LIGHT OPEN MAPPINGS ON A TORUS WITH A DISK REMOVED

Morris L. Marx

1. INTRODUCTION

Suppose δ is a continuous mapping of a Jordan curve J into Euclidean 2-space R^2 . We shall consider J as the boundary of T, a 2-dimensional torus with a disk removed, and also as the boundary of a 2-cell D, and we shall study the relation between the case where δ has a light, open, continuous extension to T and the case where δ has a similar extension to D.

Generally, definitions and notation not given in the paper will be as in [3]. All light open mappings will be assumed to be sense-preserving, unless it is otherwise specified.

2. MAIN RESULTS

Definition 1. Suppose J is a Jordan curve on a 2-dimensional torus that bounds a disk; let T be the other component of the complement of J. Suppose δ is a continuous mapping of J into \mathbb{R}^2 . We say that δ is a t-boundary if there exists a properly interior mapping $f: \overline{T} \to \mathbb{R}^2$ such that $f \mid J = \delta$. (We use the term *properly interior* in the sense of [7], not [3].)

We shall consider J as embedded in \mathbb{R}^2 and oriented as in Figure 1.

Definition 2. Suppose I = [a, b] is a closed interval of real numbers, A is some closed arc, and δ : $A \to R^2$. We extend the definition of normality as in [6, p. 1084] and say that δ is topologically normal (briefly, t-normal) if there exist homeomorphisms h: $I \to A$ and k: $R^2 \to R^2$ such that $k \circ \delta \circ h$ is normal in the sense of [6]. Also, if M is an oriented Jordan curve and δ maps M into R^2 , then δ is t-normal if there exists a mapping ψ : $I \to M$ such that $\psi(a) = \psi(b)$, ψ is one-to-one on (a, b), $\psi(x) \neq \psi(a)$ for $x \in (a, b)$, and $\delta \circ \psi$ is

Figure 1.

t-normal as defined in the previous sentence. Let δ map the closed arc A_1 into R^2 ; let η map the closed arc A_2 into R^2 . We say that δ and η intersect t-normally if there exist homeomorphisms $h_1\colon I\to A_1$, $h_2\colon I\to A_2$, and $k\colon R^2\to R^2$ such that $k\circ \delta\circ h_1$ and $k\circ \eta\circ h_2$ intersect normally in the sense of [3, p. 50].

LEMMA 1. Let U be an open connected subset of a metrizable 2-dimensional manifold, and suppose $f: U \to R^2$ is light and open. For any two points p and q in U, there exists an arc A in U with end points p and q such that $f \mid A$ is t-normal. Also, if A_1 is any arc and $g: A_1 \to R^2$ is t-normal, then A can be chosen so that $f \mid A$ and $g \mid A_1$ intersect t-normally. Finally, if U is bounded by a finite number of Jordan curves and f is a local homeomorphism at points of \overline{U} - U, then the

Received October 5, 1967.

conclusion still holds even if one or both points p and q are in \overline{U} - U. (We can choose A so that $A \cap (\overline{U} - U) = \{p, q\}$.)

Proof. First suppose p and q are in U. By Stoïlow's theorem [10, Theorem 1.1, p. 103], there exist a Riemann surface X, a homeomorphism ψ : X \to U, and a complex analytic function α : X \to R² such that α = f \circ ψ . By the definition of normality, it suffices to find an arc B of X joining $\psi^{-1}(p)$ and $\psi^{-1}(q)$ such that $\alpha \mid B$ is t-normal and intersects g $\mid A_1 \mid$ t-normally. Then $\psi^{-1}(B)$ will be the desired arc A.

There exists a chain of open sets U_i $(1 \le i \le n)$ from $\psi^{-1}(p)$ to $\psi^{-1}(q)$ such that $\alpha \mid U_i$ is an analytic homeomorphism $(1 \le i \le n)$. Pick a sequence of points x_i $(0 \le i \le n)$, where $x_0 = \psi^{-1}(p)$ and $x_n = \psi^{-1}(q)$, and where $x_i \in U_i \cap U_{i+1}$ for $1 \le i \le n-1$. If we now prove the theorem for $p = x_i$, $q = x_{i+1}$, and $U = U_i$, then we will be done.

Now $\alpha(U_i)$ is an open subset of R^2 , and it contains the points $\alpha(x_i)$ and $\alpha(x_{i+1})$. Certainly we can find an analytic arc C in $\alpha(U_i)$ that joins $\alpha(x_i)$ and $\alpha(x_{i+1})$ and intersects $g(A_i)$ normally. Since α is an analytic homeomorphism on U_i , the set $\alpha^{-1}(C) \cap U_i$ is an analytic arc in U_i with the desired properties.

