SMOOTHNESS OF APPROXIMATION
Richard Holmes and Bernard Kripke

INTRODUCTION

Let K be a Chebyshev subset of a Banach space (X, ” " ). Then, by definition, K
is closed and for every x € X there exists a unique P(x) € K satisfying the condi-
tion

x - P = inf{|x-k|: ke K} = dist (x, K).

This map Pk from X to K is called the best approximation opevator (BAO) sup-
ported by K; its value Py(x) at x is the best approximation to x out of K. It is
easy to see that Py is always a closed projection, in the sense that Py(x) = x
whenever x € K, and, if x, — x and Py(x,) — y, then y = Pr(x). We are interested
in the following general question: assuming that K is convex, how does PK(x) vary
as a function of x?

For every closed convex subset of X to be a Chebyshev set, it is necessary and
sufficient that X be reflexive and strictly convex (the deep part of this result is due
to James; see the remarks in [18, Section 4}). We conjecture that these conditions
are also sufficient to guarantee that Pk is always continuous. However, Pk need
not be continuous whenever K is a linear Chebyshev subspace of an arbitrary Banach
space. This will be shown by Example 4, in which K is a subspace of codimension 2.
The weakest condition that is known (to the authors) to imply that Pk is continuous
is that K be approximatively compact, in other words, that every minimizing se-
quence in K be compact [5]. In particular, every closed convex subset of a uni-
formly convex space has this property [6].

Very smooth BAO’s are characteristic of Hilbert space. Indeed, a Banach space
X of dimension greater than 2 has each of the following three properties if and only
if it is a Hilbert space: (a) whenever K is a closed subspace of X, it is a Chebyshev
set and Py is a linear operator ( [8]; a stronger result has been established in [19] );
(b) whenever K is a closed convex subset of X, it is a Chebyshev set and Py satis-
fies the Lipschitz condition |Pi(x) - Pr()| < [|x - y|| [2], [17]; (c) whenever K is
a 1l-dimensional subspace of X, it is a Chebyshev set and Py is continuously
Gateaux differentiable (Theorem 3). (The case where dim X < 2 is special because
every Chevyshev subspace of codimension 1 supports a linear BAO (Theorem 3).)
Thus a major part of this paper will be devoted to kinds of smooth behavior of Py
that are intermediate between continuity and the uniform smoothness that character-
izes Hilbert space. There are two ways in which we can weaken the characteristic
properties of Hilbert space: by requiring a weaker property to hold for all closed
subspaces or convex sets, or by requiring a strong property to hold, but not uni-
formly.

An example of the first kind is the wuniform Lipschitz property of approximation.
A reflexive and strictly convex space X has property {UL) if there exists a constant
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A (usually greater than the 1 that is characteristic of Hilbert space) such that for
each closed convex subset K of X,

[Prx) - Pk <Afx-y|| forall x,ye€ X.

Unfortunately, spaces with this property are rare. Not all of them are Hilbert
spaces (Example 1), but we conjecture that each has an equivalent Hilbert norm. In
particular, if X is an LP-space (1 < p < «), then X is (UL) if and only if p = 2 or
dim X < 2 (Theorem 5). In case X is of infinife dimension, one can also obtain this
negative result by combining a theorem of Lindenstrauss [12] with the principal re-
sult of Murray [15].

We can further weaken the Lipschitz condition by allowing the Lipschitz constant
A to depend on x and K. Pk satisfies a pointwise Lipschitz condition at x if there
exists a constant A(x, K) such that

|Px(x) - Pe()|| < Alx, K)|x-y]| forallye X.

For example, Pk is known to satisfy this condition when K is a finite-dimensional
Chebyshev subspace of (C(S), | ||«), for any compact Hausdorff space S [7], [16].
For the case where K is a finite-dimensional subspace of an LP-space (2 < p < «)
we shall show that K has a somewhat stronger property, by proving that Py is con-
tinuously Fréchet differentiable on a certain proper subset of X (Theorem 4). In
case dim X < e, sup {h(x, K:xe X} < o so that the local Lipschitz constant can
be chosen to depend only on K, and not on x; but if dim X = «, this may fail even if
dim K = 1 (Example 2). On the other hand, if dim K = =, then Pi need not satisfy
a pointwise Lipschitz condition for all x (Example 3). Finally, uniform convexity is
insufficient to guarantee any of these Lipschitz properties even when dim X = 3
(Example 5).

