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INTRODUCTION

If b is an integer exceeding 1, then each positive integer n is uniquely expres-

o0 .
sible as n = Eizo a(n, i)b*, where each «(n, i) is a nonnegative integer less than b.
Numerous analogies exist between this representation and the representation

n= H;il p?(n’i) given by the fundamental theorem of arithmetic. For instance, if
we put m < n if a(m, i) < a(n, i) for each i, it is clear that “~<<” is analogous to
“divides.”

We say that a sequence C is b-complete provided that the relations x € C and
x <<y imply that y € C. A b-complete sequence is analogous to a sequence of inte-
gers formed by taking all multiples of the elements of a fixed sequence (sequences of
this form have been studied extensively in density theory).

H. Davenport and P. Erdos [5] proved that a sequence formed by taking all multi-
ples of the elements of a fixed sequence possesses a logarithmic density. They also
proved that a sequence with positive upper logarithmic density contains a division
chain, that is, an infinite subsequence in which each member divides its successor.

In giving examples of situations in which his “magnification theorem” holds, E.
M. Paul [9], [10] provided another proof of the Davenport-Erdds theorems. It is
implicit in the work in his dissertation [9] that a b-complete sequence possesses
natural density, and that a sequence with positive upper natural density contains a
chain d; < dp << ---.

In [1] we introduced a method that allowed us to extend'the results of Davenport
and Erdos; and in this paper we adapt this method to the study of digits. In particu-
lar, we examine the structure of chains that exist under various density conditions.

Another well-investigated type of sequence is the primitive sequence (here, no
member divides another).

The following two fundamental results are due to P. ErdSs [6] and F. Behrend [3],
respectively: if a;, ap, --- is a primitive sequence, then

1) Ei(ai log ai)‘1 < M, where M is an absolute constant,
2) Z)ai<xl/a.i < K(log x) /v 1og log x.

Our analogous results are that if aj, az, --- is a b-primitive sequence, that is,
if ai{ a; whenever i # j, then

1) 2;1/a; < b,
2) 27, <x1 < Kx/VIog x.
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An excellent account of much that is known regarding the multiplicative situation
is given in the final chapter of Halberstam and Roth [7].

Throughout this paper, we denote by log the natural logarithm, and by log},, the
logarithm to the base b.

1. REMARKS AND LEMMAS ON ASYMPTOTIC DENSITY

Let C be a sequence of positive integers, and let g be a positive, nonincreasing

arithmetic function for which E:=1 g(n) diverges. Define:

(1) @(C) = Z {gle) c € C, ¢ <k}/ Dy ),
(2) g*(C) = lim sup §(C), §,(C) = lim inf g, (C),

(3) g(C) = g*(C) it £%(C) = g,(C). If g,(C) = §*(C), we say that C possesses
g-density.

We obtain natural density by setting g(n) = 1 for each n, logarithmic density by
setting g(n) = 1/n. In these important cases, we shall replace the symbol g with &
and ¢, respectively.

The first lemma is a standard elementary result on N6rlund means. For a
thorough discussion, see Hardy [8, p. 58].

1.1. LEMMA. If g is a positive, nonincreasing function such that En g(n) di-
verges, and C is any sequence of positive integers, then

5,(C) < g,(C) < §'(C) < 8°(C).

It is obvious that if C;, C,, *** is a pairwise disjoint sequence of sets, each
possessing g-density, then the set C = U:ozl C; need not possess g-density; and if
C does possess g-density, it need not be Ei g(C;). We give a series of lemmas
whose proofs depend only upon elementary analysis. If need be, a more detailed dis-
cussion may be found in Section 1 of our paper [1].

1.2. LEMMA. g,(C) > 2J; &(C;).

1.3. LEMMA. If there exists a sequence of positive constants M; such that
Ei M; converges and g (C;) < M for each i and Kk, then g(C) exists and equals
2 B(Cy).

The following is a corollary to Lemma 1.3.

C - .

1.4. LEMMA. If EcEC [g(c)/Z)J-=l g(j)] converges, then g(C) =0. In particu-
lar, if ECGC 1/c converges, then 6(C) = 0; and if ECEC 1/(c log ¢) converges,
then ¢2(C)=0.

