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1. INTRODUCTION

Call a chain (linearly ordered set) short if it contains a countable unbounded
subset, and homogeneous if all convex subsets without greatest or least elements
are isomorphic. The purpose of this paper is to investigate the algebraic structure
of the group S(R2) of order automorphisms of a short homogeneous chain (abbre-
viated SHC) Q.

In Section 2 we show that the group structure of S(Q2) determines, up to duality,
the structure of T (the conditional completion of ©) and the lattice structure of
S(R2). We give a partial solution to the problem of finding all SHC’s © with the
same group S(R). Our solution includes the result S(#) Z S(2.).

In Section 3 we calculate the automorphism groups of large subgroups of S(Q).
Our result includes the theorem of J. T. Lloyd [5] that if © is conditionally com-
plete, then every automorphism of S(©2) comes from conjugation by an order auto-
morphism or antiautomorphism of .

The author is grateful to Otto H. Kegel and Peter M. Neumann for many enlight-
ening discussions concerning this material.

Some notation: S is the full group of permutations of ©; L(Q) (respectively,
R(2)) is the subgroup of elements of S() whose support is bounded on the right (on
the left); and N(Q) = R(Q) N L(Q). For unexplained terminology, see [7] and [1].

We note that not every SHC is a subset of & (the set of real numbers). See, for
example, [6].

2. GROUP STRUCTURE AND ORDER

The following is the fundamental tool of this paper.

THEOREM 1. If Q is shovrt, and all of its open inlevvals are isomorphic, then
L(Q), R(Q), and N(Q) are the only proper normal subgroups of S(Q); also, N(Q) is
the only proper normal subgroup of L(R) or R(Q), and N(Q) is algebraically simple.

The difficult part of this, the simplicity of N(2), is due to G. Higman [2] (see

also [7, p. 25]). The rest of Theorem 1 is a consequence of [3, Theorem 6]. A
proof also appears in [5].

Note that if Q is isomorphic to its order dual ©*, then L(Q) = R(2) and all four
of the simple factors S(Q)/L(®), S(Q)/R(R), R(Q)/N(R), and L(Q)/N(Q) are iso-
morphic. To complete the picture, we state without proof the following theorem.

THEOREM 2. Under the hypothesis of Theorem 1, N(Q) Z R(Q)/N(Q).

It is not to be hoped, even if © is an SHC, that the algebraic structure of S(Q)
will determine §; for example, if T" is the set of irrational numbers and 2 is the
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set of rationals, then S(I") £ S(2). Proof: an element of S(I") determines an ele-
ment of S(#), and the restriction to 2 of this permutation is an element of S(2)
[3, p. 407]. However, we shall show that in a certain sense this is the only way
things can go wrong (see Corollary 3 to Theorem 4). We shall also prove that up to
duality the lattice structure of S(Q) is determined by the structure of S(2) as an
abstract group.

First we establish some more terminology. If @ is an SHC, we set
U(Q) = {s € S(Q)| s can be written uniquely as the product of commuting
elements s =1r =rl with 1 € L(Q), r € R(Q)}.

If s € S(2) has a fixed block A, then the element t € S(Q2) satisfying t | Q-A=1
(the identity permutation of © - A) and t| A = s| A will be called the restriction of
s to A. We abbreviate minimal convex fixed block to MCFB, and we abbreviate
support to supp. For purposes of exposition, we regard @ as running from left to
right.

THEOREM 3. If Q is an SHC and s € S(R), then s € U(Q) if and only if s has
exactly two nontrivial MCFB’s and at most one fixed point.

Proof, =. If s had at least three nontrivial MCFB’s, then one of them would be
bounded and we could write

s = (In)r = r(In) = l(nr) = (nr)l,

where n € N(Q2) is the restriction of s to the bounded fixed block, and 1 € L(Q)
(respectively, r € R(Q)) is the restriction of s to the part of £ to the left of the
bounded fixed block (to the right of the bounded fixed block). Therefore s ¢ U(Q), a
contradiction.

Moreover, if s € U(Q) had two distinct fixed points, then because it can have at
most two nontrivial MCFB’s, it would have to fix each point of some nontrivial
bounded interval [x, y]. Then we could write

s = Wt~ YHtr) = (tr)1t"!) = Ir = 11,

where 1 is the restriction of s to (- o, x), r is the restriction of s to (y, +«), and
t #1 is any element of N(Q) with supp t C [x, y]. Hence s ¢ U(2), again a contra-
diction. '

It remains to show that s = rl € U(2) cannot have exactly one MCFB. Since
s | (-, x) =1| (-, x) for any x lying to the left of supp r, 1 must have an MCFB
A C © that is unbounded to the left. Since Irl~! = r, supp r is invariant under 1
and 1-! ; hence (supp r) N A = . Consequently, A is an MCFB of s.

<=. Let A; and A, be the two MCFB’s of s, A lying to the left of A,. Let
1 € L(Q) (respectively, r € R(R2)) be the restriction of s to A; (to Az). Then
s =1r =rl. Suppose also that s =1'r'=r'l', with 1' € L(Q) and r' € R(R2). Asin
the first part of this proof, it can be shown that supp 1' C supp 1, supp r' C supp r,
and therefore 1=1', r =1r'.

Remark. To each element Ir of U(RQ) corresponds a nonextremal Dedekind cut
[D,, D2] with
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D, = supp l, D, = the closure in & of supp r.

Given a nonextremal Dedekind cut of Q, one may always find many elements of U(R2)
that correspond to it in this way.

Definition. If 1r, 1'r' € U(Q), then

Ir~1'r' €<= 1 commutes with r' and 1' commutes with r.
Clearly,

Ir~1'r' <= Ir and 1'r' correspond to the same Dedekind cut.