The smoothness of Pk is related in a very delicate way to the smoothness and
rotundity of " " The approximative properties of K can be altered radically by
replacement of | | with a topologically equivalent norm-this should be borne in
mind in connection with our conjecture about (UL) spaces. Indeed, Klee [10] has
shown that if K is any Chebyshev hyperplane in a nonreflexive space (X, || H ), then
X can be given an equivalent norm under which the only elements of X that have
best approximations out of K are those in K itself.

In the first of the two main sections of this paper, we establish results about the
smoothness of best approximation in general Banach spaces. These results include
a theory of differentiable BAO’s in smoothly normed spaces, which is applied in the
second section to the study of LP-spaces, and to the counterexamples.

1. GENERAL RESULTS

Throughout this paper, X will be a real Banach space and X' its dual space. S,
the unit sphere of X, consists of all vectors of norm one; S' is the corresponding
subset of X'. In either X or X', 0 denotes the zero element. For any two sets A
and B, A \ B denotes the set-theoretic difference {x: x € A, x ¢ B}. By a “sub-
space” (respectively, “convex set”) we mean a proper, closed, linear (respectively,
convex) subset of X. Finally, we denote real n-dimensional Euclidean space by R™.

We begin with a few elementary propositions about the Lipschitz continuity of
BAO’s.
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PROPOSITION 1. Let M be a Chebyshev subspace of X. Then Py is Lip-
schitzian on X if (and only if) it is uniformly continuous on X. Consequently, Py, is
Lipschitzian if (and only if} it is bounded on some parvallel set of

ker Py, = {x e X: PM(X)=9}.

Proof. The first part follows almost directly from the fact that Py, is homoge-
neous: Pypglcx) = ¢ Pyp(x) for all x e X and ¢ € R!. Hence, if 6(¢) is a modulus of
uniform continuity for Py, then 1/6(1) is a Lipschitz constant for Py,;. To prove
the second part: by hypothesis there exist positive constants y and ¢ such that

sup { || Puly) [l dist (y, ker Py <y} < c.

We observe that for t ¢ R!, dist (ty, ker P),) = |t| dist (v, ker P,,), since Py, is
homogeneous. Now choose £ > 0 and set 6 = gy/c. Suppose that nx - y" < 6.
Then, since x - Py,(x) € ker P,

dist (y - Py(x), ker Pyp) < 6, or dist(ce~1(y - Pp(x)), ker Ppy) < y.
Thus ||Pylce " 1(y - Pp(x)))| < ¢, whence
I Ppi(y) - Py(x) | = [Ppy - Py <e. m

The next two results exhibit the local nature of Lipschitz continuity for BAO’s.
The first says that a locally pointwise Lipschitzian BAO is actually pointwise Lip-
schitzian, and the second that a BAO is Lipschitzian if it is uniformly locally point-
wise Lipschitzian on S N ker Py,.

PROPOSITION 2. Let M be a Chebyshev subspace of X. Suppose that for some
x € X there exist x and &> 0 such that || Ppi(x) - Py(y) || < A|[x - y" whenevey
lx - y| < 6. Then, forall y € X,

|Ppx) - Py < max(r, 2+4[x[|/6) [x - .
Proof. ¥ ||x - y| > &, then
=l < =l/8) [x-y| and fy| < =)+ x-v] <@+ fxf/8)]x-v].
Now, for any z € X,
IPp(z) | < Pe) - 2] + [zl < [lo -z] + =] = 2]=].

Theretore | Ppy) - o)l < 2]l + iy < 21 + 20x]/6) |x - ]

COROLLARY. With M as above, assume that there exist A, 6 > 0 such that if
x € SNker Py and ||x - y| < 6, then || Pm(y)| < |x - y||. Then Py; is Lip-
schitzian.

Proof. If x € M, then
[Pm@) - Pu@l = llx - Pu@ = [Pamtx - 9] < 2x-y].

If x ¢ M, then, putting ¢ = | x - Py4(x)]| and m = Py(x), we find that
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| Pas(x) - Py = ¢ [Pyle1(x - m)) - Pyyle~(y - m))|
< cmax(x, 2+4/6) e l(x - m) - cl(y - m)| = max(a, 2+ 4/0) = -yl ,

according to Proposition 2. That is, max(\, 2+ 4/6) > 2 is a Lipschitz constant for
Py

Banach spaces having the uniform Lipschitz property of approximation (property
(UL)) were defined in the introduction, and it was noted that all Hilbert spaces have
this property. Clearly, property (UL) is a very strong restriction on the geometry
of a Banach space, and it is not obvious that there are any non-Hilbert (UL) spaces.
We shall return to this problem in the next section, contenting ourselves for the
present with the following result, which allows us to replace “convex subset” in the
above definition by “line.”

