Hi(x, w, t)u>| < M|u|?, for all (x,t, w, u).

Our a priori estimates will be based on the following simple lemma asserting
that all nonnegative solutions of a certain integral inequality are uniformly bounded
by the solution of the corresponding integral equation. Suppose T (T > 0) and N are
real numbers, and M = M(t) is a nonnegative real-valued function defined and
Lebesgue-integrable on [0, T]. For t € [0, T], define ||M||(t), w(t), | M| by the
conditions

t
_ . = : = N ‘
Ml @) = jo M(s)ds;  ||M| = |[M|(T);  w(t) Nt Do ([ O]

LEMMA 2.III. Let T, N, M, w(t) be defined as above. Assume
0 <N < exp(-| M),

and suppose u = ut) is a continuous veal-valued function on [0, T satisfying the
tnequalitlies

t
0 <ult) <N+ S M(s) [u?(s) + u(s)]ds , for all t € [0, T] .
0

Then
ut) < wt) < w(T) < Nexp(2|M]|), foratltelo,T].
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We omit the proof of Lemma 2.ITI, because it is simple and of well-known type
(see for instance [13, p. 12]); indeed, the conclusion follows almost immediately
from the monotonicity of the kernel of the integral appearing in the hypotheses.
Some applications of similar comparison results to nonlinear hyperbolic equations
can be found in [10] and [1, Chapter IV].

The following theorem gives an a priori estimate on the derivative z, of the
solution of (1.1), (1.2); it asserts that if the usual hypotheses on A and f insuring
the existence of a local solution are satisfied and if in addition f; = 0, then, on a
preassigned strip and for all initial data ¢ whose derivative ¢' is sufficiently
small, z, cannot be too large and indeed can be made arbitrarily small by taking ¢'
sufficiently small. ‘

THEOREM 2.IV. Fix 6 >0, k>0, T'> 0;let m be a positive integer, and put
R=RX[0, ©), #(T)=Rx [0, T]. Then there exist positive numbers ¢ and N,
wheve ¢ depends only on m, 6, k, and T', such that if

(A, f)eZ = Z(® m, =, 6,k), f,=0, ¢ cC'R), |¢]| <c,
0 <T<LT', andthe function z € CY(R(T)) satisfies the Cauchy problem
-5 zy +A(x, t, z)z, = £(t, z) (on R(T)),
z(x, 0) = ¢(x) (on R),

then
|zi| < N|g'| .
Remark 2.V. In the proof, we shall show that if ¢ is fixed so that
0 <ck < e-MT' where M= M(m, 6, k) is as in (2.3) and (2.4), then

2, 8)] < |o'| [s] |57
X\ —_— .
lo'| |S|(e"Mt - 1) + "Mt

< kMe2MT'|g¢1]

for all (x, t) € #(T), whenever (2.5) holds. Note that f, has been assumed to vanish
everywhere (whence f is independent of x) only to obtain h = 0 in (2.1).

Proof. Fix c¢ so that
0 < ck < e~MT" |

Let A=S"1DS, f, ¢, T, z be as in the hypotheses, and define v = v(x, t} on %(T)
by the relation

(2.6) v =258%t z)zy.

Fix (x, t) € #(T), and for s <t, define &; = £;(s) (i =1, :--, m) by the conditions
(2.7) dis £i(s) = di(8i(s), s, z(§i(s), s)),

(2.8) £() = x .

Since d; is bounded, it follows from a simple result in ordinary differential equa-
tions (see for instance [3, p. 15]) that the solution & of (2.7), (2.8) can be continued
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until it reaches the boundary of #(T); hence £; is a Cl-function defined on [0, t].
The trivial case 0 =t is not excluded.

Let Hi(£;(s)) and H(£;(s)) denote
Hi(%,(s), s, z(£5(s), s)) and  H(;(s), s, z(£4(s), s)),

respectively. Since f; =0, it follows from Lemma 2.I and Remark 2.II that for all
i i=1, ---, m), the components vi(x, t) satisfy the condition

vi(x, t) = vi(£;(0), 0)