We write {lr} for the ~-equivalence class of lr.
Definition. If {lr}, {1'v'} € U(Q)/~, then

{ir} < {I'r'} <> 1 commutes with r'.

It is now easy to prove the following theorem.

THEOREM 4. If Q is an SHC, then U(Q)/~ = Q, and the representation of S(R)
on Q by extension of its action on Q is ovdev-equivalent to its action on U(Q)/~ by
conjugation. In particular, if Q1 , Q2 are both SHC’s with S(Q;) = S(Q3), then either
_371 gﬁz or Ql ;ﬁ}“

Note. The confusion between Q, and 5’5 arises as follows: given an abstract
group that happens to be an S() for some SHC Q, our procedure for reconstruct-
ing Q through U/~ begins with the choice of one of the two maximal normal sub-
groups to play the role of L(R2). If we choose the real L(2), we get the isomor-
phism @ = U/~. If by accident we choose what is actually R(2), we get the iso-
morphism U/~ = 0*,

The lattice structure of S(R) can also be recovered from U(Q)/~; if s, t € S(Q),
then

s <t={us} < {ut} forall ue UEQ).

Note that U(Q) is normal in S(2), and that we could as well have written

{u}® < {u}t.

COROLLARY 1. If @ and Q3 are SHC’s with S(1) = S(R2) as groups, then
either S(Q1) = S(Q,) or S(R;) = S(Q)* as lattice-groups.

COROLLARY 2. If Q is an SHC and Q #Q, then S(Q) Z S[@).

Proof. S(Q) acts transitively on U(Q)/~, but S(R2) is not transitive on U(Q)/~
(one orbit consists of the classes of elements actually having fixed points, that is,
the elements of U(Q) corresponding to the principal cuts of ). In particular,
S(2) Z S(#) as groups (see also [3, p. 407]).

COROLLARY 3. If Q is an SHC, then each SHC Q' with S(Q) = S(Q') is order-
isomorphic or anti-isomorphic to some conjugacy class of U(Q)/~, and the group of
ovdev-automorphisms of each homogeneous conjugacy class is S(Q). In particular,
the SHC’s with S(Q) = S(Q') appear as disjoint, dense subsets of Q.
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3. THE AUTOMORPHISMS OF LARGE SUBGROUPS OF S(f2)

Convention. I G < %, with Cent_g (G) = (1), andif s € Norm_g, (G), we shall

identify s with the automorphism of G given by conjugation by s. Recall that if Q
is any set with |Q| #6 and AS? < G < S (AR denotes the alternating group on ),
then Aut(G) = Norm & (G) [17, Section 4]. The next theorem is an analogue of this

for groups of order automorphisms. We regard S(Q) as a subgroup of S(Q) in the
obvious way.

THEOREM 5. If Q is an SHC and N(Q) < G < S(Q), then
(1) Aut S(@) = Norm gy (S@)),  (2) Aut G = Norm , ¢ g(q) (G-

Proof of (1). Identify the points of  with the classes in U(2)/~ (see Corollary
1). Then, for Ir € U(Q),

Stabg(q) {ir}
= {y € R(Q)| y commutes with 1} - {x € L(2)| x commutes with r} .

This expression for the stabilizer is invariant under automorphisms of S(2), and we
conclude that the automorphisms of S(Q) permute the stabilizers of points of €. By
[7, Theorem 4.4], each automorphism is thus an element of S,

Remavrk. Holland has proved that if € contains a nontrivial order-complete in-
terval and S(Q) is transitive, then every lattice-automorphism of S(Q) is an inner
automorphism [4, Theorem 8].

The proof of part 2 of Theorem 5 depends on properties of the topology 7 de-
fined on S(2) by taking as a sub-base for the open neighborhoods of s € S(Q) the
sets B, (s) =s Centg(q) (n), where n € N(R2). Convergence in this topology of a net
{sq }QGA C S(R) can be described in terms of Q by

Limsy, =s <> s, | A =s|A eventually for each bounded subset A of
aeh

and every net {Sa}aeA c S(Q).

LEMMA 1. 1) The topology T is T, .

2) A sequence in S(Q) converges if it is fundamental.

3) N(Q) is sequentially dense in S(Q).

4) FEvery automovphism of S(Q) is a homeomorphism of S(R).

5) If {m;} and {n;} ave convergent sequences in N(Q) such that
lim m; = lim n; € S(Q) and if ¥ € Aut N(Q), then {m‘f’} and {nklb} ave convergent

and lim (m}b) =1lim (n;/’).

6) If {m;}, {n;}, and {1;} are convergent sequences in N(Q) and
¥ € Aut N(R), then

(lim my) (lim ny) = lim 1; = (lim m¥) (lim n¥) = 1im 1.

The proof is straightforward, involving only the definition of 7 and the statement
preceding the lemma.
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LEMMA 2. Aut N(R2) = Aut S(Q2).

Proof. Since N() is a characteristic subgroup, it suffices to show that every
element ¥ € Aut N(Q) extends uniquely to a ¥ € Aut S(Q2). Define ¥ as follows: for
any s € S(Q), pick a sequence {n;} in N() with limn;=s. Set S¥ =lim n".ll’.
Lemma 1 assures us that ¢ is well-defined and ¥ € Aut S(Q).

Proof of (2). If ¥ € Aut G, then ¥ is determined by its restriction to N(Q), by

Lemma 1 (N(Q)"D = N(2) because N(2) is normal and simple and has trivial cen-
tralizer). By Lemma 2, ¥ can be extended to be an element of Aut S().
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