THE ANALYSIS OF REPRESENTATIONS INDUCED FROM
A NORMAL SUBGROUP

Harold N. Ward

1. INTRODUCTION

Following the lines laid down by Clifford in [2], a number of authors have investi-
. gated the relation between representations of a group and representations of a normal
' subgroup. (See the standard reference [5] and the references listed there.) Recently,
'S. B. Conlon [3] and P. A. Tucker ([9] to [12]) have studied the decomposition of
representations induced from indecomposable (and irreducible) representations of a
normal subgroup, primarily through an analysis of the endomorphism ring of the in-
duced representation in terms of the endomorphism ring of the original representa-
tion.

In the present paper we seek to enlarge and simplify these results. The relation
of a group to a normal subgroup is extended somewhat to a situation involving an
algebra and a subalgebra (Section 2). Associated with this algebra is a group analo-
gous to the quotient of a group by its normal subgroup. In Section 4 we investigate a
particular case in which the commuting ring of the induced module contains a
crossed-product of this associated group with a division algebra in the commuting
ring of the original module. The induced module turns out to be a free module over
the crossed-product, and in the last three sections of the paper we use this to obtain
results of Conlon and Tucker as well as some new theorems. These resulis give a
fairly complete picture in the case where the original module is irreducible (Section
7). No restriction is made on the underlying field.

The principal results of the paper are Theorem 2, the propositions of Section 5,
and Theorems 4 and 5.

In a recent paper [4], Conlon gives a more functorial approach to the relation-
ship between submodules of an induced module and left ideals in the endomorphism
ring of the induced module. (See especially Section 2.3 of [4]. There are some
restrictions on the base field, and the objects of study are group rings. In some
unpublished work, E. C. Dade has studied algebras axiomatized as in Section 2 of
the present paper.)

The author is grateful to Professor W. F. Reynolds for his helpful advice.

2. DEFINITIONS AND PRELIMINARY RESULTS

Let K be a field, and let A be a finite-dimensional algebra over K, with an
identity. In [14], K. Yamazaki introduced the concept of 7ing extension. Generaliz-
ing this idea, we make the following assumptions about A: we assume that there
exists a collection of nonzero subspaces Ag of A (where the index g ranges over a
finite group G with identity 1) such that

(1) AgAh = Agh (g’ h e G)-
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(2) Ag=agA) =Aja, for some agz € A,
(3) A is the direct sum of the Ag,
(4) The identity 1 of A is contained in A; (so that A is a subalgebra).

The prototype for such an algebra is the following: Let Gg be a finite group, and
let E be a field on which Gy acts as a group of automorphisms (but not necessarily
faithfully). Let K be the subfield of E that is fixed pointwise by all members of Gy,
and let A be any crossed-product of Gy and E corresponding to the action of Gy on
E (see[13]). The representations of A correspond to certain semilinear projective
representations of Gg (see [8]). Now let Ny be any normal subgroup of Gg, and let
G =Gy /Ng. If g € G corresponds to the coset goNy, let Ag be the E-subspace of
A spanned by ggNg. Then, if A is considered as an algebra over K, the above as-
sumptions are met by these subspaces. When K = E, we have the case of a twisted
group algebra and projective representations of Gg.

In the general case, then, A; is to be thought of as the analogue of a normal sub-
group. For reference, we single out a number of consequences of the assumptions.
Concerning relevant facts on tensor products, see [1].

The element a, is a unit of A and therefore a free generator of A, as either a
left or a right A,;-module. The algebra A is then itself free as either a left or a
right A;-module, and the elements a, (g € G) constitute a free basis.

Let M be a left A;-module (all modules are to be unitary and of finite K-dimen-
sion). The induced module M4 is defined as A(X) A M, where the action of A is on

the first factor. Because A is the direct sum of the Ay, the Aj-modules AgC>§A1 M

are canonically injected into M4 (as A1-modules), and M4 is their direct sum. Let
Mg = Ag(Qa, M, and identify M with M, .

The map m — ag® m is a K-isomorphism of M with My, so that if [X : Kl .
stands for the K-dimension of the K-space X, |MA: K| = |G| [M: K| (|G| is the |
order of G). In addition, the map produces a lattice isomorphism of Aj-submodules.:
In particular, M, is irreducible or indecomposable, according as M is irreducible
or indecomposable.