t
+ | [(Ei6s), 8), BEEVE(S), 9)) + (H(E()v(Es), 5)ds .
0

Hence, in view of the properties of the functions H' and H (see Remark 2.II),

t
(2.9) Ivi(x, t)] < |S| |¢'| + M ‘S‘ (|v(§i(s), s)l2 + lv(gi(s), s)l)ds .
0

Let
xg = x-tk, x; = x+tk,
and let 7 be the triangle with vertices (xg, 0), (x,t), (x;, 0); then 7 € #(T). ¥
(x,t) € 7 and Z; (1 <i < m) is the solution of (2.7) on [0, T] satisfying Z;(t) = %,
then (£,(s), s) € 7 for all s € [0, T]; this is true because k bounds |d;|. In other
words, characteristics that start in 7 remain in 7 until they reach the lower

boundary (x, 0) of 7. Hence (2.9) holds also for each (X, t) € 7, the integrand being
evaluated on the corresponding set (Z'i(s), s) (s € [0, T]).

For 0 < s <t, define
|v|(s) = max{|v(x,?) : Ve T, 0<T<s}.

Then |v| (s) is a nondecreasing, continuous function on [0, t], and by (2.9) and what
has just been established, it follows that

G
v1® < Is] [o'] +m § [(lv]6)2+ |v](e)las, foran Te[o, t].
0

By Lemma 2.III, we have that

|s] ¢ |
|or] |S|(e™™t - 1) + e~ M

[vix, )] <

Hence the conclusion of the theorem follows from (2.6), the bound on |S"1 | , and the
arbitrariness of (x, t) € #(T).
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3. INITIAL-VALUE PROBLEMS WITH SOLUTIONS ON A PREASSIGNED SET

From the standard existence theorem for the initial-value problem (1.1), (1.2)
follows that the possibility of continuing the local solution z to a preassigned strip
Z(T') depends solely on the availability of an a priori bound for |z, | on (T').
Theorem 2.IV makes one such bound available. Hence the conditions on A and f in
this theorem give an answer to Problem I.

We shall now formalize these remarks. The following well-known result is the
standard existence theorem mentioned previously.

THEOREM 3.I. Fix m, 6,and k, put & = R x [0, «), R(T) =R x [0, T], and let
r > 0. Then there exists a positive numbey T such that if
(A, £) € 2(®, m, ©, 5,k) and ¢e€ CL(R) with |¢'| <,
then there exists a (unique) z € C1(R(T), R,,) that satisfies the Cauchy problem
(1.1), (1.2).

Proofs may be found in the papers by Hartman and Wintner [7, Theorem VI, p.
855] and Douglis [6, Theorem 8, p. 149]; see also Lax [9] and Cinquini-Cibrario and
Cinquini [1, Chapter V]. Actually, in [7] and [6], the initial data are given on a com-
pact interval, and the solution is proved to exist in a trapezoidal région. Thus, to
obtain Theorem 3.1, it suffices to cover the initial line with compact intervals of
fixed length and fixed amount of overlapping, and then apply the result in [7] or [6]
to each such interval.

The following answer to our main question is an immediate consequence of
Theorems 2.IV and 3.1.

THEOREM 3.II. Fix m, 6, and k, put ®=R X [0, ), and let T'> 0. Then
there exist two numbers ¢ > 0 and N > 0 such that if
(3.1) (A, f) € Z(®, m, », 6, k), f,=0, ¢eClR), |¢]<e,

then the local solution z given by Theorem 3.1 can be (uniquely) continued to a solu-
tion z of (1.1), (1.2) on #(T') =R X [0, T']; moreover, z satisfies the inequality

|z, (x, t)] < N|¢]

for all (%, t) € #(T").
Proof. Fix c¢ and N so that the conclusion of Theorem 2.IV holds. Then

|z4(x, t)] < Ne,  for all (x, t) € #(T),

whenever (3.1) holds, 0 < T< T', and z € CH{(#(T)) satisfies the initial-value prob-
lem (1.1), (1.2). Now the conclusion follows by applying Theorem 3.I finitely often
with initial data on the lines t =0, t =T, t = 2T, and so forth, where T > 0 corre-
sponds to r = Nc.

COROLLARY 3.II. If (A, f) € Z(®, m, =), £, =0, and ¢'= 0, the solution of
(1.1), (1.2) exists on the half-plane R.