PROPOSITION 3. A reflexive and strictly convex Banach space X has property
(UL) if and only if there exists a constant » > 1 such that, for all x,y € X,

sup { | PL(x) - Pr(y)|: L is a one-dimensional subspace of X} < a|x -yl.

Proof. The hypothesis immediately implies that || Py (x) - PL(y)]l <A|x -y if
L is any line, that is, any translate of a one-dimensional subspace. Let K be a
convex subset of X, and choose x, y € X. Then L= {t Pr(x)+ (1 - t) Pr(y): t real }
is the line through Py (x) and Pk(y). We see that dist (x, L) < dist (x, K), and simi-
larly for y. Denote by K' the line segment {tPp(x)+ (1 - t)Px(y): 0 <t < 1}; then
K' C KN L. Since K' C K, no point in K' can be closer to x (or to y) than Py(x)
(or Pi(y)). Thus Pi,(x) (respectively, Py (y)) either equals Py(x) (respectively,
Px(y)), or else it is contained in L \ K'. By the convexity of the function
dist( -, L), Py,(x) and Py (y) lie on opposite sides of K'. That is,

[P(x) - P < |PL&) - PL],

and this establishes the proposition.

The next two propositions concern approximation in smoofh Banach spaces. By
definition, X is smooth if at each point in S there exists a unigque supporting hyper-
plane of the closed unit ball. By a result of Mazur [13], X is smooth if and only if
the Gateaux derivative

Ix+ty] - I=]
t

G(x, y) = lim
t— 0

exists for all x, y € S. This actually defines G for all x # 6 and all y, and for
fixed x, G(x, y) is a linear functional of norm 1; that is, G(x, - ) € 8' if x # 6 [9,
Theorem 2.2].

PROPOSITION 4. Let X be a smooth Banach space. Let {Ma} be an arbitrary
family of Chebyshev subspaces of X, and suppose that M, the closed lineay span of

{M, }, is also a Chebyshev subspace of X. Then ker Py = ﬂa ker Py, -

Proof. Clearly, Py(x) = 6 implies PMa(x) = § for each «. Suppose that
PMa(x) = 0 for all @. Then G(x, my) =0 for each my € My. Since each m € M

is the limit of finite linear combinations of suitable m, and G(x, - ) € S', we con-
clude that G(x, m) = 0. In other words, G(x, - ) belongs to M*, the annihilator of M
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Now, by a theorem of Singer [21, Theorem 1], if M is any subspace of a Banach
space X and x € X\ M, then 0 is a best approximation to x out of M if and only if
there exists f € S' N ML such that f(x) = ||x||. In the case at hand, we may take
f(:)=G(x, ). u

In the next section, we shall apply the following result to the problem of differen-
tiable best approximation in LP-spaces.

PROPOSITION 5. Let M be a Chebyshev subspace of a smooth Banach space X.
Suppose that M =M, D M, and that M| and M, are both Chebyshev subspaces.
For any x € X, define Ty s X — M by T (y) = PMl(x - PMZ(X -y)). Then T4 has a

unique fixed point, m* say, in My . Further, Pp(x) = m* + PMZ(X - m*).,

Proof. Py,(x) may be written uniquely as m; + m,, where m; € M;, m, € M,.
Then m; = Py(x) - m, = Py, (x - m,), and since m; € M; CM, m; = PMl(x - m,).
Similarly, m, = Py(x - m;) = PMZ(X - m,;), whence m; is a fixed point of Ty in

M;. To show uniqueness, let m be any such fixed point of Tx. Then

6 = PMl(x -m - PMZ(X - m)),

because m € M;. Thatis, x - m - PMZ(X - m) € ker PMl ; but clearly it also be-
longs to ker PMz . By Proposition 4, x - m - PMZ(X - m) € ker P,,; this shows
that PM(x) =m + PMZ(X - m). Thus the fixed point is unique and we can obtain it by
projecting P,(x) along M, onto M;. H

Most of the remaining results of this section involve a notion of differentiable
best approximation. If M is a Chebyshev subspace of a Banach space X, we define
the Gateaux derivative of Py, at x in the direction y by

Px + ty) - Pyglx)
t )

Py (x, y) = lim
t—0

whenever the limit exists. We restrict attention to subspaces, in order to avoid the
corners and edges of the general convex Chebyshev set where this derivative does
not exist (consider, for example, approximation out of a triangle or line segment in
2-space). With each such subspace M we associate an idempotent map

Yyt X\ M — S N ker Py, defined by

4/M(X) = "X = PM(X) " -1 (x - PM(X)) .
We now observe the following facts about the derivative of Py, (they are immediate
consequences of the definitions):
(1) Py4x, cy) = c Pi,(x, y), if either side exists;
(2) if x € M, Py,(x, y) = Py,(y), for each y; and

(3) if x ¢ M, and one or the other of P}(x, y) and Pj,({¥4(x), y) exists, then
both exist and are equal.