If L and M are Aj-modules and L. C M, then the canonical map of L4 into M4
is an injection, because A is a free A;-module. In fact, if M is a fixed A;-module,
the correspondence L — L4 of A,-submodules of M to A-submodules of M4 is a
lattice injection.

Let H be a subgroup of G, and let B = 27 geH Ag. Then B is a subalgebra of
A, and it satisfies the same assumptions as A, with H in place of G. If S is a set
of left coset representatives of H in G, the elements a, (g € S) form a free basis
of A as a right B-module. If M is an Aj;-module, the %—submodule

BM = 2,cy My of M# is isomorphic to MP; and if L is a B-submodule of BM,
then AL is isomorphic to LA (= ARy L).

3. THE STRUCTURE OF THE COMMUTING RING OF AN INDUCED MODULE

Let A be an algebra satisfying the assumptions in Section 2, and let M be an
A|-module. Then the K-algebra C = Homp (M4, MA) of A-endomorphisms of M4
is analyzed by the following lemma (see [3] for the development of the present sec-
tion):
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LEMMA 1 (reciprocity law). Let M be an A,-module and L an A-module,
Then theve exists a X-isomorphism of HomAl (M, L) with Hom , (M#, L), given by
¢ — ¢*, where for ¢ € Hom, (M, L), ¢* is defined by
1

(a®@m)¢* = a(m¢) (a€ A, m e M).

Proof. It is obvious that ¢* € Hom s (M#, L) and that ¢ — ¢* is K-linear. If
¢* = 0, then (with M and M, identified) m¢ = m¢* = 0 for all m € M; and if
Y € Hom, (M#, L), then ¢ = ¢*, where ¢ = ¢ | M ( | for restriction). Thus the map
is a bijection, as was to be proved. We note in particular that ¢* [ M = ¢.

THEOREM 1. Let M be an Ai-module, and let C = Hom s (M%, M%), For
geG,let Ca={¢peC|MpC Mg}. Then C is the divect sum of the subspaces Cg.
Movreover:

(1) MgCLC Mg, (g, h € G).
(2) C4CLCCqn (g h e G).

(3) Let ig: Mg — MA be the inclusion (an A,-homomovphism). For
¢ € HomAl (M, Mg), let ¢ = (¢ig)* (see Lemma 1). Then the map ¢ — o2 is a K-

isomovphism of HomAl (M, Mg) and Cg, and when g =1, it is an isomorphism of
algebras.

Proof. (1) and (2) follow from the fact that Mgy, = AgMp,. Since M2 is A-
generated by M, a member of C is determined by its action on M. But because M4

is the Aj-direct sum of the Mg, this implies that Z)g eG Cg is direct. Let
Mgt MA — M, be the Aj-projection associated with the decomposition of M% as the
direct sum of the My . Then, if ¢ € C, we define ¢y to be ((¢| M) 7mgig)*, which is in

Cg. Since mé¢ = Egec m¢g for m € M, it follows that

¢=Eq§g and C=ECg.
geG ge G

The map in (3) has the map ¥ — (v | M)7g as an inverse, and this establishes
the assertions there.

It is easily verified that ¢ is an isomorphism if and only if ¢4 is an isomor-
phism.

Consider again a subgroup H of G, and let B = EgEH Ag. If M is an Aq-
module, identify MPB and EgGH Mg, as before. Then Theorem 1, especially part
(3), applied to B, will show that with this identification, restriction of Ege g Cg to
MZPB produces an isomorphism of Z)gEH Cg and Homp (MB, MB),

4. A SPECIAL CASE

The results of the investigations of [12], properly extended, can serve as the tool
for a more thorough analysis of induced modules, particularly when the module from
which they are induced is irreducible. We shall maintain the notation of Sections 2
and 3.
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Let M be an A;-module, and define G,; as the set
Gy = {g € G| M and M, are Aj-isomorphic} .
G is a subgroup of G, because g € Gy if and only if Cg contains a unit (by the

remark after Theorem 1). G, is called the inertial group of M.

Let H be a subgroup of Gps. We shall say that M and H satisfy condition A if
the following holds: There exist a division subalgebra D; in C; having the same
identity as C), and units ¢, € C for all g € H, such that the subalgebra D of C

generated by D; and the ¢g is exactly 20 geH D1 ¢g.