This corollary has little to do with partial differential equations, since if ¢ is
constant, Theorem 3.II implies that z, must be identically zero; hence (1.1) reduces
to an ordinary differential equation with bounded right-hand side, for the restriction
of z to any line x = constant.
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We now restate Theorem 3. II for the case in which A, f, ¢ are defined on com-
pact sets. Let a<b and A =S"1DS ¢ (%, m, a), and let 7 be the triangular
region ‘

={(x,t):a+|D|t_<_x_<_b—|D|t, 0<t< |D|""}

In view of [7, (VI)] and the proof of Theorem 2.IV, it is clear that the following
analogue of Theorem 3.II holds.

THEOREM 3.IV. Let a<b, T>0, 0<cq<a, and put # =[a, b] X [0, T].
Suppose (a, f) € Z(R, m, a), f,_=0, cmd let T be defined as above Then theve
exist two positive numbers c and N such that if ¢ € C1([a, b]) ]qb[ <L cg, and

|¢ | < ¢, then there exists a (unique) z € Cl('r N R) that satzsfzes the conditions
z, + Ax, t, z)z, = I(t, z), on TN R,

z(x, 0)

#(x), on [a, b],
and moveover,
|z| < min(e, 2¢g) and |z | < N|¢|.

Let us note that, except for the requirement that f, = 0, the hypotheses in Theo-
rem 3.II are exactly those of the standard existence theorem. If this extra condition
is dropped, the continuation assertion in Theorem 3.II may fail, and hence the re-
maining conditions on A and f do not solve Problem I. The kind of difficulty that
may arise is shown in the following example.

Example. Suppose T is a positive real number. Consider the scalar initial-
value problem

(3.2) u +du)u, = £(x),
(3.3) ux,0) =0 (xe€eR).

We shall show that there exist real-valued functions d and f defined and bounded on
the real line R, together with their first derivatives, such that the local solution

u = u(x, t) of (3.2), (3.3) cannot be extended to #(T) =R X [0, T]. To this end, fix

£ > 0, subject to the condition 20 Ve < T, and define

f(x)=1—ﬁ2~ (x e R),
d(z) =1+ —2=—— (z€R).

\/8+z2

Observe that for every x € R and z € R, the following relations hold:

(3.4) 0<f(x)<2, f(x)= W g f(s)ds < VE ;
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£ o). -1
m, max{d(z).zER}—\/_s.

We assert that (3.2), (3.3), with f and d defined as above have no solution on R(T).
To see this, assume it is false. Then there exists a c! functmn u sat1sfy1n% (3.2)
and (3.3) on #(T); moreover u € C%(%(T)), because f and d are of class C* (see
[6, Lemma 7.3, p. 141]). Define £ € Cl([O T]) as the integral

0< d(z) <2, d'(z)=

za)=.§cmxasxs»ds (t € [0, T]) .
0

In view of the standard existence and uniqueness theorem for ordinary differential
equations, the function £ = £(t) is well defined; it exists on [0, T], because d is
bounded. Put

u(t) = u(é@), t) (te [0, T]).

Observe that for each t € [0, T],

. 1.
(3.5) 0 <ut) < Ve, d@i)> sye

in fact, by (3.2), (3.3), the chain rule, and the positivity of f, it follows that

t
0 <u®) < | f(&s)as.
0

Also, if 0 <z <, then 1 < d(z) < 2. In view of the definition of £, we have that
(3.6) t <et)y<2t (telo,T]),

and, since f is decreasing,

t
u(t) < S f(s)ds < Ve .
0

Thus (3.5) is proved, for its second part is an immediate consequence of this last
bound.

Put
(3.7) v(s) = u(&(s), s) (s € [0, T]).

Since u € C2, differentiation of the identities (3.7), (3.2) gives the identity
v'(s) = -d"(u(s))v3(s) + f'(&(s)) (s e [0, T]).
Hence, by (3.5) and (3.4),

v2(s) £

3VE (e + £2(s))3/2

v'(s) < - (s € [0, T])

By (3.6), &(s) < Ve if 0 <s <tg=Ve/2; thus



202 MARCO CIRINA

to to )
£
v(t0)=S v'(s)ds_<_—S 373 < - %,
0 o (e +E%s)? 6
and hence
1 1
i) < -2-—= [ vEe)as (e lto, TD).
= "6 3% Jiy 0
Put
Ve
ter =5 +18Ve,
and define
3Ve
t) = (tg <t <t..);
Y “18Ve+t-t, 0= T
it is easy to check that the real-valued function y satisfies the relation
1 1 t 2
(t)=-—-—‘g (s)ds ty <t <t..),
y 6 3ve to y ( 0= cr

and hence
v(s) < y(s) <0 (s€lty, ter)) .

