ON THE TOPOLOGY OF A DUAL SPACE

T.-S. Wu

Let G and H be locally compact, connected, topological groups. Let Hom (G, H) denote the space of all continuous homomorphisms from G into H, with the compact-open topology (in other words, convergence on compacta is uniform). We shall call Hom (G, H) the *dual space of* G *with respect to* H.

In this note, we prove that the space Hom (G, H) is locally compact provided G and H are locally compact, connected, topological groups and H is finite-dimensional. As a corollary, we obtain the result that the automorphism group A(H) is locally compact in the compact-open topology (see [3]).

The proof of our main theorem consists of two parts. First, we prove that Hom(G, H) is locally compact if both G and H are finite-dimensional. Then we prove the local compactness of Hom(G, H) in the general case.

Throughout the paper, we assume that G and H are locally compact, connected, topological groups and that H is finite-dimensional. Let R be a compact subset of G, and let V be an open subset of H. We set

$$[R, V] = \{ \sigma \in Hom(G, H): \sigma(R) \subset V \},$$

and for $\rho \in \text{Hom}(G, H)$, we set

$$\langle \rho, R, V \rangle = \{ \sigma \in \text{Hom}(G, H): \rho(r)^{-1} \sigma(r) \in V \text{ for all } r \in R \}.$$

Then the collection

{[R, V]: R is a compact subset of G and V is an open subset of H}

forms a basis for the topology for Hom (G, H). The collection

$$\{\langle \rho, R, V \rangle : \rho \in \text{Hom}(G, H), R \text{ is a compact subset of } G,$$

and V is a neighborhood of the identity of H}

also forms a basis of the topology of Hom(G, H). Since G is connected, we know that

$$\{\langle \rho, W, V \rangle: W \text{ is a fixed compact neighborhood of the identity of } G,$$
 and V runs through the nuclei of H $\}$

forms a basis of the topology of Hom (G, H) [1]. If A and B are subsets of G and H, respectively, then

Hom (G, A; H, B) =
$$\{\sigma \in \text{Hom (G, H)}: \sigma(A) \subseteq B\}$$
.

Received June 20, 1968.

This research was supported in part by NSF grant GP-7527.

266 T.-S. WU

We recall the following well-known structure theorem for locally compact groups.

STRUCTURE THEOREM. Let F be a locally compact, connected group. Then we can find a neighborhood base of the identity e, composed of nuclei of the form $W = K \times L$, where L is a local Lie group and K is a compact subgroup. Moreover, [K, L] = e.

The decomposition $W = K \times L$ is called the *Levi decomposition* of W [1].

Let $L^{\sim} = \bigcup_{n=1}^{\infty} L^n$. Then L^{\sim} is a subgroup of F. We give L^{\sim} the (unique) Lie-group topology, and we denote by L^* the Lie group so obtained. We then have the natural inclusion map i: $L^* \to L^{\sim} \subset F$. Let $D^{\sim} = K \cap L^{\sim}$. If $d^{\sim} \in K \cap L^{\sim}$ and $d^* = i^{-1}(d^{\sim})$, then $F \approx \frac{K \times L^*}{L^*}$, where

$$D = \{(d, d^{*-1}): d \in K \cap L^{\sim}\}.$$

Since H is finite-dimensional, H has the Levi decomposition $V = K \times L$, where K is a totally disconnected, compact, central subgroup of H.

1. In this section, we assume that G is a finite-dimensional, locally compact, connected group. Let $\sigma \in \text{Hom}(G, H)$. There is a neighborhood U of the identity e_1 of G such that $\sigma(U) \subseteq V = K \times L$ and $U = K_1 \times L_1$ (Levi decomposition). Therefore $\sigma(K_1) \subseteq K$ and $\sigma(L_1) \subseteq L$. This implies that

$$\sigma\left(\bigcup_{n=1}^{\infty} L_{1}^{n}\right) \subseteq \bigcup_{n=1}^{\infty} L^{n}.$$