D, corresponds to a subalgebra of the A;-endomorphism ring of M, and Pg
corresponds to an A;-isomorphism of M and Mg . The condition amounts to the
requirement that for each g and h in H

$gdn(dgn) € Dy and  ¢D) ¢g_;l =D

(Dg =D ¢, C Cg). D is a crossed-product of H and D;. The main result is this:

THEOREM 2. Let M and H satisfy condition A. Then M? is a free D-module..
In fact, if my, -+, m, constitute a (right) Dy-basis of M (identified with M,) and
S is a set of left coset vepresentatives of H in G, then the elements agmj (g €S,
1 < i< n) form a D-basis of M%.

Proof. M# is the direct sum of the subspaces agMp (g € S, h € H), and
My, = M¢y, € MD. Since M = Ei m;D;, MD C Z)i m; D. Therefore
MA = 27 ag m; D, where the sum is taken over the g € S and the i with 1 <i<n.

Suppose 27 (a,g m;) ¥ig = 0 is a dependence, where ¥;, € D. Therefore
Z)g ag(Ei m; ¥, | =0, and since each inner sum is in EheH My, each one is 0.
But if Z)i m;y; =0 (Y; € D), then each ¢; is 0. To see this, write

Wi = %) ¢in¢n  (din € D),

where the sum is taken over h € H. Then Eh (Zi mj ¢>ih) ¢n = 0. Each inner sum
is in M, and M¢,, = M}, . Therefore each inner sum must be 0, and the independence |

of the m; then implies that each ¢;, is 0. In each case, we use the fact that
Ege G M, is direct.

THEOREM 3. Let M and H satisfy condition A. Then the map 1 — MAT of left
ideals of D to A-submodules of M# is a lattice injection. Movreover,

IMAT: K| = [M:Dy||G:H||1: K| = |[M:K]| |G:H| |T:D,].

Proof. The module M4 ®D D, made an A-module by action on the first factor,
is isomorphic to M# by the map m ® ¢ » m¢ (m € ML, ¢ € D). If I is a left
ideal of D, the canonical map MA®D I-MA ®D D is an injection, since M2 is a
free D-module. In fact, the resulting map from the set of left ideals of D to sub-
modules of M* &y, D is a lattice injection (see Section 2). The image of M4 ®pI
in M# is precisely MALL
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Because of Theorem 2 and the fact that IC D, MAI is the direct sum of the K-

spaces a,m;I (g €S, 1 <i<n). This implies the statement on dimensions.

Again, let B= 2iycp1 Ag. Then 2igey Mg = BM and (BM)D C BM. Thus

MA1 = A((BM)I), and MAI is therefore 1somorph1c to ((BM))A , a module induced
from B. Thus, if H # G, all these modules M41I are induced.

5. INDECOMPOSABLE MODULES

Let M be a (nonzero) indecomposable Aj-module (with A;, A, and G as in the
previous sections), so that each M, is also indecomposable. Let Gy be the inertial
group of M, and set

AM = E Ag, CM = Z) Cg
gEGM gGGM

Let R, be the set of nonunits in Cy. Because C is an endomorphism ring of a
finite-dimensional space, the existence of a one-sided inverse is enough to make an
element a unit. Moreover, for g ¢ Gy, it is clear that Cg = Rg. Since C; is iso-
morphic to the completely primary ring of A;-endomorphisms of M, R; is the radi-
cal of C; (see [5, Section 54]).

PROPOSITION 1. With the above notation, R = Eg €G Rg is a nilpotent ideal of C.

Proof. If g € Gy, Cg contains a unit bg s and Cg =¢oC; = C1 ¢g. Hence,
by R =R; ¢g . Since R is a K-subspace of C;, ¢gR] is also a K-subspace.
Tﬁerefore R is a K-subspace of C. Since CgRnh C Rgh and RhCg C Rpg, R isan
ideal of C.

Suppose ¢ € Ry and g has order q. Then ¢4 € R;, and ¢? is nilpotent; hence ¢
is nilpotent. Therefore R (as an algebra) is spanned by nilpotent elements, and by a
theorem of Wedderburn [5, p. 206] it is itself nilpotent.

Now let Ry = EgEG Ry, = Cp N R. Then the kernel of the restriction to Cy,

of the natural map of C onto C/R is exactly Ry, and C/R is isomorphic to

Cy /Ry - It follows (see [6, p. 7T1]) that if 1 =g + *** + €,. is a decomposition of the
identity in Cy; into orthogonal primitive idempotents, it is also such a decomposition
in C. The remarks at the ends of Sections 2 and 3, together with the fact that
A((AprM)e;) = (AM)e; , imply the following proposition.

