ON TWO SUM THEOREMS FOR IDEALS OF C(X)
David Rudd

1. INTRODUCTION

Let C(X) denote the ring of all continuous real-valued functions on a completely
regular Hausdorff space X. It is well known (see [1, p. 198]) that in C(X) the sum
of two z-ideals is a z-ideal and the sum of two prime ideals is a prime ideal.

L. Gillman and C. W. Kohls have remarked [2, p. 401] that the proofs of these
assertions seem to depend strongly on properties of X, the Stone-Cech compactifi-
cation of X. The purpose of this note is to present elementary proofs of both theo-
rems without using any properties of gX.

To emphasize that X plays no apparent role, we prove the assertions for ideals
of subrings of C(X), provided these subrings are absolutely convex sublattices of
C(X). The methods of [1] do not seem to yield the sum theorem for z-ideals in such
subrings.

2. PRELIMINARIES

An ideal I of a commutative ring R is said to be semiprime in R if, for each
x € R, we have that x € I whenever x2 € I. It is well known (see [1, p. 31]) and
easy to prove that the semiprime ideals of a commutative ring are precisely the
intersections of prime ideals.

A subring .« of a lattice-ordered ring R is said to be absolutely convex in R if
X € R, y €, and |x| < [yl imply x € «. For the remainder of this note, let .«
denote some absolutely convex subring of C(X).

We remark that if f is an element of ., then |f| is an element of ¢, since
[(eD] < 1]
We denote by Z(f) the set of all x € X such that f(x) = 0.
LEMMA 2.1. A prime ideal P in A is absolutely convex in .
Proof. Let f € &, p € P, and suppose that |f| < |p|. Define g as in 5.5 of [1];
that is, let
0 on Z(p),
g = fz
—_— on ~Z(p).
|p|

Then g is easily seen to be continuous, and the inequality

ol < 2 < g

Received December 16, 1969.
This work was done while the author was on a NASA graduate fellowship.

Michigan Math. J. 17 (1970).

139



140 DAVID RUDD

implies that g € «/. But f>=g|p| € P (since |p| € P), and this implies that
feDP.

3. THE CONSTRUCTION

LEMMA 3.1. Let £, a, b € C(X), and suppose Z(t) D Z(a) N Z(b). Define

0 on Z(a) N Z(b),
h = 2
fa
—_ on ~|Z{a)N Z(b
= [Z(a) N Z(b)]
and
0 on Z(a) N Z(b),
k= fb?

m on ~ [Z(a.) N Z(b)] .

Then (i) h, k € C(X),
) [n| < |f] ana |x| < |f],
(iii) f=h+k,
(iv) fa? = h(2® +b%) and % = k(% +b?).

Proof. Conclusions (ii), (iii), and (iv) are obvious. For (i), it suffices to show
that h is continuous at each x € Z(a) N Z(b). Suppose & > 0. Since f(x) = 0, there
exists a neighborhood V of x such that f(V) C (-g, €). By (ii), h(V) C (-¢, €), and
therefore h is continuous at x.

4. THE SUM THEOREM FOR z-IDEALS

Anideal I of # is said to be a z-ideal (of ) if f € &, a € I, and Z(f) D Z(a)
imply f € 1.

THEOREM 4.1. If I and J arve z-ideals of A, then 1 +J is a z-ideal of A.

Proof. Choose f € « with Z(f) D Z(g) and g € I+ J, say g =a+b for some
a €l bed. Clearly, Z(f) D Z(a) N Z(b). Let h and k be defined as in Lemma 3.1.
Then f =h +k, and both h and k are members of «, since # is absolutely convex.
But Z(h) D Z(a) implies h € I, and Z(k) D Z(b) implies k € J; therefore f € I+ J.

5. THE SUM THEOREM FOR PRIME IDEALS

LEMMA 5.1. If 1 and J ave semiprime ideals of &, then 1+ J is semiprime
in oA,

Proof. Let £2¢€ I+J. Then f%=a+b for some a € I, b € J. Again, since
Z(f) O Z(a) N Z(b), we may use the construction in Lemma 3.1 to obtain a decompo-
sition f=h +k. Let P be prime in « with P> I. Then h(a? +b2)=1fa2 € P im-
plies he P or a2 +b2 € P, If a2 +b% € P, then b € P and hence f € P. Since P
is absolutely convex in | |h[ < |f| implies that h € P. We have shown that
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h € ﬂ {p primel PD I},

and thus h € I. Similarly k € J, and therefore f € I+ J.

For the sake of completeness, we include the following theorem.

THEOREM 5.2. Let I, P, Q be prime ideals of A, and suppose 1 C P and
I C Q. Then either PC Q or QC P.

Proof. Assume there exists p € P\ Q. Then p2 ¢ Q, so that we may assume
p > 0, without loss of generality. Now let q € Q. Again we may assume ¢ is non-
negative. Define f = p - q and consider (f - |f|)(f + [f[) = 0. Since I is prime, at
least one of these factors must be in I. If f+ [f| € I, then p - q + |f| € Q implies
that p + If] € Q. But Q is absolutely convex, and therefore this would imply that
p € Q, a contradiction. Thus f - |[f| € I. Butp- q - |f| € P implies that
q+ |f| € P and hence q € P.

We remark that Theorem 5.2 can be proved under considerably weaker hypothe-
ses; namely, it is enough to assume that I is pseudoprime and P and Q are merely
convex (see Section 4.1 in [2]). However, the methods employed in [1] and [2] to
prove results of this type, while essentially the same as those used in Theorem 5.2,
seem to be somewhat more complicated.

Now, instead of the theorem that the sum of two prime ideals is prime, we pre-
sent the following slightly more general result.

THEOREM 5.3. Let I and J be prime and semiprime, vespectively, in .
Then 1+ J is prime in .

Proof. Let & = {P] P isprime in « and PO I+ J}. Then the members of &
are linearly ordered by inclusion (each contains I), and hence it follows that ﬂ 2

is prime. But I+J is semiprime by Lemma 5.1, sothat I+J = ﬂ ?.
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