COMPLETENESS OF {A sinnx+ B cos nx} ON [0, 7]
Robert Feinerman and D. J. Newman

The classical LZ-theory of Fourier series tells us that on [0, 7] the sines are
complete while the cosines are not (unless we include 1 = cos 0x). It is natural to
ask the completeness question about the family {A sin nx+ B cos nx} (A and B
arbitrary complex numbers), and indeed, to generalize to the other LP-spaces. The
question is also interesting in the case p = «, if here we consider instead of L*
(which is not separable) its subspace C of functions continuous on [0, 7]. In this
paper we give the complete answers to these questions.

These answers are most simply expressed in terms of a slightly different nota-
tion. Observe that if A/B = +i, we are looking at the set {einx} or {e‘inx}, and
that in this case completeness holds in the strongest topology of all, namely in
C[0, 7] (and even in C[0, 7] for any 7< 27). ¥ A/B #+i, we can write

A sin nx + B cos nx = +VA? + B? sin (nx+—721a) .

where -1 < fa < 1. Also, since the replacement of x by 7 - x shows that com-
pleteness for « is equivalent to that for -a, we impose the further restriction
0 < %ta.< 1. In all that follows, we shall assume this, and we shall denote by S, the

set of functions { sin (nx +-g- a) } (n =1, 2, --+); also, we abbreviate LP[0, ] to
LP.

THEOREM 1. 1. Sy is complete in L! < %a #1.

I. Let 1 <p <, Sy is complete in LP < %a < 1/p.

II. Sy is completein C <= Ra =0, a #0.

In the a-notation, the completeness set for LP is a strip, while for C it is the
imaginary axis excluding the origin. If we map back to the B/A notation, these sets
are “lens shaped.” For 1 < p < =, the completeness set in the B/A-plane consists
of the inside and boundary of the curve formed by two circular arcs, each passing
through +i and making the interior angle 7/p with the imaginary axis. (When p = 2,
this set becomes the closed unit disc.)

For L! , the completeness set is the entire plane except for the points iy on the
imaginary axis with |y| > 1.

For C, the set consists of the points iy on the imaginary axis with 0 < Iyl <1

A strange situation exists in the case where B/A is imaginary. Here our theo-
rem tells us that {sin nx + i\ cos nx} is complete in the strongest sense (in C) if
0 <X < 1, and that for A > 1 the family is not even complete in L!.

If instead of letting n range through the positive integers, we throw in also n = 0,
then completeness is essentially universal.

THEOREM 2. If a #0, the set of functions 1 U Sy is complete in C.
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Our major tool in the analysis of these questions is the following identity.
Let 0< %a <2, n=1, 2, «-; then

T <\ 1-o T
(1) S (tani) sm(nx+§a)dx=0,
0 .

where the principal branch of the power is taken (the branch that equals 1 at
x=7/2).

It is clear how this identity will lead to incompleteness results, since it produces
explicit functions orthogonal to the set Sy . What is curious is how we can also use
the identity to obtain the completeness results! Roughly, the logic is this: We shall
find ourselves in a situation where our set has codimension at most 1. Thus there
will be at most one function, up to scalar multiples, orthogonal to this set. The
identity therefore supplies the only possible such function. Then, if this function
turns out not to be in the right class, we can conclude that no non-zero function in
the class is orthogonal to the set, and the set will have been proved complete.

The proof of (1) is based on contour integration. By direct estimates, the inte-

gral
1-z\1- n-1
S (1+z) dz
|z|:l
has the value
- -
lim i+;) z"ldz = 0
r—17 Iz':r

On the other hand, if we set z = el*, the integral becomes

m l-a . 0 l-o .
i S (—i tan%) ei"Xgx 4+ i S (—itan’—?f) el"® gx
0 -1

It

T l-a Tip | T l-a T .
S (tan}—?f) el elM¥(x - ‘S‘ (tan—}—;) e 2 e IMXgx
0 0

T l-o
2i S (tanz-{) sin(nx+£a) dx,
o 2 2

and this gives (1).
We shall first prove Theorem 2, and that will furnish the information on codi-

mension necessary in the proof of Theorem 1. The following lemma will supply the
codimension information necessary in the proof of Theorem 2.

LEMMA. If 0 < ®a < 1/2, then S,, is complete in L2. For any a, the set
1 U S, is complete in L2.

Proof. Let M denote the closed linear subspace of L2 generated by the func-
tions S, , and suppose that f(x) € Mt . If a, and b, denote the Fourier coefficients
of f(x), that is, if
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T
a,. = % S f(x)cosnxdx (n=0,1, 2, .-),
0

o
n

2 o
= S f(x) sin nx dx n=1, 2, ),
™Y

then

(2) an sin%a + by coslzr-oz =0 forn=1,2, .