Thus the restriction v of u, to the characteristic (£(s), s) is not bounded on [0, T],
since y is not bounded on [tg, t.,) and t.. < T. This contradicts the continuity of
u, and proves that problem (3.2), (3.3) has no solution on Z(T).

4, MIXED BOUNDARY PROBLEM: A PRIORI ESTIMATES

We shall show that results analogous to those proved for the initial-value prob-
lem hold for the mixed boundary problem; here too the main hypothesis is that f
(in (4.2)) does not depend on x. We first introduce some notation.

Let m, m, m be fixed integers satisfying the conditions
m=m+m, m>0, m?>0.

If h=(h;) € Ry, then h and h are the points of Ry and R,,, defined by the condi-
tions —

hj=h; (i=1,"",m); h;j=hmy (=1, m.

If h € Rpyxm, then h is the submatrix formed by the first m rows of h and h is
that formed by the last m rows.

I 0<b<® and 0 < T <, then & = R(b, T) is the set
#={(xt:0<x<b, x#o 0<t<T, t#o}.

Definition. Suppose T and & are positive reals, 0 <b <, and m = m +m.
Put # = #(b, T). We write A € Z(#, m, @) if and only if A =S"!DS € Z(%, m, @)
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and, moreover, for some 6> 0 and all (x, t, w) € #, the following two conditions
hold:

the diagonal elements of D satisfy the inequalities

dyx, t, w) > 8 (=1, ", m) di(x, t, w) < -6 (i=m+1, -, m);
and
the submatrices of S(x, t, w) defined by
S(x, t, w) = [Vi(x, t, w), Vuo(x, t, w)]  (V(x, t, W) € Rmxem)
(4.1) S(x, t, w) = [A[(x, t, W), Dy, t, w)] (D, t, w) € er‘x‘ll)

satisfy the inequalities

ldet v, (x, t, w)| > 6, |detd,(x,t, w)| > 6.
Similarly, we write (A, f) € T = Z(®, m, o) if and only if A € T and f=f(t, w) isa
Cl-map from {(t, w): 0<t<T, we R, |w| <a} to Ry,

It is clear that if b is finite and A satisfies the conditions above with 6 = 0, then
A € Z(R, m, a).

Let 0 <b<w, 0<T' <o, ®=aR(Db, T'), andfor a € (0,b]N R and T € (0, T'],
consider the mixed boundary problem

(4.2) z, + A(x, t, z)z, = f(t, z) ((x, t) € #(a, T)),
(4.3) z(x, 0) = ¢(x) (x € [0,a]),

(4.4) z(0, t) = (), z(a,t) =ut) (e [0, T]),
where

the functions ¢ = ¢(x), U = U(t), u = u(t) belong to cl( [0, b] N R, R,,),
cl([o, T'], R=z), cl([o, T'l, R,,), respectively, and satisfy the com-
(4.5) patibility conditions

(i) w(0) = #(0), T'(0)+A(0, 0, ¢(0)) ¢'(0) = £(0, ¢(0)),
(i) u(0) = ¢(a), u'(0)+ A(a, 0, ¢(a)) ¢'(a) = £(0, ¢(a)) .
The following a priori estimates are analogous to those proved in Theorem 2.1IV.

THEOREM 4.I. Fixm=m-+m, 0<b <>, 0<T' <°° R =R, T'), and
(A, f) € Z(&, m, a). Suppose llmw__,o If(t w)l/|w| =0 for each t € tO T] and
choose & (0 <& <b), N (0 <N <=), and Cog > 0. Then there exist numbers co
and ¢ (0 <cyg<Cq, ¢>0) such that if
(4.6) a (a€le, b]NR), ¢ U, and u satisfy (4.5); 0 <T < T';
and z € CY(®(a, T), R,,) satisfies (4.2) to (4.4);

(4.7) |¢| < co and max(|e'], [T, |u']) < c;
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then
|z] <2¢o and [z <N,

Remark. From the proof it will be clear that for fixed a (0 < a < «), the
hypotheses on A can be weakened by requiring (4.1) to hold only for all (0, t, w),
(a, t, w) e R, .

