LIGHT OPEN MAPPINGS ON A TORUS
WITH A DISK REMOVED

Morris L. Marx

1. INTRODUCTION

Suppose 6 is a continuous mapping of a Jordan curve J into Euclidean 2-space
R2 . We shall consider J as the boundary of T, a 2-dimensional torus with a disk
removed, and also as the boundary of a 2-cell D, and we shall study the relation be-
tween the case where 6 has a light, open, continuous extension to T and the case
where 6 has a similar extension to D.

Generally, definitions and notation not given in the paper will be as in [3]. Al
light open mappings will be assumed to be sense-preserving, unless it is otherwise
specified.

2. MAIN RESULTS

Definition 1. Suppose J is a Jordan curve on a 2-dimensional torus that bounds
a disk; let T be the other component of the complement of J. Suppose 6 is a con-
tinuous mapping of J into RZ. We say that 0 is a t-boundary if there exists a
properly interior mapping f: T — R2 such that f|J = 6. (We use the term properly
interior in the sense of [7], not [3].)

We shall consider J as embedded in R2 and oriented
as in Figure 1. .

Definition 2. Suppose I =[a, b] is a closed interval
of real numbers, A is some closed arc, and 6: A — R2,
We extend the definition of normality as in [6, p. 1084]
and say that 6 is topologically normal (briefly, t-nor-
mal) if there exist homeomorphisms h: I — A and
k: R2 — R2 such that ko 6 ©h is normal in the sense J
of [6]. Also, if M is an oriented Jordan curve and 6
maps M into RZ, then 6 is t-normal if there exists a o
mapping ¢: I — M such that y(a) = ¥(b), ¢ is one-to- Figure 1.
one on (a, b), Y(x) #Y(a) for x € (a, b), and b6 o Y is
t-normal as defined in the previous sentence. Let 6 map the closed arc A; into
R2; let 7 map the closed arc A, into R%. We say that 6 and n infersect t-
noymally if there exist homeomorphisms h;: I — A}, hy: I = A,, and k: R — R?
such that k 0o 6 oh; and k o5 oh, intersect normally in the sense of [3, p. 50].

LEMMA 1. Let U be an open connected subset of a metvizable 2-dimensional
manifold, and suppose f: U — R2 is light and open. For any two points p and q in
U, there exists an avc A in U with end points p and q such that f | A is t-normal,
Also, if A is any avc and g: Ay — R% is t-normal, then A can be chosen so that
f | A and g ] A, intersect t-normally, Finally, if U is bounded by a finite numbey
of Jordan curves and f is a local homeomorphism at points of U - U, then the
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conclusion still holds even if one ov both points p and q are in U - U. (We can
choose A so that AN (U - U)={p, q}.)

Proof. First suppose p and q are in U. By Stoilow’s theorem [10, Theorem
1.1, p. 103], there exist a Riemann surface X, a homeomorphism ¥: X — U, and a
complex analytic function @: X — R% such that @ =f o Y. By the definition of nor-
mality, it suffices to find an arc B of X joining ¥~!(p) and y¥~!(q) such that a | B
is t-normal and intersects g | A; t-normally. Then y~1(B) will be the desired
arc A.

There exists a chain of open sets U; (1 <i < n) from ¥ 1(p) to ¥~1(q) such that
a | Uj; is an analytic homeomorphism (1 <1i < n). Pick a sequence of points x;
(0 < i< n), where xg=1y¥~1(p) and x, = ¥~1(q), and where x; € U; N Uj4; for
1<i<n-1. If we now prove the theorem for p =x;, q = %341, and U = U, then
we will be done.

Now «(U;) is an open subset of R%, and it contains the points a(x;) and a(x;y]).
Certainly we can find an analytic arc C in «(U;) that joins @(x;) and @(x;;;) and
intersects g(A;) normally. Since « is an analytic homeomorphism on Uj;, the set
a-1(C) N U; is an analytic arc in U; with the desired properties.

If p, say, is in U - U, use Church’s extension of Stoilow’s theorem [1, p. 86] lo-
cally at p to get away from U - U and into U. The proof then proceeds as before.