If p, say, is in \overline{U} - U, use Church's extension of Stoïlow's theorem [1, p. 86] locally at p to get away from \overline{U} - U and into U. The proof then proceeds as before.

LEMMA 2. Let J and δ satisfy the conditions in Definition 1. Suppose K is a Jordan curve in Ins J. Let K_1 , K_2 , K_3 , K_4 be four closed arcs of K, intersecting only at end points, numbered consecutively in the counterclockwise direction, oriented in the counterclockwise direction, and such that $K = K_1 \cup K_2 \cup K_3 \cup K_4$. Suppose $\eta \colon K \to \mathbb{R}^2$ is continuous and $\eta \mid K_i = -\eta \mid K_{i+2}$ (i = 1, 2). Then δ is a t-boundary if and only if there exists an η as above such that (δ, η) is an a-boundary. Moreover, η can be selected to be topologically normal.

Proof. Suppose δ has a light open extension f to \overline{T} . Lemma 1 implies the existence of Jordan curves M, a meridian of T, and L, a longitude of T, such that $f \mid M$ and $f \mid L$ are t-normal and $f \mid M$ and $f \mid L$ intersect t-normally. Cutting T along $M \cup L$, we get an annulus, and then we obtain η by restricting f to the cut.

Suppose (δ, η) has a light, open extension f to the annulus bounded by J and K. Identifying the arcs K_1 and K_3 and K_2 and K_4 , we obtain a surface T consisting of a torus from which a disk has been removed. Because of the hypothesis on η , f induces a natural map f^* on \overline{T} . That f^* is light and open on the identified points follows immediately from [9, Theorem 9, p. 336].

THEOREM 1. If δ is a t-boundary, then $w(\delta, p) \geq 0$ for every $p \in \mathbb{R}^2$ - $[\delta]$ and there is some $p \in \mathbb{R}^2$ such that $w(\delta, p) \geq 2$ ($w(\delta, p)$ denotes the winding number of δ at p).

Proof. There exists an η as in Lemma 2 such that (δ, η) is an a-boundary. By [4, Theorem 20.2, p. 72], $w(\delta, p) - w(\eta, p)$ is equal to the number of pre-images of p under any properly interior extension f of (δ, η) ; thus, $w(\delta, p) - w(\eta, p) \geq 0$. However, $\eta \mid K_i = -\eta \mid K_{i+2}$ (i = 1, 2) implies that $w(\eta, p) = 0$; therefore $w(\delta, p) \geq 0$.

Also, some point p must have two or more pre-image points under f. Otherwise, the torus with a disk removed would be homeomorphic to a subset of the plane, which is impossible. Thus, for that p, $w(\delta, p) \geq 2$.

Not all representations of nonnegative circulation are t-boundaries, as we shall see in Section 3.

THEOREM 2. Suppose K is a Jordan curve in R^2 and δ maps K into R^2 . If δ is a topologically normal interior boundary, then there exist a homeomorphism h: $K \to S^1$, a homeomorphism k: $R^2 \to R^2$, and a complex polynomial P such that $\delta = k \circ P \circ h$.

Proof. Since δ is topologically normal, there exist a homeomorphism $h_1\colon S^1\to K$ and a homeomorphism k_1 on R^2 such that $\delta_1=k_1\circ \delta\circ h_1$ is normal. Since δ is an interior boundary, there exists a properly interior mapping $f\colon K\cup Ins\ K\to R^2$ such that $f\mid K=\delta$. By $[5,\ Lemma\ 5.2,\ p.\ 193]$, there exists a local homeomorphism $g,\ defined\ on\ \{z\mid 1\leq |z|\leq r\}\ for\ some\ r>1,\ such\ that <math>g\mid S^1=\delta_1$. Define f^* on $S=\{z\mid 0\leq |z|\leq r\}$ by $f^*=k_1\circ f\circ h_1$ for $|z|\leq 1$ and $f^*=g$ for $1\leq |z|< r;$ then f^* is light and open $[9,\ Theorem\ 9,\ p.\ 336].$