Thus σ induces a homomorphism σ^* mapping L_1^* into L^* and D_1^* into D^* , where L_1^* is the (unique) Lie group obtained from $\bigcup_{n=1}^{\infty} L_1^n$, and where D_1^* is the discrete central subgroup of L_1^* corresponding to $D_1^* = K_1 \cap \left(\bigcup_{n=1}^{\infty} L_1^n\right)$. It is easy to see that σ^* is continuous, in other words, that

$$\sigma^* \in \text{Hom}(L_1^*, D_1^*; L^*, D^*).$$

We note that for distinct homomorphisms $\sigma' \in \text{Hom}(G, H)$, we might have to choose different neighborhoods $U' = K' \times L'$ such that $\sigma'(U') \subseteq V$. In each case, $L' \cap L_1$ is open in L_1 and in L'. Thus $\bigcup_{n=1}^{\infty} L^n = \bigcup_{n=1}^{\infty} L^n$. Hence σ' defines a homomorphism σ'^* in $\text{Hom}(L_1^*, L^*)$.

LEMMA 1.1. There exists a continuous, one-to-one map

$$\phi$$
: Hom (G, H) \rightarrow Hom (L₁*, L*)

such that $\phi(\sigma) = \sigma^*$.

Proof. If $L_0 \subset L$ and $\langle \sigma^*; L_2, L_0 \rangle \subset \text{Hom}(L_1^*, L^*)$, where L_2 is a compact neighborhood of the identity e_1 of L_1^* , and where L_0 is a neighborhood of the identity e_1 of L_1^* , then there exists a compact subgroup K_2 of K_1 such that $K_2 \times L_2$ is a neighborhood of the identity of G and $\sigma(K_2 \times L_2) \subset K \times L_0$. Therefore

$$\phi(\langle \sigma; K_2 \times L_2, K \times L_0 \rangle) \subset \langle \sigma^*; L_2, L_0 \rangle,$$

and consequently ϕ is continuous.

If $\sigma \in \text{Hom}(G, H)$ and $\phi(\sigma) = \sigma^* \in \text{Hom}(L_1^*, D_1^*; L^*, D^*)$, then D_1^* is a finitely generated, discrete, central subgroup of L_1^* [1]. It is clear that

$$\text{Hom}(L_1^*, D_1^*; L^*, D^*)$$

is a closed subgroup of Hom (L_1^* , L^*). Moreover, it is known that Hom (L_1^* , L^*) is locally compact [2]. Hence, Hom (L_1^* , D_1^* ; L^* , D^*) is locally compact.

LEMMA 1.2. The set $A = \{ \theta^* \in \text{Hom}(L_1^*, D_1^*; L^*, D^*): \theta^* \mid D_1^* = \sigma^* \mid D_1^* \}$ is an open subset of $\text{Hom}(L_1^*, D_1^*; L^*, D^*)$.

Proof. Since D_1^* is finitely generated, D_1^* has the generators C_1 , C_2 , \cdots , C_n . Since D^* is discrete, there exists a neighborhood W of the identity e of L^* such that $W \cap D = \{e\}$. Now it is easy to verify that

A = Hom (L₁*, D₁*; L*, D*)
$$\cap \langle \sigma^*; \{C_1, C_2, \dots, C_n\}, W \rangle$$
.

Thus A is an open subset of $\text{Hom}(L_1^*, D_1^*; L^*, D^*)$.

LEMMA 1.3. Let $A^{\sim} = \{ \sigma' \in \text{Hom}(G, H): \sigma' \mid K_1 = \sigma \mid K_1 \}$. Then $\phi \mid A^{\sim}$ is a homeomorphism onto A.

Proof. Because the relation $\theta^* \mid D_1^* = \sigma^* \mid D_1^*$ holds for each $\theta^* \in A$, the homomorphism θ^* induces a homomorphism from K_1 into K that agrees with σ on K_1 . Thus θ^* induces a homomorphism $\widetilde{\theta}$ such that

$$\widetilde{\theta}$$
: $K_1 \times L_1^* \to K \times L^*$ and θ : $\frac{K_1 \times L_1^*}{D_1} \to \frac{K \times L^*}{D}$.