PROPOSITION 2. Let M be an indecomposable A,-module, and let G,; be the
stability group of M. Set Ay; = Ege Gy Ag i MAM is decomposed into the dirvect

sum Ly + -+ L, of indecomposable Ay;-modules, then M2 s isomorphic to the
divect sum L{ + - + L2 | and the L arve indecomposable.

As a preliminary for the next result, let C' = C/R and let ' denote the images
under the natural map of C to C'. We see that C NR= R and that C'g =0 if
g ¢ Gys. Therefore C' is the direct sum of the spaces C (g € Gypy), and

C; Ch C Cgh Furthermore, C| is isomorphic to the d1v1s1on algebra Cy /R;. If
ll’g € Cg is a unit, where g € Gy, then t,bg is a unit of C'. Thus

C'=2J

geGyy C1¥g-
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LEMMA 2. Suppose that R + 0 and that t is the smallest integer for which
Rt=0. For1<i<t+1, let

= {m e M| mR* !t = 0}  (with RY = C).

Then each M; is an A-module, and
(1) AM; = MP = {m ¢ M*| mR**!-! = 0};
(2) M = M; D M, D - D My = 0, each inclusion being propev;
(3) MAC c M and MPR € Mf,;
(4) C' acts faithfully on MA/M 11 by means of the action

(m+M1+1)¢' = m¢+Mi+1 .

Proof. First of all, (AM;)R! !~ = 0, Suppose that

( 27 a.gmg)Rt“"1 = 0, where my € M.
ge G

Rt*1-1 js additively generated by the (t +1 - i)-fold products of the members of the
Ry (he G). If r=r)-reiq.; is such a product, where rj € Rh., then r € Cp

(h=hy---hgy1-;). The relation Egeg agmg | r =0 implies that mgr =0 for

each g. Therefore m, Rtt1-1 =0 and m, € M;. Thus Egeg a; mgy € AM;, and
(1) holds.

Now M;,; C M;, and if My,; = M;, then Mi" = M{},. But M*R
therefore

oM, and

MARISL c M2, and  MARM! =0,

which is impossible. Thus (2) holds. (3) is evident, and (3) 1mp11es that the action
defined for C' in (4) is legitimate. Suppose that ¢' # 0 but M o C M1 i - Replacmg
¢ by Yo ¢ for an appropriate g, we may assume that the C;- component ¢ of ¢ is ‘
not in R;. The assumption on ¢ then implies that M; ¢; € M;;; . But since ¢; is in- |
vertible, this would mean that |M; : K| < |M;,; : K|, contrary to (2). Thus (4) holds.§

Continuing with the notation above, form the Aj-module N; = Mj/M;js1, and let ' |
refer to the natural map of M; onto N (in addition to its other uses). Then ' ex-
tends to an A-homomorphism of MA onto Nf* with kernel M1+ 1 by means of
a@®@m)' =a®@m'. If N is thus 1dent1f1ed with M£/M#£}, the action of C' on Nf*
is given by (a@ m')¢' = ((a® m)¢)'. Thus

Therefore N; and G, satisfy condition A of Section 4, with C; for D, ‘P:g, for ¢,
and C' for D. ‘

PROPOSITION 3. Let ¢ be an idempotent of Cy;. Then

MPe: K| = |[M: K| |G: Gyl [C'e': C}
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Proof. Of course, M#g = MACMS. If R =0, the result follows from Theorem
3; therefore we may assume R # 0. The kernel of the composition

A _ A A
Mi Ni—>Nis

is M& &+ M (1 - €), so that the kernel of M{'e —» M{* - N{* - Nf*e' is

Mfe N (Mfy, e +MP(1 -¢) = My €.
Therefore Nf‘s' is isomorphic to M{*s/Mﬁl €. But by Theorem 3,
INfer i K| = [NfClet i K| = N K[ [G: Gyl [CTe': €y

Addition of these dimensions for 1 <i <t gives the result.
For the sake of completeness, we add the following fact (see [7]):

PROPOSITION 4. Lef gy and g, be two idempotents in Cyq. Then the modules
M4 £y and MA €2 arve isomovphic if and only if C\1€; and Cy1€p ave isomovphic
Cm-modules. That in turn is true if and only if C'e] and C'e;, ave isomovphic
C'-modules.

