UNIVALENT FUNCTIONS f(z) FOR WHICH
zf'(z) IS SPIRALLIKE

M. S. Robertson

Let & denote the class of functions F(z) that are regular, univalent, and spiral-
like in the unit disk E = {z: |z| < 1} and that are normalized so that F(0) = 0 and
F'(0) = 1. L. Spacek [5] showed that these functions are characterized by the condi-
tion that for some real constant a (|a| < 7/2),

E}l{eia zlf(g)} >0 (z¢€E).

We denote the corresponding subclasses of F by & q; in particular, & is the class
Z

of starlike functions. If F(z) € %, then the function f(z) = S #dt maps E onto
0

a convex domain, and

zf"(z)\ _ [z£'(z)]' _ F'(z)
91(1+ f,(zz) ) =g 2 sz,(zz))] = 9 ZF(Z;L >0 (zeE).

In this note, we consider another family of functions that includes the class of
convex functions as a proper subfamily. For -7/2 < a < 7/2, we say that f(z) € Sy
provided

(i) f(z) is regular in E, £(0) = 0, and £'(0) = 1,
(ii) £'(z) #0 in E,
(iii) 9 (eia (1 +fo£§;‘) )) >0 (z€E).

We note that the three conditions are precisely the conditions for the function zf'(z)
to belong to the class % . The class Sg consists of the normalized convex func-
tions.

For general values ¢ (-7/2 < a < 7/2), a function in Sy need not be univalent in
E. For example, the function

f(z) = i(1 - z)' - i = z + -+

belongs to the class S; /4, but it has a zero at each of the points 1 - e =207

(n=0, 1, ---), and in fact it assumes every value lying on the circle |w +i| =1 in-
finitely often on the open segment (0, 1) of the real axis. (J. Krzyz and Z.
Lewandowski were the first to point out that if zf'(z) is spirallike, the function £(z)
is not necessarily univalent; see [2] .) However, we shall show that for a certain set
of values of ¢, all functions in S, are univalent in E.

The situation is analogous to a problem recently considered by P. L. Duren, H. S.
Shapiro, and A. L. Shields [1] and by W. C. Royster [4]: for what values of a complex
constant « is the function
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galz) = SOZ [g"(t)]* at

univalent in E whenever g(z) is regular and univalent in E and normalized so that
g(0)=0, g'(0) =12
THEOREM. Let f(z) € Sy, where 0 < cos @ < xo and wheve x, denotes the
positive voot 0.2315 - of the equation
16x3+16x%+x-1=0.

Then {(z) is univalent in E.

IFp+l=|p+1fe® (1/2 < cos @ < 1), and if moreover

ul <1, et >, Ju-1] >0,

then the function fiy(z) =%[(1 -z)* 1] = 2+ -+ belongs to Sy but is not univalent
in E.
LEMMA 1. If ig(z) =z +c, 2% 4 er gs regulay and univalent in E and maps E

onto a convex domain, then

fS(Z) fB(Z) 2

lW(fo, Z)l = ’(f 0 (z) ) fo(Z) ’ S (—1 —-__—|z|2)2 (z € E),

with equality for

1 1+
fo(z) =5 log 7— Z
Proof. Let
zig(z)
7+ = P(z) = 1+p;z+p,z®+---
fO(Z) ( ) Pi P2

Then %P(z)>0 in E, and |p;| <2, |p,| < 2. Since also %[P(z)]"! >0 in E and
[P(z)]"! = 1-p,z+(pF-p,)zl+ -,

we have the inequality Ipf - le <2. But ¢, =p;/2 and c3 = (p, + p‘%)/G. There-
fore

1 1 2
]cg-c3| =ﬁ|p§—2pz| Sﬁ{]pl‘pzl + |p2|} < 1/3.