THEOREM 1. Let M be a Chesbyshev subspace of X.
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(a) Suppose that for some x5 € X\ M and some 6> 0, Py,(x, y) exists when-
evey "x— XO" <b6andyeS. If

sup{"Piv[(x, | : ||x-x0" < 6,y€ St =x< o,
then to every r < 0 there corresponds a constant ». such that
| Py) - Py(2)|| < 2 flx - 2]

for all z, whenever “x - Xg ﬂ <r. In particular, Py, is pointwise Lipschitzian at
XO .

(b) Suppose that Py\s(x, y) exists for all x = Y\(X) and all y € S, and that
sup { [ PL,(x, ) |: x = wp(x), y e 8} =1 < o,

Then P,, is Lipschitzian.

Proof of (a). Suppose that ||x; - x5|| <r < 6. Then |Pjlx, y)| < 2 if
]x - X || < 8, =6 -r. For any (fixed) y € S and g € S', we may define a differen-
tiable function F on the interval (-8;, 6;) by F(t) = g(Pp(x; +ty)). Then

lg(Pys(x; +ty) - Ppy(x)))| = |[F(®) - F(O)] = [F'(s)] [¢],
where 0 < |s| < |t]. But
[F'(s)] = |e(@iulx; +ty, Y| < [Py +ty, 9 <.
Now, if [z - x| < 6;,weset t=|z-x| and y= |z - x;]| -} (z - x;). Then the

argument above shows that Ig(PM(z) - PM(xl))| < |z - x||. By the Hahn-Banach
theorem, we may choose g so that

|g(Py(z) - Pyx)))| = | Ppz) - P(x)] .

Hence we have shown that Py, is locally pointwise Lipschitzian at x;, and so we
may apply Proposition 2 to obtain our result.

Proof of (b). We first note that Pyg(x + ty) has a t-derivative that is uniformly
bounded over all x, all real t, and all y € S. This is because

dit Py(x +ty) = Pyx+ty, y) = Pp(ymlx +ty), v),

and the last member is bounded by hypothesis if x+ ty ¢ M, while in the contrary
case |Pix+ty, v)| = [Pm&)| <2 y| = 2. Now we choose any u # v in X, put
y = |lu-v] -1 (- v), and choose any g € S'. Defining F by F(t) = g(Pp(v + ty)),
we have the inequalities

| F(t)| < “% gOPM(v+ty)“ < max(2, 1).

Hence, by the mean-value theorem,

lg(Ppr(u) - P = |F(]Ju - v]) - F(O)] < max(2, ») hu - vy .
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We complete the proof by applying the Hahn-Banach theorem to choose g so that
lg(PMmu) - Pum(v)| = | Pmlu) - Pmv)].

The preceding theorem applies in particular to the pleasant situation where Py,
is continuously differentiable in Fréchet’s sense. Let L(X, M) be the space of all
bounded linear operators from X to M with the usual norm topology. We say that
Py is Fréchet-C! on the open set X \ M if there exists a continuous map
U: X\ M — L(X, M) such that Py(x, y) exists and is given by Pj(x, y) = U(x)y.

COROLLARY. Suppose that M is a Chebyshev subspace of X and that Py, is
Fréchet-C! on X\ M. Then, for each x € X\ M there exist a neighbovhood N, of
X, and a constant N, such that, for every y,

IPmx") - Paa| < Ax||x' - y||  whenever x' € Ny.

Further, if dim X < o, then Py is Lipschitzian on X,

Proof. The function U occurring in the definition of Fréchet-C!l is bounded on a
neighborhood of x, because it is continuous. Therefore, Theorem 1(a) applies. If in
addition dim X < e, then the set {x: x = ¢ 4(x)} is compact, and so the function
x — ||U(x)|| is bounded there. Hence Py; is Lipschitzian, by Theorem 1(b).

In connection with the existence of Fréchet-C! best approximation, we mention
in passing the following result. Its proof is rather long, and we omit it, since we do
not use the result in this paper. Theorem: Let X be smooth and strictly convex,
and suppose that Py, is Fréchet-Cl on X\ M whenever dim M = 1. Then Py is
Fréchet-C! on X\ M whenever dim M < .