1.5. LEMMA. If E C C, g(C) = 2J; §(C;), and &(E N C;) exists for each i, then
&8(E) = 2J; &(E 0 Cy).

We conclude this section with a theorem that is directly related to the remainder
of the article.
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1.6. THEOREM. For i=1, 2, -+, let C; be the arithmeltic progression
{a +kd;: k=0, 1, .-« }, where a; isa nonnegatwe integer and d; is a positive in-
teger. Furthefrmore suppose the sequence {C; t is pairwise dzsyomt Then a nec-

essary and sufficient condition that g(C) = Z)i 1/4; is that g(A) = 0, where
A= {al , an, -« }. In particular, if Z;i 1/a; converges, then 6(C) = Ei 1/a;; if
Zi 1/(a; log a;) converges, then ((C) = Z)i 1/4;.

Proof. For each i, let C; = {a; +kd;: k=1, 2, ---}. Note that for each i and k,
61.(Ci) € 1/4;. Since the progressions are pairwise disjoint, Ei 1/d; < 1. We apply
Lemma 1.3 to conclude that 6(C') = 2J; 1/d;, where C' = Ui C!. From Lemma 1.1
it follows that §(C') = 2: 1/d;. Since C=C' U A and A N C' is empty, it is clear

that g(C) = Ei 1/d; if and only if g(A) = 0. The remainder of the theorem follows
upon application of Lemma 1.4.

2. THE BASIC PROPERTIES OF A CERTAIN DIGITAL DECOMPOSITION
Let b, n, and a(n, i) be related as in the Introduction. Define
L(n) = max {i: @(n, i) >0} and S(n) = min{i: @(n, i) >0}.

Let T be the collection of all integer-valued arithmetic functions f for which
f(n) > L(n) for n=1, 2, ---. For each nonnegative integer Kk, let

Ak) = {n: S(n) > k}.

Observe that A(k) is the arithmetic progression {rb¥tl: r=1, 2, ---},

2.1. Definition. If C is a sequence of positive integers and f belongs to T, let
A(f, C) denote the sequence of members of C that cannot be expressed as ¢ =c' +1t,
with c' belonging to C and t belonging to A(f(c')); let B(f, C) be the sequence of
members of C that do not belong to A(f, C). When there is no chance of confusion,
these sequences will be called A and B, respectively.

2.2. LEMMA. Let C be a sequence of positive integers, and let £ belong to T'.
Then, if ¢ belongs to C, either ¢ belongs to A or ¢ may be uniquely expressed as
c =a+t, where a belongs to A and t belongs to A(f(a)).

Proof. Suppose c¢ belongs to B. Then ¢ =c'+t, where ¢' belongs to C and t
belongs to A(f(c')). If we choose a to be the least such c', it is clear that a belongs
to A. The uniqueness follows from the fact that if a; and a, are distinct members
of A, then the sequences a; + A(f(a;)) and ap + A(f(az)) are disjoint. Suppose
a) + t1 =a, +t,, where t; belongs to A(f(a;)) and t; belongs to A(f(az)). Note that
either t; < t, or t, <t;;if t; << t, then a; =a, + (t; - t;). Since t; - t; be-
longs to A(f(a,)), this contradicts the definition of A.

2.3. LEMMA. For a in A, 6[A(f(a))] = b-[f(2)+1]
2.4, THEOREM. For each sequence C and each f in T, we have the velations

6[ U {a+ A(f(a)): a € A} :l = 27 s[a+A(@)] = 2 p-Li@)+1]

a€A a€A
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Proof. Note that for each a in A and each k, 8 [a + A(f(a))] < b'[f(a)H] . Since
the members of the collection {a + A(f(a)): a € A} are pairwise disjoint,
2iaea p-Li2)+1] < 1. The result follows from Lemma 1.3.

2.5. COROLLARY. Suppose D is contained in U{a + A(f(a)): a € A}, and
D, =D N {a+ A(f(a))} possesses g-density (as described in Section 1) for each a
in A. Then g(D)= 2J, ¢ 5 8(D,).

Proof. From Lemma 1.1 we deduce that Theorem 2.4 is valid with 6 replaced
by g; apply Lemma 1.5.

If we pause to consider the situation where b = 2, f(n) = Li(n), and C consists of
the positive integers, we note that A = {2k: k=0, 1, ---}. Theorem 2.4 implies the

obvious: 6(B) = E::I 27K = 1. The next few results give information on A in the
general situation.