LEMMA 2. Let J and 0 satisfy the conditions in Definition 1. Suppose K is a
Jovdan curve in Ins J. Let K, K,, K3, Ky be four closed arcs of K, intersecting
only at end points, numbered consecutively in the counterclockwise dirvection,
oriented in the countevclockwise divection, and such that K =K, UK, UK3 UKy4.
Suppose n: K — R2 is continuous and n | Ki=-79 l Kitz (i=1,2). Then 6 is at-
boundary if and only if there exists an n as above such that (8, n) is an a-boundary.
Movreover, 1 can be selected to be topologically normal.

Proof, Suppose 6 has a light open extension f to T. Lemma 1 implies the
existence of Jordan curves M, a meridian of T, and L, a longitude of T, such that
f|M and f| L are t-normal and f| M and £ | L intersect t-normally. Cutting T
along M U L, we get an annulus, and then we obtain 7 by restricting f to the cut.

Suppose (9, ) has a light, open extension f to the annulus bounded by J and K.
Identifying the arcs K| and K3 and K, and K4, we obtain a surface T consisting
of a torus from which a disk has been removed. Because of the hypothesis on 7, £
induces a natural map f* on T. That f* is light and open on the identified points
follows immediately from [9, Theorem 9, p. 336].

THEOREM 1. If 6 is a t- boundary, then w(5, p) > 0 for every p € R% - [6] and
theve is some p € R% such that w(d, p) > 2 (w(d, p) denotes the winding number of
& at p).

Proof. There exists an 1 as in Lemma 2 such that (6, n) is an a-boundary. By
[4, Theorem 20.2, p. 72], w(6, p) - w(n, p) is equal to the number of pre-images of p
under any properly interior extension f of (8, n); thus, w(5, p) - w(n, p) > 0. How- -
ever, n|K;=-n|Ki+z (i=1, 2) implies that w(n, p) = 0; therefore w(5, p) > 0.

Also, some point p must have two or more pre-image points under f. Other-
wise, the torus with a disk removed would be homeomorphic to a subset of the plane,
which is impossible. Thus, for that p, w(5, p) > 2.

Not all representations of nonnegative circulation are t-boundaries, as we shall
see in Section 3.
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THEOREM 2. Suppose K is a Jordan curve in Re and & maps K into R%. If &
is a topologically novmal inteviov boundary, then therve exist a homeomoyrphism
h: K — 8! , @ homeomorphism k: RZ - RZ, and a complex polynomial P such that
6=koPoh,

Proof. Since 0 is topologically normal, there exist a homeomorphism
h;: S! - K and a homeomorphism k; on R% such that 6; =k o 6 o hj is normal.
Since 6 is an interior boundary, there exists a properly interior mapping
f: K U Ins K — R?2 such that f | K = 6. By [5, Lemma 5.2, p. 193], there exists a
local homeomorphism g, defined on {zl 1< |z| < r} for some r > 1, such that
g|s! = 6;. Define t* on S={z]| 0< |z| <r} by f =k of oh; for |z| <1
and * =g for 1 < |z| <r; then f* is light and open [9, Theorem 9, p. 336].

There exists a homeomorphism h, of S onto itself such that ffo h, = F is
analytic [10, p. 103]. There exists a sequence {Q,} of polynomials that approaches
F' uniformly on compact subsets. Each Q, has an appropriate antiderivative P,
such that {P,} approaches F uniformly on compact subsets. Hence, {P,} tends to
F in the Cl-norm on the differentiable Jordan curve hy(S!). By [6, Lemma 1, p.
1084], there exists an integer m so large that P, | h,(S!) and FI h,(S!) have the
same intersection sequence. Thus, there are homeomorphisms h3 and k3 of R2
onto itself such that k3 o P o h3 = F on hy(S!) [7, Theorem 3, p. 49]. If we set
h=hsoh; ohj! and k=kj! oks, then 6=k o P, oh, and the theorem is proved.

THEOREM 3. If 6: J — R2 is a t- boundary, then theve exists a propevly inte-
vior mapping £: J U Ins J — 82 such that £ | J =06 and £-1(=) is empty or contains
one element.