Proof. A basic inequality—(4.10) below—will be proved first on
.%(a, Tl) C .%’(a, T) ,
where, loosely speaking, T| > 0 is chosen so that the characteristics starting in
#R(a, T) are reflected at most once by the lateral boundary of #(a, T;). If T and a
are as in (4.6), z € Cl(#(a, T)), and g isone of S, D, S1 let g(x, t) stand for
g(x, t, z(x, t)), and define v on #(a, T) and |v|(:) on [0, T] by the relations
v(x, t) = S(x, t)z.(x, t); ]vl(t) = max{lv(x, s)l: (x, s) € R(a, t)} .

We assert that there exists a positive number M such that if

(4.8) a, ¢, U, u, T, z are chosen as in (4.6) ,
(4.9) 0<t<T;, where T; =min {¢|D|"!, T},
then

t
(4.10) |v|@) < M(|w'| + || + |u'] + |[£(-, 2)| @) + M S [(|v])? + |v|(s)]as,
0
where
[£(-, 2)| (t) = max{lf(s, z(x, s))|: (x, s) € Z(a, t)}.

To see this, suppose that (4.8) holds; the corresponding v is then a continuous func-
tion, and by (4.2), (4.3) it satisfies the conditions

(4.11) v(x, 0) = S(x, 0)¢'(x) (x € [0, a]),
(4.12) v(0, t) = DX, t)S(0, t) (£, 2(0, t)) - z(0, t))  (t € [0, T]),
v(a, t) = D~1(a, t)S(a, t)(f(t, z(a, t)) - z,(a, t) (t € [0, T]).
Using (4.4) and the partitioning (4.1) of S, we have, by (4.12), that for each t € [0, T},
Dv = -V; T - V, A3HDv + 4,5 - Sf) + S,
where all matrix-valued functions are evaluated at (0, t, z(0, t)), and where v, u', f
stand for v(0, t), u'(t), £(t, z(0, t)); from the hypotheses on S, D, V;, A%, it follows
that there exists an M' independent of the particular choice in (4.8) such that
(4.13) |70, t)] < m'(Ja'| + |v] + |£(t, (0, t))|), for all te [0, T].

An analogous bound obtains for |v(a, t)|.
For (x,t) € gé_(a, T), define & (s) = & (s; x, t) (i =1, +--, m) by the conditions
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dé; (s)
(4.14) P

= d;(£5(s), s, z(£(s), s)) (sst), £;t) = x,

where d; is the ith diagonal element of D. In view of Lemma 2.I and Remark 2.1I,
there ex1$t continuous functions H! = Hi(x, t, w) and H = H(x, t, w) from &, to
R, xm such that for some real M",

=] < M",
| (%, Hi(x, t, W% )| < M"|%|2, forall (x,t, w)e Ry, W€ Ry

Also, if &;(s) exists on %, t], then

t
vi(x, t) = vi(éi(f), %) +‘S‘ [(v, Hi(éi(s), s, z)v) + (H(£4(s), s, z)v);lds,
T

where, in the integrand, z and v stand for z(£;(s), s) and v(%;(s), s). Thus

t
@15)  vite, 0] < Jvites®, D] + M7 § (vizi), o) + v o), s)])as,

T
whenever (4.8) holds, (x, t) € #(a, T), ‘Eﬁ t,and &;(s) (i=1, -+, m) exists on [f, t].

To complete the proof of our assertion, suppose (4.8), (4.9) hold and
(x, t) € #(a, t). Since d; is bounded, the solution £; of the ordinary differential
equation (4.14) exists up to the boundary of #(a, t). Also, by (4.9), t|di| <a; fix i
(1 <i <m); then d; > 0, and hence either (case I) &; exists on [0, t], or (case II)
there is 0 <?:' <t such that §; exists on r tl, satisfies the condition £:@) = 0, and
for some j >m, &;(s) = £;(s; 0, t) exists on [0 t]. In other words, from (x, t) the
lower boundary (x 0) of % (a, t) can be reached either along the ith characteristic
through (x, t) or, if this is not possible, along the ith characteristic through (x, t)
up to the lateral boundary x=0 of #(a, t) and along any of the last m characteris-
tics from there on. An analogous situation obtains if i were assumed to satisfy the
inequality m <i < m. By (4.15), we have in case I that

t
[vite, 0] < Il 1 +37 § (vl 2 + [v](@]as;