We turn now to the problem of the existence of the Gateaux derivative of Py for
the case where dim M < «. In the next theorem we shall provide a solution to this
problem for Banach spaces X with a sufficiently smooth norm. To begin with, fix
x # 0 and assume that for any y, z € X the function N(s, t) = |x + sy + tz] is twice
continuously differentiable in a neighborhood of (0, 0). Then we may define a func-

2
tional < ., " >X on X X X, by the formula < v, Z >x = ;—851\%(0, 0). We claim that
< P >x is a continuous, symmetric, bilinear form on X X X. For, letting
lu+sv] - Ju]
S

G(u, v) = lim
s—0

, we note that

G(x + tz, y) - G(x, y)

(y,z>x= Iim n

t—0

We have already observed that G(u, :) € S' for any u # 6. Therefore, the uniform
boundedness principle applies, and_\y, z > « 18 a bounded linear functional in y. By
the assumed continuity of the second partials of N, < , >x is symmetric and is
therefore a bilinear form continuous in each variable separately. But X is complete
and hence is a Baire space. Therefore < , > « 1s actually continuous on X X X
(Schaefer [20, Theorem 5.1]). We also note that if ¢ # 0, then

<y’ Z>Cx = [e]-! <y’ z>x.

THEOREM 2. Let M =span{m;, -+, m,} be a finite-dimensional Chebyshev
subspace of X. Choose an x = y\(x) anda y € S. Set
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n

f(sy, =+, Sp, t) = [|x+ty - 22 Sy My
1

and assume that £ is C2 in a neighborhood of the ovigin in R**1 . Let P, be the
matvix of the form < , * /)« in the basis vectors my, *+, m_; that is, let

(Py);j = my, m;) . Let q,(y) be the n-vector whose ith component is {m;,y )X
Then, if Py is invertible, Py1(X, y) exists and is given by the formula

n

Pi\/[(xa y) = 27 (P;l qX(Y))k my .
k=1

Proof During this proof we shall write § for (s;, ***, s,) and 8m for
sym; + - v -+ sn) n. For sufficiently small |t|, the relation §;m = Py (x + ty) holds
of Sp,

only if —————=0 for i=1, ---, n, Put
08
- _ [ of(8, t) of(8, t) )
Gt 8) =\ e " Tos, /)

. 1 = . P . +1 aG(t S)
then G is C* in a neighborhood of the origin in R2*!1 | Observe that —-—-—’—as the
Jacobian matrix of G with respect to S, is by definition of ( s >X precisely the
matrix Py o _z.,. By our hypotheses, G(0, 0) = 0, while -a—(-}—gg_’—o—) is nonsingular.

According to the implicit-function theorem (Dieudonné [4, Section 10.2]), there exist
a connected neighborhood U of the origin of R' and a unique continuously differ-
entiable mapping S of U into R® such that S(0) =0 and G(t, S(t)) = 0 for each

t € U. Since Py is continuous (because M is finite-dimensional and so approxima-
tively compact), and since Py,(x) = 6, it follows that Py,(x + ty) = S{t)m for suffi-
ciently small [ti . Finally (and again by the implicit-function theorem),

— _1 -—
_ _( aG(Q_, 0) o ( aG(Oz 0) m
ds ot ’

which is exactly the formula for P),(x, y) given in the statement of the theorem. ™

Remarks on Theorem 2. (a) The rank of the form < > on the subspace M is

equal to the rank of the matrix of the form in any basis; therefore the existence of
Pp(x, y) does not depend on the choice of basis {m;, «--, m_} for M. (b} The
formula of the theorem shows that whenever the matrix P‘P (x) is invertible, then

Pym(x, y) exists for all y € S, and hence for all y € X, and is a bounded linear oper—
ator in y; that is, Pp(x, -) € L(X M). {(c) For x= yDM(x) the existence of P_" is

equivalent to the positive-definiteness of the form < > on M. Indeed, bemg the

Hessian form of the convex function f(-, 0), < > is certainly positive-semidefi-

nite on M. If it is actually positive—defzmte on M, it is an inner product there, and
P, is its Gram matrix. Otherwise, its rank is less than n, and so P, is singular.

In the next section, the preceding results on differentiability will be applied to
several problems on the Lipschitz continuity of best approximation in LP-spaces.
The remainder of this section deals with the linearity of best approximation in
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general Banach spaces. We have already observed that BAO supported by a Cheby-
shev subspace M is always closed, homogeneous, and idempotent. Hence, if Py, is
additive, then it is actually a bounded linear projection of X onto M, and in fact

H PM“ < 2. The next theorem shows that several obviously necessary conditions for
the linearity of Py, are also sufficient.