Proof. By Lemma 2, there exists a t-normal 5 such that (6, ) is an a-
boundary. Let J, K, and K; (1 <i<4) be as in Lemma 2. By the definition of
topological normality, there exist a homeomorphism h: S1 — K and a homeomor-
phism k: R2 — RZ2 such that ko 5 © h is normal. There exist an open annulus U in
R% with S! ¢ U and a local homeomorphism g: U — R? such that g|S! =k ono h,
By the Schoenflies theorem, we can extend h to R2; let V = h(U) N Ins K. Applying
Lemma 1to g o h-! on V, we obtain an arc B in V whose end points p and q are
the first end point of K; and the last end point of K, (first and last refer to orienta-
tion of K). Also, B intersects V - V only in p and q. Finally, go h-! is topologi-
cally normal on B, and g © h-! l B intersects nl (K; UK3) normally. Let M denote
the Jordan curve K; UK, U B, and define ¢ on M by v,bl B=goh-! and
¥ | (K; UKp)=7. Then ¢ is t-normal on M.

By Theorem 2, there exist a homeomorphism h;: M — S!, a homeomorphism
k,: R4 — R2, and a complex polynomial P such that ¢ =k; o Poh;. If P is of
degree n, there exists a Jordan curve L such that Sl c Ins L. and P is topologically
equivalent to the power mapping z™ on L. Thus, (z®, P ] S!) is an a-boundary,
which implies that (z", ) is an a-boundary. By [3, Lemma 5.3, p. 54], (-y, z™®) is
an interior boundary. This implies that -y has a properly interior extension
v: MU Ins M — 82 such that v-1(~) contains one element. Let N=B U K3 U K4,
and give N the positive orientation in the plane. Define {/;: N — R2 by

Y1|B=goh™' and y;[(K3UKyg =n.

Since 1| K; = -1 | K;;» (i =1, 2), the mapping ¢, is topologically equivalent to -i.
Thus, ; has a properly interior extension vi: N UIns N — R? such that vil(w)
contains one element.
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Suppose f* is a properly interior extension of (6, n) to the annulus A bounded
by J and K. Define a mapping f on J U Ins J by

fla=1, f|(MUIsM)=goh™!, {|(NUIsN)=v;,.

By [9, Theorem 9, p. 336], f is light and open and constitutes the desired map.

COROLLARY. Suppose f: T — R? is a propevly intevior mapping and that £ is a
local homeomovphism at each point of J =T - T. Then there exists a homeomor-
phism h: J UlIns J — R2 such that f o h-1 is analytic in Ins h(J) or mervomorphic in
Ins h(J) with exactly one pole.

This corollary follows immediately from Theorem 3 and the theorem and remark
in [1, p. 86 and p. 88]. The next theorem is a partial converse to Theorem 3.

THEOREM 4. Suppose 6: J — R? is an inteviov boundary and w(, p) > 2 for
some p € R2 - [6]. Then 6 is a t-boundavy.

Proof., Let f be a properly interior extension of 6§ to D = Ins J. Since the
branch points of f are isolated, we may assume p is not the image of a branch point
of f. There are two points x; and x, in D such that f(x;) = f(x;) = p [4, Theorem
20.2, p. 72]. Since x; and X, are not branch points, there exist Jordan curves K
and L in D such that (KUInsK) N(LUInsL)=¢, x; ¢ InsK, xp € Ins L, £|K
and f | L describe positively oriented Jordan curves, and f(L) C Ins £f(K). Without
loss of generality, we can take

K={z| |z-al=r} and L= {z|]|z-b|=s},

for some appropriate complex numbers a and b and positive real numbers r and s.
It follows from [3, Theorem 3, p. 55] that there exists a properly interior map-
ping g, defined on the annulus X = {z| 1 < |z| < 2}, such that
g(2ei9) = fla+rel?) and g(eie) = f(b+se"19).
Let Y=D - Ins K - Ins L. Define h: Boundary X — Y by
h(2eig) = a+retf and h(eie) =b+selil,

Attach X to Y by h, forming Z =X U, Y (see [2, pp. 127-129]); Z is a torus with
an open disk removed. Since g(x) = f(h(x)) for all x ¢ Boundary X, the mappings g
and f define a continuous function on Z, and this function is properly interior [9,
Theorem 9, p. 336] and extends 6.

COROLLARY. If 0 is a normal interior boundary and & does not represent a
Jordan curve, then 6 is a t-boundary.