0

in case II, using (4.15) and (4.13), we obtain the inequalities

~ t
lvix, )] < |vi(0, D) +M"S~ ([v(s(s), )] 2 + |v(E;(s), s)|)ds
t

t
< m(jw| + s8] | ¢! + |£(-, 2)| @) + (M"+ M") 5‘ [(|v|(s)?+ |v|(s)]as .
0

Thus there exists a number M such that if (4.8), (4.9) hold and 1 < i < m, then the
inequality

t
[vis, O] < M|+ [o] + [£C, D @)+ M § (V] D2+ [v|()]as
0
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holds for all (x, t) € #(a, t). Inan analogous manner, one sees that there exists an
M such that this inequality holds also for m<i < m. Thus (4.10) is established,
since |v|(t) is |vi(x, s)|, for some (x, s) € %(a, t) and some i (1 <i < m).

In view of what has been proved, 1t is easy to see that an inequality similar to
(4.10) holds for kT; <t < min (ke |D| , T), if k> 1 is an integer and kT; < T.
Indeed, the only difference is that now |¢'| should be replaced by |S-1] Ivl(kT 1)
and the lower limit of the integral by kT ;. Thus, using this inequality iteratively,
we conclude that there exists a number M > 0 such that if (4.8) is satisfied, then
(4.10) holds for all 0 <t < T.

To complete the proof of the theorem, observe that in view of the hypotheses on
f, there exists a ¢y (0 < cy < Cy) such that

| £t, w)| . { 1 1 }
< t
N S AT s pjme j  OSEST vl <20

Define
Co

8T |s"!| |D| MeZMT"

and fix c; so that the following inequalities also hold:

(4.16) cg < 2T'|s~!| |D| eMT',  4|s~!|cMe2MT' < N.
Then
(4.17) 0 < 4Mc < eMT'
Co
(4.18) |£(t, w)] < min (ﬁ c) 0<t<T", |w| < 2¢cq).

For this choice of ¢ and ¢, we now prove that if (4.6) and (4.7) hold, then
(4.19) lz(x, t)| < 2cq, |zi(x,t)] < N, forall (x,t) e ®(a, T).

Indeed, suppose (4.6) and (4.7) hold. Then (4.10) holds for every t € [0, T]. Since z
is continuous and bounded by co on the compact initial interval, there exists t

(0 <t < T) such that |z(x, s)| <2cp for all (x, s) € #(a, t). If there exists an

(x, t) € #(a, T) such that

(4.20) ,z(x, t)] = 2co,

then t = T. Suppose not. Then, by the continuity of z, there is a smallest t, call it
t' (0 <t'<T), for which (4.20) holds. Hence, by (4.7) and (4.18),

M(|a| + ¢ + |u'] + [£(5, 2)| (") < 4Mc.
Since |v|(t) is a continuous function of t, and in view of (4.10) and (4.17), Lemma

2.II0 implies that

lv|(t) < 4cme®M,

which yields the contradiction
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|z, t')] < |o| +t(|S'] |D] |v]@)+ |£(-, 2)| &) < 2¢cq.

We conclude that
|z(x, t)] < 2cg, forall (x,t) € #(a, T).

Hence (4.19) is established, since its second part, as is easily seen, follows from
(4.18), (4.17), (4.16), (4.10), and Lemma 2.III. The proof is now complete.

If £ =0, the conclusion of Theorem 4.I can be strengthened in the sense that on a
preassigned rectangle, the derivative z, of the solution can be made arbitrarily
small by taking u', ¢', and u' sufficiently small. Indeed, consider the homogeneous
problem

(4.21) zZi+A(x, t, 2)z, = 0 (on #(a, T)),
(4.22) z(x, 0) = ¢(x) (x€ [0, a]),
(4.23) z(0, t) = ut), z(a, t) =ult) (telo, T]).

THEOREM 4.II. Fixm=m+m, 0< g <b<ew, 0<T'<w, #=R(b,T), and
A € Z(®, m, a). Then theve exist posztwe numbers ¢ and N such that if a
(a € [, b]ﬂR) ¢, U, and u satisfy (4.5) with £=0;if 0 <T <T'; if
z € CY(®(a, T)) satisfies (4.21) to (4.23); and if max(lqb | Iu'l |_1y|)g c, then

lzx| < N([@| +]9¢'] + [u]).
The proof of Theorem 4.II is an obvious simplification of that of Theorem 4.1,

and hence we omit its details; indeed, it suffices to note that (4.13) is now replaced
by the inequality

%0, )] < M([T'] + |¢']);

hence one obtains the relation
t
V@ < Ml + o] +lwh+ § Ivle)?+ |vle)las
0

instead of (4.10); and this, by the usual reasoning, gives the conclusion of Theorem
4.10.