There exists a homeomorphism h_2 of S onto itself such that $f^* \circ h_2 = F$ is analytic [10, p. 103]. There exists a sequence $\{Q_n\}$ of polynomials that approaches F' uniformly on compact subsets. Each Q_n has an appropriate antiderivative P_n such that $\{P_n\}$ approaches F uniformly on compact subsets. Hence, $\{P_n\}$ tends to F in the C^1 -norm on the differentiable Jordan curve $h_2(S^1)$. By [6, Lemma 1, p. 1084], there exists an integer m so large that $P_m \mid h_2(S^1)$ and $F \mid h_2(S^1)$ have the same intersection sequence. Thus, there are homeomorphisms h_3 and k_3 of R^2 onto itself such that $k_3 \circ P_m \circ h_3 = F$ on $h_2(S^1)$ [7, Theorem 3, p. 49]. If we set $h = h_3 \circ h_2^{-1} \circ h_1^{-1}$ and $k = k_1^{-1} \circ k_3$, then $\delta = k \circ P_m \circ h$, and the theorem is proved.

THEOREM 3. If $\delta: J \to R^2$ is a t-boundary, then there exists a properly interior mapping $f: J \cup Ins \ J \to S^2$ such that $f \mid J = \delta$ and $f^{-1}(\infty)$ is empty or contains one element.

Proof. By Lemma 2, there exists a t-normal η such that (δ, η) is an aboundary. Let J, K, and K_i $(1 \le i \le 4)$ be as in Lemma 2. By the definition of topological normality, there exist a homeomorphism $h: S^1 \to K$ and a homeomorphism $k: R^2 \to R^2$ such that $k \circ \eta \circ h$ is normal. There exist an open annulus U in R^2 with $S^1 \subset U$ and a local homeomorphism $g: \overline{U} \to R^2$ such that $g \mid S^1 = k \circ \eta \circ h$. By the Schoenflies theorem, we can extend h to R^2 ; let $V = h(U) \cap Ins K$. Applying Lemma 1 to $g \circ h^{-1}$ on \overline{V} , we obtain an arc B in \overline{V} whose end points p and q are the first end point of K_1 and the last end point of K_2 (first and last refer to orientation of K). Also, B intersects \overline{V} - V only in p and q. Finally, $g \circ h^{-1}$ is topologically normal on B, and $g \circ h^{-1} \mid B$ intersects $\eta \mid (K_1 \cup K_2)$ normally. Let M denote the Jordan curve $K_1 \cup K_2 \cup B$, and define ψ on M by $\psi \mid B = g \circ h^{-1}$ and $\psi \mid (K_1 \cup K_2) = \eta$. Then ψ is t-normal on M.

By Theorem 2, there exist a homeomorphism $h_1\colon M\to S^1$, a homeomorphism $k_1\colon R^2\to R^2$, and a complex polynomial P such that $\psi=k_1\circ P\circ h_1$. If P is of degree n, there exists a Jordan curve L such that $S^1\subset \operatorname{Ins} L$ and P is topologically equivalent to the power mapping z^n on L. Thus, $(z^n,P\mid S^1)$ is an a-boundary, which implies that (z^n,ψ) is an a-boundary. By [3, Lemma 5.3, p. 54], $(-\psi,z^{-n})$ is an interior boundary. This implies that $-\psi$ has a properly interior extension $v\colon M\cup\operatorname{Ins} M\to S^2$ such that $v^{-1}(\infty)$ contains one element. Let $N=B\cup K_3\cup K_4$, and give N the positive orientation in the plane. Define $\psi_1\colon N\to R^2$ by

$$\psi_1 \mid B = g \circ h^{-1}$$
 and $\psi_1 \mid (K_3 \cup K_4) = \eta$.

Since $\eta \mid K_i = -\eta \mid K_{i+2}$ (i = 1, 2), the mapping ψ_1 is topologically equivalent to $-\psi$. Thus, ψ_1 has a properly interior extension $v_1 \colon N \cup Ins \ N \to \mathbb{R}^2$ such that $v_1^{-1}(\infty)$ contains one element.

Suppose f^* is a properly interior extension of (δ, η) to the annulus A bounded by J and K. Define a mapping f on $J \cup Ins J$ by

$$f \mid A = f^*$$
, $f \mid (M \cup Ins M) = g \circ h^{-1}$, $f \mid (N \cup Ins N) = v_1$.

By [9, Theorem 9, p. 336], f is light and open and constitutes the desired map.

COROLLARY. Suppose $f: \overline{T} \to \mathbb{R}^2$ is a properly interior mapping and that f is a local homeomorphism at each point of $J = \overline{T} - T$. Then there exists a homeomorphism $h: J \cup Ins J \to \mathbb{R}^2$ such that $f \circ h^{-1}$ is analytic in Ins h(J) or meromorphic in Ins h(J) with exactly one pole.