Proof. In view of the theorem, it is only necessary to show
that w(6, p) > 2 for some point p. If & does not represent a
Jordan curve, then & has a vertex v. Let p, q, r be as in
Figure 2. Now

w(s, r) = w(5,q)-1 and

w(6,p) = w5, q)+1 = w(5, r)+2

[6, Lemma 2, p. 1085]. Since 6 has nonnegative circulation,
Figure 2. w(5, p) > 2.
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3. EXAMPLES

In this paragraph we produce examples to show that the converses of Theorems 3
and 4 are false.

Example 1. Let 6 represent the curve in Figure 3. Figure 4 shows that 6 has a
light open extension g mapping into S2 such that g-1(~) contains one point.

Note that 6 is of nonnegative circu-
lation and that there exist points p such
that w(6, p) > 2 (the tangential winding
number of 6 is negative; but the exam-
ple can be modified to make this posi-
tive); however, 6 is not a t-boundary.

Suppose, if possible, that o is a t-
boundary. Let f: T — R% be a properly
interior extension of 6: J — RZ. If
such an f exists, we can also find one
that is a local homeomorphism on a
neighborhood of J in T; we therefore
assume that f has this property. Let
6g, 61, 62 be as in Figure 3; suppose

Figure 4.
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'1(6 )= {dl, d; *1} (1 =1, 2) and f'l(éo {dg}. We encounter these points in the
order dg, dp, dz, dz, dl as we traverse J in the positive orientation. There exists
an are y in T that intersects J only in its end points, such that f(y) is the arc of
[6] from &; to 6., and such that one end point of y is d% [3, Theorem 1, p. 49].
Since f is a local homeomorphism at each point of J, the other end point of v must
be d}. Now T-J-y=D; UD,, where D; and D, are open and either

(1) D; = ¢ and D, is an open annulus or
(2) D, is a disk.

In case (1), (6**, -8*) would be an a-boundary (6* and 6** are the Titus cuts of &
[7]; see Figure 5). But (6%, 6**) is not an a-boundary, by (1) of Theorem 2 [3, p.
50]. In case (2), either &* or &** is an interior boundary. However, &* is not an
interior boundary, because it has points of negative circulation; 5** is not an interior
boundary by [7, Theorem 8, p. 56].

b
©

S **
Figure 5. Figure 6.

Example 2. The curve of Figure 6 is not an interior boundary [8, p. 203]. Itis a
t-boundary; this can be seen as follows. The pair of curves in Figure 7 is an a-
boundary [3], and therefore the pair of curves (6, ) in Figure 8 is an a-boundary.
Note that the arc y is traced by both curves. Suppose f is a properly interior ex-
tension of (5, ) to an annulus A in the plane bounded by Jordan curves J and K.
There are arcs B} € J and B, € K such that £(B;) = £(B;) = v. The decomposition
space M of A whose nondegenerate elements have the form f-1(x) N J N K for all
X € y is a torus with an open disk removed. If ¢ is the natural map of A onto M,

4

Figure 7. Figure 8.
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then fo 1,1/'1 is a properly interior extension of M such that on the boundary of M
the curve of Figure 6 is described.

4, NORMAL t-BOUNDARIES

The following theorem, used in conjunction with [3] and [7], yields a finite
algorithm for determining whether a prescribed normal representation is a t-
boundary. We do not prove the theorem, because all the necessary techniques are
in [3].

THEOREM 5. Suppose & is a normal rvepresentation and & is a t-boundary.
(1) If 6 has a cut of Type II, then either

(a) 6* is a t-boundary and 6** is an interior boundary,

(b) 6** is a t-boundary and &* is an interior boundary, or

(c) (6%, -6**) is an a-boundary.
(2) If 6 has a cut of Type I at 8, then either

(a) 6** is a t-boundary,

(b) for some integer n, (Y, -n) is an a-boundary, where Y is topologically
equivalent to the power mapping z™ and

n = 6(0)6(d,)(8) + 27 6(d,) 8(dF) (-6) + 6(d) 8(2m) (5) .

i=1

Conversely, if any of the conditions (1a), (1b), (1c), (2a), or (2b) holds, then 6 is a
t-boundary.
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