THEOREM 3. The following propevties of a Chebyshev subspace M of a Banach
space X are equivalent:

(a) Py is linear;
(b) ker P,, is a subspace;
(c) ker Py, contains a subspace N for which X =M + N;

(d) Py is quasi-linear; that is, there exists a constant K such that

[ Prlx+ 9] < K([Pp)] + [PM3Is

(e) Py is continuously Gateaux differentiable.

Proof. Clearly, (a) implies all the other properties, and (d) = (b). Assume (c);
then each x € X can be written uniquely as x=m+n (m € M, n € N). Hence
Ppi(x) = m, and we note that m depends linearly on x; that is, (c) =(a). Note that N
must actually be all of ker Py;. Next we show that (b) = (a). Choose any x, y € X;
then x - Pp(x), v - Py(y), and x+y - Pp(x + y) all belong to ker Pys. Therefore
(x - Py(x) +y - Pp(y)) € ker Py, and so

Ppx+y) - Ppy(x) - Py(y) € MNker Py = {6}.
Finally, we show that (e) = (a). If 6 > 0, then
P, (0%, y) = 6Py ,(x, 67'y) = Py (x, ¥).
Hence, if P, is Gateaux-C!, then

Py, y) = 6lim Py(0x, y) = P10, y) = Py(y).
—0

Therefore,

1 g
Py x+y) = Py(x)+ SO £ Pyl + ty)dt

1
= Pyx) + S Piy(x +1ty, y)dt = Py(x) + Ppyly). ™
0

As immediate consequences of this theorem we see that Py is always linear if
codim M = 1; if dim X =2 and X is strictly convex, then X has property (UL); and,
in the notation of Proposition 4, if every PMa is linear, then so is P,;. Also, from

Theorem 3 and a theorem of Rudin and Smith [19], we deduce that if X is strictly
convex and P, is Gateaux-Cl! whenever M is a one-dimensional subspace of X,
then X is a Hilbert space.
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Finally, we observe that Py, is linear if and only if the projection I - Py, is
linear and kas norm one. Further, assuming that Py, is linear, we find that
| Pyl =1 if and only if (I - Py)(x) is a best approximation to x out of ker Pys-
Thus, if Py, is linear and ker P,, is a Chebyshev subspace, then |P,,| =1 if and
only if

Prer Py = I-Py, that is, ker Py, Py = M;

in other words, the subspaces M and ker Py, are mutually orthogonal in the sense
of James [8].

2. APPLICATIONS AND EXAMPLES

Let (Q, S, 1) be a positive measurve space; that is, let Q be a set, S a sigma
algebra of subsets of 2, and . a nonnegative, countably additive set function (a
measure) on S. If 1 <p <, then LP = LP(Q, S, u) is the Banach space of all
(equivalence classes of) p-measurable, real-valued functions f defined on © for

which |[f[|P = S |£(+)|Pdp < ». It is well known that for such values of p, LP is
Q

uniformly convex (Clarkson [3]). Hence, as we noted in the Introduction, every con-

vex subset of LP is an approximatively compact Chebyshev set and so supports a

continuous BAO. In the special case where 2 is a finite set of n points, we shall

denote the associated LP-space by ¢P(n, w). Thus x € ¢P(n, w) means that x is an

n-tuple (x;, ---, x,,) of real numbers, and

n
[P = § IxfPan = 2w, |]P,
Q i=
where the “weight” w; > 0 is the p-measure of the ith point of Q.

To apply the results of the preceding section to approximation problems in LP-
spaces, we shall need the following technical lemma.

LEMMA 1. Let X=LP(Q, S, 1) for some p (2 <p < ).
(@) If x, 5,2z € X and |x| =1, then

_ 62 "x+sy+tz"
(v,2), = s ot

s=t=0

(-1 { S yz |x|P%ap - p S xy |x|P % ap S xz |x|P% dp }
o Q 0

If, in addition, Py(x) = 6, where Y = span {y}, then
(v2) = 0= 1 | vz lx|PZa.

(b) For fixed y, z € X, the real-valued function x HS yz ]le'Zdu. is contin-
Q

uous on X.
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(c) For fixed y € X, the map x — y lep-Z from X to X'=1L19 (p'1 +q"1 =1)
1S conlinuous.