9. MIXED BOUNDARY PROBLEMS WITH SOLUTIONS
ON A PREASSIGNED RECTANGLE

An immediate consequence of the previous estimates and the standard existence
theorem for the mixed boundary problem is that the problems studied in Section 4
possess a solution on a preassigned rectangle, whenever the data are conveniently
restricted. To make this precise, let a and T be positive real numbers, put

T(a, T) = {(x, t)0<t<T, 0<x<a- t-?i—,},
and consider the problem

(5.1) zt tA(x, t, 2)z, = £(t, z) ((x,t) € 7(a, T)),
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(5.2) z(x, 0) = ¢(x) (x€ [0, a]),
(5.3) z(x, t) = 9t) (te [0, T]).

It is known (see Lax [8, p. 107)], Courant and Lax [4, p. 271], R. Courant, E. Isaacson,
and M. Rees [5, p. 253], G. Prouse [11], V. Thomé&e [12]) that under appropriate
hypotheses, (5.1) to (5.3) have a unique solution in the small. Indeed, the following
result is known (for the notation, see Section 4).

THEOREM 5.I. Fix m =m + m and positive real numbers a, T', cg (cy < a),
and c. Put ® = R(a, T'), and suppose (A, f) € T(R, m, a). Then, there exists a
number T (0 < T < T') such that if ¢, U satisfy (4.5) and if the inequalities
]¢| <L cq and max(|¢'], Iﬁ'l)g ¢ hold, theve exists z € Cl(7(a, T), R,,) that
satisfies (5.1) to (5.3). Furthermove, if T < Ty =min(T', a/lgf), where D = SAS-1 |
then z is uniquely detevmined in Cl(7(a, T), R_).

A proof of Theorem 5.I can be obtained by following the proof of Douglis [6] of
the analogous result for the initial-value problem (Theorem 8, p. 149); the modifica-
tions needed are minor and are due to the fact that in Theorem 5.1 some of the char-
acteristics starting in 7 = 7(a, T() will reach the lateral boundary x=0 of 7
rather than the lower boundary t = 0.

We note that if it is also assumed that S, D, f are of class C2 and the deriva-
tives ¢', u' are Lipschitz-continuous, then a proof of the conclusion of Theorem 5.1
appears in [11]. Hence Theorem 5.1 is also a consequence of the result in [11], an
a priori bound implied by the inequality (4.10), and the approximation technique in [6,
pages 132 to 137].

In view of the standard existence theorem for the initial-value problem (for in-
stance [6, p. 149] or [7, p. 855]), Theorem 5.1 implies an analogous result in the
small for the mixed boundary problem (4.2) to (4.4); hence, by using the a priori
estimates proved in Theorems 4.I and 4.1II, one obtains the following continuation
results. The notation is defined in Section 4 and the proofs are omitted, since they
are simple and similar to the proof of Theorem 3.1II.

THEOREM 5.II. Fix ¢ >0, T'>0, m=m+m, 0<b<®, #=aR(Db, T'), and
(A, f) € (&, m, a). Suppose limy,_, o |, w)|/|w]| =0, for each t € [0, T'], and
let N and ¢ be positive veals with € <b. Then there exist positive numbers cq and
¢ such that if a (a € [¢, b] N R), ¢, §, and u satisfy (4.5), if |¢| < cq and
max (| ¢'|, |T'], |u'|) <c, then there exists a (unique) z € Cl(%(a, T'), Riy,) that
satisfies (4.2) to (4.4) with T =T', and, moveover, Izl < 2¢y, |zx| < N.

THEOREM 5.1II. Fix 0<co<a, T'>0, m=m+m, 0<g <b <,
R=Rb, T'), and A € (R, m, a). Then there exist positive numbers c and N
such that if a (a € [, b] N R), ¢, T, and u satisfy (4.5) with =0, if |¢| < cq and
max(lqb'l, |ﬁ'|, |g_'|)g c, then theve exists a (unique) z € C1(#(a, T'), R,,) satisfy-
ing (4.21) to (4.23) with T = T', and moreover, ]le _gN(lH'I + |¢'| + |ur]).
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