The aggregate of Propositions 2, 3, and 4 compares with the theorem of Section
2 of [3]. We point out again that C' is a crossed-product of the division algebra Ci
and Gy,.

6. INDECOMPOSABLE MODULES UNDER CONDITION A

Continuing the notation of Section 5, let M be an indecomposable A)-module with
the following property: M and H = Gy satisfy condition A of Section 4, and C; is
the K-direct sum of R; and the division algebra D; of condition A. Situations in
which this occurs are discussed in [12]. One particularly important case is that in
which M is irreducible, the validity then being a consequence of Schur’s lemma.
Under the present assumptions, D; and D may be identified with the C] and C' of
Section 5, respectively. Moreover, C is the K-direct sum of D and R.

THEOREM 4. Under the present conditions, let I} and I, be any two left ideals
of the algebrva D. Then there is a K-injection of Homp (I, I,) into
Hom (MA I, MA I,) as a K-direct summand, such that if i and w stand uniformly
for the injection and an appropriate projection, both maps are functorial: if I, 1,,
and I3 arve thvee left ideals of D and

Xy € HOIIID (Il s IZ) and Xp € HomD(IZ, 13),
then i(x) x5) = i(x1)i(xp). Similarly, if
y; € Hompa (MAI,, MAL) and y, € Homa (M2 1o, MAI3),

then u(y;y,) = n(yy)a(yz).

Proof. Section 4 implies that if I is a left ideal of D, then M# (X I, made an
A-module by action on the first factor, is isomorphic to M#1. Therefore, for each
x € Homp (I}, 1), we define i(x) to be the map 1) x, where 1 is the identity map
of M# . The functorial property for i is then obvious. In addition, because M#A is a
free D-module, x # 0 implies that 1 (X)x # 0.
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For any left ideal I of D, let
= {pe C] MPpc MP1} = {6 € C| Mo c MA1}.

I* is a left ideal of C. By Lemma 2, there exists an mgp # 0 in M such that
mg R = 0, and by Theorem 2, mg can be incorporated in a D-basis of MA. If
¢ € I* and ¢=¢; + ¢, W1th ¢ € D and ¢, € R, then mg ¢ = mg¢p; € MAI. But on

using a D-basis containing mg and writing out this member of MA I, we conclude
that ¢; € I. Therefore ¢, € I¥. Thus I* =1+ (I* N R) (and this is actually a D-
direct sum).

Let now y € Homy (MA1;, MA1,), and consider the composition
m — m¢ — (m¢)y (m € M) for a fixed ¢ in I} . This is an A;-homomorphism of M
into MA | and by reciprocity (Lemma 1) there exists a member ¢Y of C such that
(m¢)y = m¢Y. This relation persists for all m in M#. The map ¢ — ¢Y is K-
linear, and if ¢ € C, then

m(y¢)Y = (m(ye))y = (my)d)y = (my)¢? for all m € M,

so that (¥¢)Y = Y¢Y. Moreover, ¢7 is in I%, because (m¢)y € M4, for all m € M.
Therefore the map y', given by ¢ — ¢¥, is in Hom (I}, 13). Let 7; stand for
the D-projection of I’J!‘ = IJ. + (IJ.* N R) onto Ij . We define the map
. A A
7: Hom , (M I,, M7I,) —» Homp(I,, I)

as follows: for y € Hom, (M21, MAIZ), 7(y) is the restriction of the map

¢ — (¢¥)n, to I;. The map 7 is K-linear, and if x € Homp(I;, I) is written as
an exponent, then

m(®'®%) = (me)(1 @ x) =

for ¢ € I; and m € M. Thus 7i(x) = x.

It remains to establish the functorial nature of 7. Suppose

y € Homy (M21;, M21,)  and  z € Homy (M2 1, M213).
Then
m¢Y? = (mg)yz = ((me)y)z = (m¢¥)z = m(¢¥)* for m € M and ¢ € I¥.

Therefore, (yz)' =y'z'. With 7; as above, we then have the relation
(@Y%)m5 = [((em) ] 75 +[((¢7) (1 - 7)) 7|73 .