This means $\phi(\theta) = \theta^*$ and $\phi(A^\sim) = A$. Suppose $\{\theta_n\}$ is a sequence in A^\sim . Since $\theta_n \mid K_1 = \sigma \mid K_1$, it follows that $\lim \theta_n = \theta \in A^\sim$ if and only if $\theta_n \mid L_1 \to \theta \mid L_1$ in the compact-open topology. This is equivalent to the condition $\lim_n \theta_n^* = \theta^*$. Hence ϕ is a homeomorphism.

PROPOSITION 1.4. Hom (G, H) is locally compact.

Proof. Since A is locally compact and open in Hom (L_1^* , L^*), the set $\phi^{-1}(A) = A^{\sim}$ is locally compact and open in Hom (G, K_1 ; H, V). By the definition of the topology on Hom (G, H), the set Hom (G, K_1 ; H, V) is open in Hom (G, H); therefore, Hom (G, H) is locally compact.

2. In this section, G is a locally compact, connected group. Let $\sigma \in \text{Hom}(G, H)$. Let $U = K_1 \times L_1$ be a Levi decomposition of G such that $\sigma(U) \subseteq V$. Then $\sigma(K_1) \subseteq K$. Since K is totally disconnected, $\sigma(K_0) = e$, where K_0 denotes the identity component of K_1 . Since K_1 is normal in G and K_0 is characteristic in K_1 , it follows that K_0 is normal in G. Thus σ induces a homomorphism $\overline{\sigma} \colon G/K_0 \to H$.

LEMMA 2.1. Hom (G, K_1 ; H, $K \times L$) is an open subset of Hom (G, H), and there exists a homeomorphism

$$\psi$$
: Hom (G, K₁; H, K × L) \rightarrow Hom (G/K₀, K₁/K₀; H, K × L).

Proof. The first part of the lemma follows from the definition of the topology. Define $\psi(\sigma) = \overline{\sigma}$. It is easy to verify that ψ is one-to-one and onto. If

 $\sigma \in \text{Hom}(G, K_1; H, K \times L)$, then σ is trivial on K_0 . Thus the topology is determined by $(K_1/K_0) \times L_1$ and $K \times L$, and ψ is a homeomorphism.

THEOREM 2.2. If G is a locally compact, connected, topological group and H is a locally compact, connected, finite-dimensional topological group, then the dual space Hom (G, H) is locally compact.

Proof. Since G/K_0 is finite-dimensional, Proposition 1.4 implies that $Hom(G/K_0, K_1/K_0; H, K \times L)$ is locally compact; thus $Hom(G, K_1; H, K \times L)$ is a locally compact, open subset of Hom(G, H). Since $\sigma \in Hom(G, H)$, it follows that $\sigma \in Hom(G, K'; H, K \times L)$ for some compact K'. Hence, Hom(G, H) is locally compact.

If G = H, then Hom (H, H) forms a topological semigroup, if we define $\sigma_1 \sigma_2$ by composition [1]. Let

$$A(H) = \{ \sigma \in Hom(H, H): \sigma \text{ is one-to-one and onto} \}.$$

Then $\sigma^{-1} \in A(H)$. Also, A(H) with the relative topology forms a topological group. Let $S = \overline{A(H)} \subseteq \text{Hom }(H, H)$. Then S is a locally compact semigroup with a dense topological subgroup A(H). Hence A(H) is an open subset of S [4], and it is locally compact. We have now proved the following theorem.

THEOREM 2.3 (see [3]). Let H be a locally compact, connected, finite-dimensional topological group, and let A(H) be the group of automorphisms of H. Then A(H) is locally compact in the compact-open topology.

REFERENCES

- 1. M. Gotô, Note on a topology of a dual space. Proc. Amer. Math. Soc. 12 (1961), 41-46.
- 2. M. Gotô and N. Kimura, Semigroup of endomorphisms of a locally compact group. Trans. Amer. Math. Soc. 87 (1958), 359-371.
- 3. D. H. Lee and T.-S. Wu, On the group of automorphisms of a finite-dimensional topological group. Michigan Math. J. 15 (1968), 321-324.
- 4. T.-S. Wu, Locally compact semigroups with dense maximal subgroups. Trans. Amer. Math. Soc. 113 (1964), 151-168.

Case Western Reserve University Cleveland, Ohio 44106