Also, by Parseval’s theorem,

IZ

T ©0

2 [Tllzas = 50 D a2,
0 n=1

(3)

2 (7 _ - 2
2 [Mlicopax= > Io, %

Combining (2) and (3), we find that

IaOIZ 2T ( 2T T I -
4 sin“ga| = sin®gal| - |cos? s ) 27 v 2,
(4) 2 2 2 2 n=1 I nl
Case 1. 1/2 < ia < 1. Here sin%al > cos%al, and so, by (4), we have the

implication ag =0 = b, =0; that is, ag =0 = f(x) =0 a.e., and this means pre-
cisely that 1 U S, spans all of L2,

5 501, and therefore (4) ensures

that 27 ney lbn|2 <0 or (by (3)), that £(x) = 0 a.e. Thus

Case 2. 0< %la < 1/2. Here lsin—qal < lcos X

f(x) e Mt = £(x) =0 a.e.,

and we conclude that M = L2,

2 2
ag=0. Thus f(x) € M+ = (f(x), 1) = 0, and this means that

Case 3. %a =1/2. Here lsin Eal = |cos Eal # 0, and therefore (4) implies that

(5) 1le M.

From (5) and the identity

2 cos x * sin (nx+%a) = sin ((n+1)x+%a) + sin ((n - l)x+12T-a)

we conclude that

(6) ¢(x) e M = cos X - o(x) e M.
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|

Starting with the function ¢(x) =1, we deduce from (5) and repeated use of (6) that '
1, cos x, cos 2%, cos 3x, -+ all lie in M. Since these functions form a complete
family, we conclude again that M = LZ, and the lemma is proved.

Proof of Theorem 2. Choose any p(x) of bounded variation on [0, 7], normalized
so that (0) =0 and p(x) = (u(x™) + n(x*))/2. Suppose that

7 7 T
() Sch)=0, X sin (nx+2a) du) = 0.
0 0
Then p(m) = 0, and integration by parts shows that
m T
S 1 (x) cos (nx+-2—a) dx=0 (n=1,2,- )
0
or, in more convenient form, that
m m
(8) S u(ﬂ—x)sin(nx+§(1—a))dx= 0 (n=1,2 ).
0

Case 1. 1/2 < %a < 1. By the lemma, the family S;_, is complete in LZ.
Since u(7 - x) € L2, it follows from (8) that u(r - x)=0 a.e., and so u(r - x)=0
identically. Since du is any measure satisfying (7), we deduce the required com-
pleteness. :

Case 2. 0 < %t < 1/2. This time our lemma only tells us that the set S;_, has \
codimension at most 1 in L2, This codimension is indeed 1, since our identity (1)
implies that

(9) Sﬂ (tan%()asin(nx+%(1-a))dx=0 mh=1,2, ), i
0

and since (tan x)% € L2

(9) tells us that

(10) um-x)=c(mn§)a

. But since the codimension is 1, a comparison of (8) and |

almost everywhere (and hence everywhere).

a I
By our assumption that o # 0, the function (tan % ) is not of bounded variation!

on [0, 7]. We are forced to conclude that C = 0 in (10), and so we deduce that
w(m - x) = 0.- Thus the completeness follows in this case also.

Proof of Theorem 1.
l-a
Proof of I, = . If %ia =1, then (tan %) is a bounded function, and so (1)

shows that Sy is not complete.

1-«
Proof of I, =>. If 1> %a > 1/p, then (tan%) is a function in L% (q is
defined by 1/p + 1/q = 1), and so (1) shows that S, is not complete. .



COMPLETENESS OF {A sinnx+ B cos nx} ON [0, 7] 309

Proof of III, =>. That a # 0 is obvious, since all the functions sin nx vanish at

l-«
the origin. Suppose that 0 < o < 1. Then (tan %{) e L , and so (1) shows

that S, is not complete.

Since the proof of III, <=, is somewhat complicated and of a different spirit, we
delay it until the end. We prove I, <=, and II, <=, now on the added assumption that
0 < %o (the case 0 = Ra is a correspondence of III, <=). Actually, I, <5, is im-
plied by II, <=, but we give the proofs separately to illustrate the method.

Proof of I, <=, for 0 < %a. We know by Theorem 2 that S, has codimension at
most 1 in the space C. By (1), this codimension is actually 1. Suppose we have an
f(x) such that

(11) f(x) e L and Sﬂ f(x)sin(nx+%a> dx =0 (n=1,2, --).
0

Comparing (11) with (1) and keeping in mind that the codimension is 1, we must
conclude that

(12) f(x) = C (tan%)l-a a.e.

l1-c
We are assuming, however, that %o <1, and so (tan >—2( ) is not in L™,
Hence C =0 in (12), and we deduce that f(x) =0 a.e.

We have thus shown that (11) = f(x) = 0 a.e., and this gives the required com-
pleteness.