Proof. The first formula of (a) is obtained by differentiation under the integral
sign. This is justified by the theorems in McShane [14, Section 39], together with the
Holder inequality. The second formula follows if we note that if Py(x) = 0, then

0=3 |x+ ty|® au
Q

dt B pS y sgn(x) |x|° ap = pS xy |x|P % ap.
@ Q

t=0

We next observe that (b) follows quite directly from (c), so that it will suffice to
prove the latter. Put r = p/(p - 2). We can factor the map in question as a product
¢ o Y, where

v: P - LY and ¢ LY — LY

are defined by Y¥(x) = [xlp'z and ¢(x) = yx. Now ¢ is clearly continuous, since it is
linear and Holder’s inequality shows that [ ¢(x) ||q < Hy”p Ix|l.. To show that ¥ is
continuous, it is convenient to consider separately the cases 2 <p < 3 and

3 <p <. In the first case, the number s =p - 2 satisfies the condition 0 <s <1,
and since ||A|s - |B]s| < |A - B|S (because the function A — AS is subadditive on
the positive reals) we obtain the inequality

v - vl < Ix-yIE™*.

Now suppose that p > 3, and put z(-) = max (|x(- )|, Iy( . )] ). We can apply the
mean-value theorem to show that

lv) - wy)| < (p-2)2P3||x| - |y]] < p-2)2P3|x-y].

If s=(p-2)/(p-38),then |z, <| [x| +|y] |5 < Ix];+ |vlp, and HE1der*s in-
equality shows that

lwG) - wm)IE < - 27 | x-y]|* ], 127737
=@-2)" [x-y|] ||z||f;/S <@-27 [x-ylpdx],+ "Y"p)p/s-

This completes the proof of the lemma.

The lemma has immediate application to the differentiability of best approxima-
tion in LP-spaces. For suppose M is a finite-dimensional subspace of LP(Q, S, 1)
(2 <p<w), say M =span{mj, -, my}. If x = ¢,(x), then for the matrix P, of
Theorem 2 we have the formula

(Px)ij = (mi, m; >X =(p-1) SQ m; my |x|P'2 du .

Similarly, the ith component of the vector q,(y) is (p - 1) S m;y |x|P'2 du. Now
Q

d, is a continuous linear map from X to R"™, and by the lemma, both q, and P,
depend continuously on x. Therefore, by Theorem 2 and the subsequent remarks, if

M has the property that S m? |x|P~2dy >0 whenever m e M \ {6} and
Q

x = Yp(x), then Py, is Fréchet-C! on the open set X\ M.
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To provide examples of such subspaces M, we let @ be a compact Hausdorff
space, S the o-algebra of Borel sets in £, p a regular nonatomic Borel measure
on S, and {m;, ---, m, } a Chebyshev system on © (that is, the m; are continuous
on £ and no nontrivial linear combination of {mi} has more than n - 1 zeros in
Q). More generally, of course, it would simply suffice to take any finite-dimensional
M in any Lp-space and to ask that no nonzero member of M vanish on a set of posi-
tive measure. But the former example does have a close connection with the present
work. For it is well known [18, Theorem 3.6] that the span of a (finite) Chebyshev
system is a Chebyshev subspace of C(2) in the uniform norm, and further, that the
best uniform approximation to an f € C(R2) is obtainable as the uniform limit of the
best LP-approximations to f as p — « (see Buck [1, Theorem 5] or Kripke [11}).

We turn now to our main result on the smoothness of best approximation in LP-
spaces (p > 2). It will be seen from subsequent examples that within the hierarchy
of smoothness properties considered in this paper, these results are the best pos-
sible.

THEOREM 4. Lelt M be a finite-dimensional subspace of LP(Q, S, ) for some
p>2. If x e LP\ M, theve exist a neighborhood N, of x and a constant A, > 1
such that

[Py - Py < 2 llx' -yl  forall x' e Ny and y e LF.

In case dim LP < =, there exists a single Lipschitz constant A\, independent of x,
such that

IPnx) - P < Allx -yl forall x,y e LP.

Before proving this theorem, we isolate as a second technical lemma a key por-
tion of the argument, which is valid in general Banach spaces.

LEMMA 2. Let M, M;, M, be Chebyshev subspaces of X such that
M = M; P M, .- Suppose that x € ker Py, and that K; , K, , K3, r are positive
constants such that '

(i) I PMl(x) - PMl(Z)" < Ky|x-z| forall zeX;

i) [x' -x]| <r=>| PMz(x') - PMZ(Z) | <K, |x' - z| forall z;

(iii) “x' - x|| < —g— r, m € M,, and
Im| < 3r = [Py &' +m) - Py, x| <K3[m];

(iv) Ky>K3 <1,
Then, if "y"g (1-K,K3)(K,+ KIKZ)‘lr, we have the inequality
IPpmx+ 9] < {Kz+ (1 +K2) (K1 +K2K3) (1 - K2K3) ™ } |y
Proof, Choose a y such that “y" < (1 -K2K3)(Kz2+ K1 Kz)'1 r, and put

x'=x+y. Conditions (i) and (ii) imply K;, K> > 1, since we may take z € M; and
get the relations