Let h(z) be the reciprocal of a convex function, and let it have the representation
h(z) =%+b0+b1z+ -+, If h(z) = [fo(z)] 7!, then |by| = |c5 - c3| < 1/3. Let x be
a point of E, and define
fo(x)(1 - |x|?)
0 I l =1+A0(X)+A1(X)Z+‘“.
X+z Z
fo(T355) - fol®)

g(z) =
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Xtz
1+ &z
convex function, and we let h(z) = g(z). Now

Then, since fj ( ) maps E onto a convex domain, g(z) is the reciprocal of a

< |wito, 0| (1 - [x]2 = [a1&)] < 1/3,

that is,
|wito, z)| < 2(1-12|3)% (z¢E).

LEMMA 2. Let P(z) be a function vegular in E and normalized so that P(0) = 1.
Let #P(z)>0in E. Then

|22 P'(z) + 1 - P2(z)| < (z € E).

(1- |z|?)
Proof. Given P(z), we can determine a convex function f5(z) by the equation

z15(z)
+T(Z)— = P(z),
and fg(z) is unique if we require that fo(0) = 0 and £;(0) = 1. Clearly,

fS(Z)= P(z) - 1 (i(z_))l _1(18@ 2= 2z P'(z) + 1 - P2(z)
fo(z) z fo(z) 2 \ f4(z) 2 72 .

Lemma 2 is now a simple consequence of Lemma 1.

Proof of the theorem. Suppose -1/2 < a < /2 and the function
_ 2
f(z) =z +a,z“ + -+~ belongs to S, . Let

1 eia(l_l_zf(z)) _isina‘
cos o £'(z) cos &

Then P(0) = 1, and condition (iii) implies that % P(z) > 0. Also,

P(z) =

1 +E% = [P(z)cos @ + i sin a]e ¥,
that is,
i:i((:)) = P(Z;- l emi® oo a,
Since

1

" " 2 -iq .
) -3 (58) -5 2 p'(e) - 2P) 2 - ¢ cos o (Pla) - 1]

-1 i
=& COSQ% 9, p'(z)+1 - P?(z) +ie ' sin a (P(z) - 1)°],

2 z2

we see that
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Cos ¢

2]z]?

2
cos o 4]z|2 . ( 2|z| )
+ R S —
2|z|2|:(1 |z] 2)? |stn o 1- |z :]
2cos o
= (1 - |z]|??

provided a satisfies the inequality cos a (1 + 4 [sin a | ) < 1, that is, provided

|w(t, z)| < {|22P'(z) + 1 - P¥z)| + |sin a| |P(z) - 1|2}

[1+4]sina|] < 201 - |2]?)-?

(4 sin @ cos a)? < (1 - cos )2,
Hence, if either ¢ =0 or
16cos3 a +16cos? a +cosa -1 < 0,
then, by Nehari’s test [3], f(z) is univalent in E. The equation
16x3+16x2+x-1=10
has only one positive root, namely xg = 0.2315 -:-. Thus, for 0 < cos a < xg, f(z)

is univalent in E.

The following example is instructive (see [4]). For p +1=|u +1]| e i

(-1/2 < a < 7/2), let
g(z) = ':-I[(l - Z)_u - 1] =z 4 o ,

and write

- (1 3581) - o L2

For |z| <1 and |,u.| <1,

9%P(z)=|,u+1|2)t(u1 + 2 )

+1 1-2

Figure 1



UNIVALENT FUNCTIONS f(z) FOR WHICH zf'(z) IS SPIRALLIKE 101

It follows that g(z) belongs to Sy if and only if |,u| < 1. But in [4] it was shown that
g(z) is univalent if and only if either |,u + 1| L<1lor |p. - 1| < 1. We conclude that
g(z) belongs to Sy and is not univalent in E when p lies in the set D defined by the
inequalities |p| <1, |p +1]>1, |p - 1] > 1 (see Figure 1). For each o for
which 1/2 < cos @ < 1, we can choose p sothat g +1= | +1|e™'® and so that 1
lies in the set D. The function g(z) then belongs to Sy but is not univalent in E.
Similarly, when 0 < cos a < 1/2, we can choose a number u +1 = |u + 1] e 1% go
that |p. + 1| <1 and |u| <1, and g(z) then belongs to S, and is univalent in E.

The question whether all functions in S, are univalent in E remains open for
the range xg<cos a <1/2,
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