2.6. THEOREM. Let f belong to T, let C be a sequence of positive integers,
and let A(f, C) denote the sequence described in Definition 2.1. Then

27 alpRE) < p,
a €A

wheve R(n) = f(n) - L(n).

Proof. We know that EaEA b @) < b, To finish the proof, use the relations
f(a) = L(a) + R(a) and bL(a) <a,

2.7. COROLLARY. If theve is a constant K for which R(n) < K, thern 6(A) = 0;
stmilarly, if R(n) < log,[K logy n], then ¢(A) = 0.

Proof. Tt R(n) <K, then 20 ¢ 5 1/a <bX*!. If R(n) < logy, [K logy, n, then
EaGA 1/(alog a) <K' (K' constant). Apply Lemma 1.4.

3. SOME APPLICATIONS OF THE DECOMPOSITION

3.1. THEOREM (Paul). If C is b-complete, then C possesses natural densily.
Proof. Let f(n) = Li(n); then R(n) is identically zero. By Corollary 2.7, 6(A) = 0.
Since C is b-complete,

C N [a+ A(f(a))] = a + A(f(a))

for each a in A. Hence we may use Corollary 2.5 to conclude that

5(C) = 6(B) = X2 p-LE@+1]
a€cA

3.2. COROLLARY. If C is b-complete, then 6(A) and 5(B) exist for each f
in T.

Proof. The existence of 6(B) is implicit in the proof of Theorem 3.1. Hence,
6(A) = 6(C) - 6(B).
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3.3. COROLLARY. If g is any function of the type discussed in Section 1, if C
is b-complete, and if g(A) =0, then 6(A) = 0.

Proof. If g(A) =0, then 5, (A) =0, by Lemma 1.1. Since 6(A) exists (by Corol-
lary 3.2), 6(A) = 0.
3.4. THEOREM. Suppose 6*(C) > 0,and let K, K,, - be a sequence of posi-

L(d;)+K;
tive constants. Then C conltains an infinite chain d << d, << --- such that b (A )+

divides di+l - di .

Proof. Let f;(n) = L(n) + K;. By Corollary 2.7, 6[A(f;, D)] = 0 for each se-
quence D. Since 6[A(f;, C)] = 0, there exists an a; in A(f,, C) for which
6*(C1) > 0, where C; =C N [a] + A(f1(a;))]; otherwise, Corollary 2.5 would imply
that 6(C) = 6(B) = 0. Likewise, there must be an a, in A(f,, C;) such that
6*(C) > 0, where C, = Cj N [ap + A(fa(az))]. We proceed inductively, putting
d, =a,.

3.5. THEOREM. Suppose that ¢*(C)> 0 and K > 0. Then C contains a chain

d; < d, =< - for which dy,, - d; is divisible by b ., where
s; > L(d;) + logy, [K log, d;].

Proof. Choose f(n) = L(n) + logy [K logy, n]. By Corollary 2.7, ¢(A) = 0. There
must be an a; in A such that £¥(C;) > 0, where C; =C N [a; + A(f(a;))]. Asin
Theorem 3.4, we proceed inductively, putting a, =d,.

3.6. THEOREM. Suppose that 6*(0) > 0, and let £ be any member of T' for
which R(n) is nondecreasing and 27 1/an(n) diverges. Then C contains a chain
d1 << da=<< -+ for which diy] - di is divisible by b°*, where s; > £(d;).

Proof. Let g(n) = 1/an(n), and let g be the associated density; then
g*(c) > 6,(C) > 0. Theorem 2.6 and the definition of g imply that g[A(f, C)]= 0.
There is a member a; in A for which g*(C;) >0, where C; =C N la; + A(f(a}))].
We proceed as in Theorems 3.4 and 3.5.

Theorem 3.4 seems rather weak. However, the next result shows it to be best
possible.