If we show that (I} N R)” C I¥ N R, then the second term will be 0 and

(@Y%)m3 = [((¢¥ )n)? n3; that is, n(yz) = n(y)n(z). Again, let mg € M, mq # 0, with
mgR = 0. Since C =D + R is direct, R is exactly the annihilator of mo, because
mg is a member of a D-basis of MA . 1t Y € T5 N R, then myy =0 and mgy”

Therefore y” € I N R.

Thus the proof of Theorem 4 is complete. If R =0 and if ¢¥ = 0 for all ¢ in I,
then (M21 1)y = 0. This gives the following result.
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COROLLARY 1. If R =0, then the kevnel of 7 is 0.

In the case I} =1, =1, both i and 7 are ring homomorphisms, and by the theo-
rem they preserve the identities. Since also Hom 4 (MAI, MAI) is the K-direct sum
of i(Homp (I, I)) and the kernel of 7, and since the identity is in the first summand,
the kernel of 7 consists of nonunits. Therefore either both or neither of the two
rings is completely primary.

COROLLARY 2. If 1 is a left ideal of D, then MAT is indecomposable if and
only if 1 is indecomposable. Furthermore, if 11 and Iz ave left ideals in D, then
MAII and MAIZ are isomorphic if and only if 1, and 1 are isomorphic. In fact,
1, is isomorphic to a divect summand of 1, if and only if M?1, is isomorphic to a
direct summand of MAI, .

The second and third assertions follow from the functorial nature of 7 and i. It
is clear how Corollary 2 will match a direct decomposition of D with one of M4,
We wish now to prove that for I; =1, =1, the kernel of 7 is nilpotent.

LEMMA 3. If 1 is a left ideal of D, then for any exponent e,
MA1Nn MAR® = MAR®I.
Proof. Since R = 27 geG RN Cg) (Section 5) the analogous formula holds for
R R® = 2iyeq (R® N Cy). Thus

MAR® = 20 (MAR® N Mg).
geG

Let Vg = M*R® N Mg. Then anVg = Vhg (an as in Section 2). If h € Gy, then Cy,
contains a unit ¢, of D (by condition A), and Veodn=Vgh. Vg isa Dj-space, so
that M; =V; + W;, where W; is a complementary D;-space to V;. Let S be a set
of left coset representatives of Gy in G, and put

V= 2 Vid,, Wy= 20 W, é.
he Gy he G
Then it follows from the preceding remarks and Theorem 2 that M# is the D-direct
sum of Eges agVyM and EgES ag Wy, and that MARe = Eges agVm. There-

fore, because I € D, M*I N MAR® must be in (E e s agVM) I, that is, in
MAReI. Since the reverse inclusion is automatic, the result follows.

PROPOSITION 5. If I is a left ideal of D, then the kernel of the homomorphism
7: Homp (MAT, MAT) — Homp(I, 1) is nilpotent. (If R =0, the kernel is 0, by Cor-
ollary 1 of Theorem 4.)

Proof. We may assume that R # 0. The kernel of 7 is the set of elements y in
Hom s (MAI, MAI) such that, in the notation of the proof of Theorem 4, ¢Y € I* N R
for all ¢ € I. For sucha y,

(m¢)y = m¢Y € M*R N MAT = MARI  (m e M?®, ¢ € 1).
Suppose that (M£1I)ye € M#R€I. Then

(MAI)ye+1 - ((MAI)ye)y = (MAReI)y c MAREIYE MARe+l-
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Since (M2T)y®™! ¢ M%1, it follows that
(MAI)ye+l = MARe+l N MAI - MARe+lI.

Thus, by induction, (M#1)y® € MAREI for all positive integers e.

But now let e be so large that R® = 0 (Proposition 1). Then y€= 0. Hence the
kernel of 7 consists of nilpotent elements and is therefore nilpotent.

The results of this section are to be compared with those of [12] (which in turn
relates to the other papers of Tucker).