This corollary follows immediately from Theorem 3 and the theorem and remark in [1, p. 86 and p. 88]. The next theorem is a partial converse to Theorem 3.

THEOREM 4. Suppose $\delta: J \to \mathbb{R}^2$ is an interior boundary and $w(\delta, p) \geq 2$ for some $p \in \mathbb{R}^2 - [\delta]$. Then δ is a t-boundary.

Proof. Let f be a properly interior extension of δ to D = Ins J. Since the branch points of f are isolated, we may assume p is not the image of a branch point of f. There are two points x_1 and x_2 in D such that $f(x_1) = f(x_2) = p$ [4, Theorem 20.2, p. 72]. Since x_1 and x_2 are not branch points, there exist Jordan curves K and L in D such that $(K \cup Ins K) \cap (L \cup Ins L) = \phi$, $x_1 \in Ins K$, $x_2 \in Ins L$, f | K and f | L describe positively oriented Jordan curves, and $f(L) \subset Ins f(K)$. Without loss of generality, we can take

$$K = \{z | |z - a| = r\}$$
 and $L = \{z | |z - b| = s\}$,

for some appropriate complex numbers a and b and positive real numbers r and s.

It follows from [3, Theorem 3, p. 55] that there exists a properly interior mapping g, defined on the annulus $X = \{z \mid 1 \le |z| \le 2\}$, such that

$$g(2e^{i\theta}) = f(a + re^{i\theta})$$
 and $g(e^{i\theta}) = f(b + se^{-i\theta})$.

Let $Y = \overline{D}$ - Ins K - Ins L. Define h: Boundary $X \to Y$ by

$$h(2e^{i\theta}) = a + re^{i\theta}$$
 and $h(e^{i\theta}) = b + se^{-i\theta}$.

Attach X to Y by h, forming $Z = X \cup_h Y$ (see [2, pp. 127-129]); Z is a torus with an open disk removed. Since g(x) = f(h(x)) for all $x \in B$ oundary X, the mappings g and f define a continuous function on Z, and this function is properly interior [9, Theorem 9, p. 336] and extends δ .

COROLLARY. If δ is a normal interior boundary and δ does not represent a Jordan curve, then δ is a t-boundary.

Figure 2.

Proof. In view of the theorem, it is only necessary to show that $w(\delta, p) \geq 2$ for some point p. If δ does not represent a Jordan curve, then δ has a vertex v. Let p, q, r be as in Figure 2. Now

$$w(\delta, r) = w(\delta, q) - 1$$
 and

$$w(\delta, p) = w(\delta, q) + 1 = w(\delta, r) + 2$$

[6, Lemma 2, p. 1085]. Since δ has nonnegative circulation, $w(\delta, p) \geq 2$.

3. EXAMPLES

In this paragraph we produce examples to show that the converses of Theorems 3 and 4 are false.

Example 1. Let δ represent the curve in Figure 3. Figure 4 shows that δ has a light open extension g mapping into S^2 such that $g^{-1}(\infty)$ contains one point.

Note that δ is of nonnegative circulation and that there exist points p such that $w(\delta, p) \geq 2$ (the tangential winding number of δ is negative; but the example can be modified to make this positive); however, δ is not a t-boundary.

Suppose, if possible, that δ is a t-boundary. Let $f: \overline{T} \to \mathbb{R}^2$ be a properly interior extension of $\delta: J \to \mathbb{R}^2$. If such an f exists, we can also find one that is a local homeomorphism on a neighborhood of J in \overline{T} ; we therefore assume that f has this property. Let δ_0 , δ_1 , δ_2 be as in Figure 3; suppose

Figure 3.

Figure 4.

 $\begin{array}{l} f^{-1}(\delta_i) = \left\{d_i \text{, } d_i^*\right\} \text{ (i = 1, 2) and } f^{-1}(\delta_0) = \left\{d_0\right\}. \text{ We encounter these points in the order } d_0 \text{, } d_1 \text{, } d_2 \text{, } d_1^* \text{ as we traverse J in the positive orientation. There exists an arc } \gamma \text{ in \overline{T} that intersects J only in its end points, such that } f(\gamma) \text{ is the arc of } [\delta] \text{ from } \delta_1 \text{ to } \delta_2 \text{, and such that one end point of } \gamma \text{ is } d_2^* \text{ [3, Theorem 1, p. 49].} \\ \text{Since f is a local homeomorphism at each point of J, the other end point of γ must be d_1^*. Now \overline{T} - J - γ = $D_1 \cup D_2$, where D_1 and D_2 are open and either J.} \end{array}$

- (1) $D_1 = \phi$ and D_2 is an open annulus or
- (2) D_1 is a disk.