3.7. THEOREM. Suppose lim R(n) = «. Then some sequence C, with 6*(C)> 0,
contains no chain dy < d, < --- for which d;y; - d;
55 2 f(dl)

Proof. Let K be a fixed constant exceeding 1, and let x be an integer in the
interval [n, Kn]. The progression x + A(f(x)) has density b-[fxM1] < 1/xbR(x)
The density of the totality of all such progressions as x ranges from n to Kn is
less than

is divisible by A, where

[Kn]
p V@ 35 1k,

k=n
which is approximately b~¥ (") 1og K, where (n) = min {R(x): x € [n, Kn]} . Since
Y¥(n) becomes large, the density tends to zero.
Let € > 0 be specified, and choose the positive numbers p;, p,, -~ so that

2 Ei p; <e. We form a sequence as follows:
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Choose n; large enough so that
(1) the density of the set {x+t: x € [n;, Kn;], t € A(f(x))} is less than p;;
(2) the relative density (in the interval [n;, Kn;]) of the set

{x'+t:x'+t e [n,Kn], x' € [nj, Knj] for some j <i, t' e A(f(x"))}

i-1
is less than 2 E;=1 p; -

To construct our sequence, we take from each of the intervals [ni, Kni]
(i=1, 2, -..) all elements that do not belong to the set {x'+t'} described in (2).
We note that the sequence contains no chain of the appropriate form, but that it has
upper natural density exceeding [(K - 1)/K] - «.

For the time being, let us assume that C is the sequence of all positive integers.
If f belongs to T, a straightforward application of Lemma 2.2 shows that each posi-
tive integer n is uniquely expressible as n =a; + --- + a), where each a; belongs to
A and a;,; belongs to A(f(a;)). We refer to this sum as the f-decomposition of n.
Let A; = A, and let Ay be the sequence of positive integers with exactly k sum-
mands in their f-decomposition.

3.8. LEMMA. If fin T is such that 6(A,) =0, then 8(Ay) = 0 for each k.
Proof. Suppose 6(A;) =0 for all i {r. For each a in Ay,

A Nla+Af@))] =a+T,

where T is a subset of A.. Hence 6(a + T) =0, and by Lemma 1.5 we conclude that
6(A.,;) =0.
r+l

3.9. THEOREM. If f is a member of T for which 23 1/nbR(®) converges, then
5(A,) > 0. k
Proof. Suppose 8(A;) = 0. It follows from Lemma 3.8 that 6(I.) = 1, where I,

consists of all integers having at least r summands in their f-decomposition; also,
A(f,1,) = A,. Thus, for each r,

1=001,)= 2 bl 7 4ppRE)

a€Ay a€A,

As r becomes large, the least element of A, becomes large. This leads to a con-
tradiction by forcing the right side of the inequality to zero.

Letting loggk) x denote the k-fold iterate of logy x, we can combine Theorems
3.6 and 3.9 to obtain the following proposition.

3.10. COROLLARY. Let C be a sequence of integers for which 6,(C)> 0.
Then, for each r, C contains a chain d; << dp < *** for which dj,; - d; is divisible

by bsi, where s; > 211;:1 logg{)di. Such a chain need not exist if this function is
replaced by

r
27 logl(ok) d. + 1+ s)loggﬂl) d. (e >0).

i
k=1
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Readers interested in probability may recognize Corollary 3.10 as a density
analogue of certain results concerning success runs in Bernoulli trials with p = 1/b.

Next we briefly turn our attention to the b-primitive sequences mentioned in the
Introduction.

3.11. THEOREM. If C is a b-primitive sequence, then 24 . 1/C < b.
Proof. Choose f = L; then A =C. Apply Theorem 2.6.

3.12. THEOREM. If C is a b-primitive sequence, then 2ic < x 1 < Kx/Vlog x.
This result is best possible. -

Proof. 1t suffices to establish the equality for the case x =b* - 1. We apply the
pretty theorem of De Bruijn, Tengenbergen, and Kruyswijk [4] to conclude that the
number of elements not exceeding b® - 1 in any b-primitive sequence is at most
equal to the number of integers less than b® whose digits add exactly to the integer
part of r(b - 1)/2. In this situation, Theorem 5 of I. Anderson [2] gives x/vIog x
as the true order of magnitude required.

We remark that for the case b = 2, Theorem 3.12 may be proved by an appeal to
the famous lemma of Sperner on subsets of finite sets, and to a simple estimate us-
ing Stirling’s formula.

FINAL. REMARKS

The theorems on chains suggest the possibility of certain mappings of sequences
of integers into the unit interval. Our results along these lines are so closely re-
lated to those of Paul that we merely refer the reader to his work.

We thank the referee for pointing out Anderson’s theorem, which allows us to
state the complete result in Theorem 3.12. We also acknowledge our debt to the
vast storehouse of ideas and knowledge to be found in the papers of Professor Paul
Erdos.
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