7. THE IRREDUCIBLE CASE

Keeping the notation of Section 6, let now M be an irreducible A j-module.
Then, as has been pointed out, M and G4 satisfy condition A of Section 4. Since all
the Mg are irreducible A;-modules, it follows from Schur’s lemma that R = 0.
Therefore D and C coincide, and the results of Section 6 carry over directly. In
addition, one can identify explicitly the modules MAI, where I is a left ideal of C:

PROPOSITION 6. Let M be an irrveducible Ai-module, let Gy, be the inertial
group of M, and let Ays= EgeGM Ag (see Section 5). Then the submodules of M4 |
of the form M1 (I a left ideal of C) are exactly the submodules AL, wheve L is '
an A\r-submodule of 27 Mg.

g€Gy,

Proof., That M#A1 is of this form was remarked at the end of Section 4. Con-
versely, consider such a submodule AL, and let 1= {¢ € C| MA¢ C AL}. Then

¢ € I if and only if M¢ C AL. Since AL N EgeGM Mg = L, this means that ¢ € I if

and only if M¢ C L. I is a left ideal of C; we shall prove that MI = L. (so that
AL = AMI = MA1),

Since M is irreducible, M = A mg for each nonzero mg in M. Thus, if
mg ¢ € L for some ¢ € C, then m¢ € L for all m € M, so that ¢ € I. Suppose then

that 27 m; ¢; € L, where ¢; € C and the m; form a Cj-basis of M (see Theorem 2).
By the density theorem for irreducible modules (see [7, p. 28]), one can find for each
j an aj;€ A; with ajm; = mj and ajm; = 0 (i #j). Therefore mj¢; € L for each j,
so that qu € I. Thus L € MI, and since MI C L, the assertion follows.

If in particular Gy;= G, then every A-submodule of M is of the form M1,

Thus in this case Theorem 3, Theorem 4, Corollary 1, and the above imply the fol-
lowing theorem. i

THEOREM 5. Let M be an ivveducible A,-module such that the inevtial group
Gyt of M is all of G. Then

(1) theve is a lattice isomorphism between the set of left ideals Kf
C = Homp (MA, M?) and the A-submodules of M* set up by I > M1. Further-
more, |MAL: K| = |M: K| |I:C|;

(2) the K-spaces Homc (I}, I) and Hom g (MA1;, MA1,) are isomorphic, and
the isomorphism is functorial in the sense of Theovem 4;

(3) the rings Homc (1, I) and HomA(MAI, MA1) are isomorphic.
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Note that (1) implies that M2 is completely reducible if and only if C is semi-
simple. Again we point out that C is a crossed-product of C; and Gy (Gy = G,
here).

We close with a sketch of the Clifford correspondence (see the exposition in Sec-
tion 51 of [5]). First of all, the reciprocity law in the opposite direction holds: if M
is an Aj-module and L is an A-module, then HornA1 (L, M) and Hom 4 (L, M%) are

isomorphic. The isomorphism is established by the map ¢ — ¢', where

up' = 2 ag((aélu)@ (ue L).
geG

An analogue of Clifford’s theorem [5, p. 343] holds: if L is an irreducible A-
module, then the restriction of L to A; is completely reducible. If M is an irre-
ducible constituent of this restriction, then the other constituents are of the form
Ay ®A1 M (conjugates of M),

Now, given an irreducible A-module L, let M be an irreducible A;-constituent
of L. In L, form the A;-submodule L; consisting of the sum of all the A;-sub-
modules of L isomorphic to M. Then Lg is an irreducible Aps-module and L is
isomorphic to L . (Here Gy, and Ay are defined as in Section 5.) By the re-

A
ciprocity, Ly is isomorphic to an Aps-submodule of M M, Conversely, if Lg is

A
any irreducible Ajs-submodule of M M | then LOA is also irreducible.
Thus the determination of the irreducible A-modules consists of a mechanical

. A
induction step and an analysis of irreducible submodules of M M; but this second
step is carried out by means of Theorem 5.

Consider again Theorem 5 and the module MA1, I ¢, denotes a unit of Cg, then
Mg = M¢y . Thus M”1 is actually equal to MI. From (1) of Theorem 5, it follows
that the K-map M ®C1 I - MI given by m (X) ¢ — m¢ is a bijection. Thus MAI may

be regarded as the K-space M ®C1 I on which the action of A must be defined. But

if a € Ag, then, for each m € M, we see that am € My and (am)d;él € M. There-
fore a(m¢) = ((am)qﬁél)(pg ¢. Consequently we obtain the following result.

PROPOSITION 7. In the case of Theovem 5, the A-submodules of M% are of
Sform M®C1 I (I a left ideal of C), wheve the action of A is given by the rule
a(m @ ¢) = (am)oz' Doz  Sfor a e A,.

Since C is a crossed-product of G and C;, this result corresponds to that of
Clifford.
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