Proof of II, <=, for 0 < . By Theorem 2 and II, =, we know that S, has

codimension 1 in the space C. Suppose (with -Il—) +é = 1) that

(13) f(x) e LT  and Sﬂf(x)sin (nx+—721a) dx =0 (n=1,2, ).
0

Then f(x) must be in L!, and so (13) and (1), together with the fact that the codi-
mension is 1, force us to conclude that

(14) f(x) = C (tan}—;)l—a a.e.

Now, in ,:12[’ w:l ,

(tan-}z—()l—a’q = (tang

X
2

!
)(1-9101)(12 (tan’—z‘) ( p)q _ tan%{’

since %o < 1/p. Because tan = is not integrable on ':%, 77] , we conclude that the
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constant C appearing in (14) must be 0, and so we further conclude that
(15) f(x) = 0 a.e.
We have shown, then, that (13) = (15), and this gives the required completeness.

Proof of IIl, <=. Here we use (1) in a different way. Writing 1 - @ for a and
-x for x, we have the identities

(16) SO

-

o

X
tan-i

cos(nx—l—-ga) dx=0 (=1, 2, -.),

Consider the function F(x) on (-7, 7) defined by

0 on [0, 7],
(17) F(x) = '

o

tan > on (-m, 0).

2

By (16), F(x) has a Fourier series of the form

=0}
F(x) ~ a+ 27 Cn sin(nx+%oz) .
n=1

Later it will prove important to note that here

X
tan 3

1 0
a =

1 l1+a 1-«a
T 27 ’
-

1 .7
2 2 )‘2se°2°"

@ 1
“=EB(

so that
(18) a#0.

Now introduce the function

TE COS 32‘
(19) G(x) = ——X-r_‘g (e >0).
2 |sing
We note that

X
T T cos—z-dx 7 <\ &
S G(x)dx = 1785 _ = ZTTS d(siné-) = 27
-7 ) 0 . x\17¢ 0

(mnﬁ)

and that G(x) is even, so that the Fourier series for G(x) can be written as

o0

G(x) ~1+2 20 g, COS nXx.

n=1

We form the convolution F * G(x) by setting
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1 Vil
(20) F * G(x) = o S F(t)G(x - t)at,
-7

and we note that this has the Fourier series

o0}

(21) F* Gx) ~a+ 2 Ch8n sin(nx+%a) .
n=1

Next we observe that the L!-modulus of continuity w(8) of G(x) satisfies an in-
equality w(6) < C 6%, so that (since F(x) is bounded) F * G(x) belongs to Lip €. By
the Dini-Lipschitz test, then, this function has uniformly convergent Fourier series,
and so we may improve (21) to the assertion that

©0

(22) a+ 27 c,g, sin ( nx +%a ) converges uniformly to F * G(x) on [-m, 7].
n=1

To estimate F * G(x) on [0, 7], let x € (0, 7). By (17), (19), (20), and integration
by parts, we can write

F * G(x)

5 (3)

2 o
tan & i 5 (tan u)

2 l1-¢ du
0 (sin(3+u))
2 2

cos (§+u) cos u sin u
€ S”/Z (tan u)® 5
2

0 sinucosu 1-¢
. X
(S1n(§+u))

X .
g Sﬂ-/z COS(E”‘U) cosusmu
% ‘O x ‘1—8
(sm(§+u))

e T2 cos (}—2{+u) cos u sin u
= -——S (tan u)% d

% (s (2+u))

Since o is imaginary, we can finally estimate this as follows. For x € (0, 7),

£
4 J_g

sin

du

d{tan w)®

(23) |F* G| < 57 v,

2| |

cos (—}25+u) cos u sinu
where V is the total variation of on [ 0, E:I .

(sin(Z+a)) " ’
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By writing the logarithmic derivative of the fraction, we see that the equation for
the singular points involves a fourth-degree trigonometric polynomial. Therefore
there are at most eight singular points, and so

(24) V < 16 M,

cos(§+u) cos u sinu T
where M is the maximum of on [ 0, —2-:| . Since

(sin(-’z—‘+u))l-8

cos(-’-z{+u),§ 1 and

(X . X X . . X . .
sm(—é—l-u) = sm—z- cosu+cos§smu2 (sm—2-+cos)—2{) min (cos u, sin u)

> min(cos u, sinu) > cos u - sin u,

we have the estimate
(25) M S 1.

Combining (18), (23), (24), and (25), we obtain the estimate

< -B& in [0, 7].
= |oal

©0
1 +-:{ El c,8, Sin (nx+127-oz)
n=

By choosing N large enough and using (22), we deduce from this that

9¢
|aal

N
1+§ El cngnsin(nx+%a) < in [0, 7].
n=

Since ¢ is arbitrary, this tells us that the function 1 is in the uniform span of
the set S, . But Theorem 2 states that the uniform span of 1 U Sy is all of C, and

the proof is complete.
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