In case (1), $(\delta^{**}, -\delta^{*})$ would be an a-boundary (δ^{*} and δ^{**} are the Titus cuts of δ [7]; see Figure 5). But (δ^{*} , δ^{**}) is not an a-boundary, by (1) of Theorem 2 [3, p. 50]. In case (2), either δ^{*} or δ^{**} is an interior boundary. However, δ^{*} is not an interior boundary, because it has points of negative circulation; δ^{**} is not an interior boundary by [7, Theorem 8, p. 56].

Figure 5.

Figure 6.

Example 2. The curve of Figure 6 is not an interior boundary [8, p. 203]. It is a t-boundary; this can be seen as follows. The pair of curves in Figure 7 is an aboundary [3], and therefore the pair of curves (δ, η) in Figure 8 is an a-boundary. Note that the arc γ is traced by both curves. Suppose f is a properly interior extension of (δ, η) to an annulus A in the plane bounded by Jordan curves J and K. There are arcs $B_1 \subset J$ and $B_2 \subset K$ such that $f(B_1) = f(B_2) = \gamma$. The decomposition space M of A whose nondegenerate elements have the form $f^{-1}(x) \cap J \cap K$ for all $x \in \gamma$ is a torus with an open disk removed. If ψ is the natural map of A onto M,

Figure 7.

Figure 8.

then $f \circ \psi^{-1}$ is a properly interior extension of M such that on the boundary of M the curve of Figure 6 is described.

4. NORMAL t-BOUNDARIES

The following theorem, used in conjunction with [3] and [7], yields a finite algorithm for determining whether a prescribed normal representation is a t-boundary. We do not prove the theorem, because all the necessary techniques are in [3].

THEOREM 5. Suppose δ is a normal representation and δ is a t-boundary.

- (1) If δ has a cut of Type II, then either
 - (a) δ^* is a t-boundary and δ^{**} is an interior boundary,
 - (b) δ^{**} is a t-boundary and δ^{*} is an interior boundary, or
 - (c) $(\delta^*, -\delta^{**})$ is an a-boundary.
- (2) If δ has a cut of Type I at δ_k , then either
 - (a) δ^{**} is a t-boundary,
 - (b) for some integer n, $(\psi, -\eta)$ is an a-boundary, where ψ is topologically equivalent to the power mapping z^n and

$$\eta = \delta(0) \, \delta(d_k)(\delta) + \sum_{i=1}^{n'} \delta(d_k) \, \delta(d_k^*)(-\delta) + \delta(d_k^*) \, \delta(2\pi)(\delta) .$$

Conversely, if any of the conditions (1a), (1b), (1c), (2a), or (2b) holds, then δ is a t-boundary.

REFERENCES

- 1. P. T. Church, Extensions of Stoilow's theorem. J. London Math. Soc. 37 (1962), 86-89.
- 2. J. Dugundji, Topology. Allyn and Bacon, Boston, Massachusetts, 1966.
- 3. M. L. Marx, Normal curves arising from light open mappings of the annulus. Trans. Amer. Math. Soc. 120 (1965), 46-56.
- 4. M. Morse, Topological methods in the theory of functions of a complex variable. Annals of Mathematics Studies, No. 15. Princeton Univ. Press, Princeton, N. J., 1947.
- 5. S. Sternberg, Lectures on differential geometry. Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964.
- 6. C. J. Titus, A theory of normal curves and some applications. Pacific J. Math. 10 (1960), 1083-1096.
- 7. ——, The combinatorial topology of analytic functions on the boundary of a disk. Acta Math. 106 (1961), 45-64.
- 8. C. J. Titus and G. S. Young, An extension theorem for a class of differential operators. Michigan Math. J. 6 (1959), 195-204.

- 9. C. J. Titus and G. S. Young, The extension of interiority, with some applications. Trans. Amer. Math. Soc. 103 (1962), 329-340.
- 10. G. T. Whyburn, *Topological analysis*. Princeton Mathematical Series, No. 23. Princeton Univ. Press, Princeton, N. J., 1958.

Vanderbilt University Nashville, Tennessee 37203