[P0, - Py @] = [Pagx- 2] < Kiflx-z]  G=1,2).
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Therefore, "y" = ||x' - xl[ < r. Next we observe that the map T,. (see Proposition
5) maps the ball

B =M N{z |z] <& +K,K;)(K, +K; K,) ' r}
into itself. Indeed, suppose that m € B. Then

|T (m)| = [T, (m)- PMI(X)"

< “ PMl (x' - PMZ(x' - m)) - PMl (x')" + ” PM1 (x') - PM1 (x) ”

IA

K3 "PMZ(X' -m)| + Ky [x'- x| < KKy - m| +K, |y]

< K K; |m|| + () + K K3) ||y
< KyK3(K; + Ky K3 )R+ K Kp) " hr+ (K + KKa)(1 - KoK3)(K, + K Kp) e

= (K; +K,K3)(K, + K K,) Ir.

Now we claim that T_, is actually a strict contraction of B. To see this, choose m
and m in B. Then, since

Ix - &' - P =T = |-y + Pagx -] <y + Kz |y - ]

< @+xKp) Iyl + Xz llm| < [0 +K)(M - KpK3) + KoKy + KoK3)| (K + K Kp) ™

]

= [1+(1 - K,K3) (K2 +K1Kp) lr < 3r/2,
and since

IPay (' - m) - Py, (' - )| < Kz lm - W] < 2K+ KpK3) (1+K) ™ r < 3r,

we have the inequalities
”Tx'(m) - Tx'(ﬁ)" S K3 "PMZ(X' -m) - PMZ(X! - ?n_)" S K2K3 ”m - -I’Tl-" .

Thus, by the contraction-mapping principle, the unique fixed point m* of T,: lies in
B, and

| = | m0] < KK fme] + &, + 6,55 [y,
that is, |m*] < (K; + K,K3)(1 - K,K3)! |ly|. Also,
1Py, (e - M) < Kp flx - x - m* | < Kp(fly]l + [m*]).
Thus, by the preceding argument and Proposition 5, we finally obtain the relations
[Pptx+ 9] = m*+ P - m¥)]| < (1 +Kp) [m*]| + K, |y

< {L+K,) (K, +K,K3) (1 - K,K3) L+ Ky ly]. =
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Proof of Theorem 4, The proof is by induction on dim M; the theorem is trivial
if dim M = 0. Suppose that n > 1 and that the theorem is true for subspaces of
dimension less than n. It will be sufficient to prove the theorem under the assump-
tion that x = y(x); for if there exist r > 0 and A, > 1 such that

1Pmx) - Pu@ ] < Acflx'-y|  whenever |x' - )] <,

then the inequality holds whenever " x' - x” <r-dist(x, M). If y € LP we define
Z(y) = {w € Q: y(w) =0}. This of course really defines Z(y) as an equivalence
class of measurable sets, and we shall therefore identify two measurable sets whose
symmetric difference has p-measure 0. Let {m;, :--, m, | be a basis for M.

Without loss of generality, we may assume that u (ﬂi 1 Z(m;) ) =0, for otherwise

we simply replace by € \ ﬂ?zl Z(m;) and restrict all functions to this latter set.
Now let M, be the subspace of M consisting of the elements that vanish p -a.e. on
2\ Z(x), and let M; be any subspace of M that is complementary to M. The set
My, cannot be all of M, for if it were, my, ---, m, would all vanish g -a.e. on

Q \ Z(x). By our assumption about ﬂ?zl Z(m;), we could then conclude that

1(Q \ Z(x)) = 0, contrary to the hypothesis that |x|| = 1. It follows that dim M, < n,
and hence, by the induction hypothesis, that there exist a neighborhood U of x and a
constant K, such that

x'e U, ye LP = "PMZ(X') - PMZ(Y)“ <K [x'-y].

We next consider approximation out of the subspace M; . Introducing the form
o, >X, we see by Lemma 1 that

{y, Z>x =(p-1) SQ yz |x|P~2dp

if either y € M or z € M. By choice of M;, this form is positive definite on M),
and so PM1 is Fréchet-C! on a neighborhood of x (Theorem 2, Lemma 1). By the

corollary to Theorem 1, there then exist a neighborhood V of x and a constant K,
such that

x'e Vand y € LP > ”PMI (x') - PMI(Y)" < K "X' - Yn >

we may assume that V c U. For any such x', let R+ denote the restriction of
Pl'\,[1 (x', ) to M, . Now the operator R, is the zero operator on M,, because

<m, y>x =0 if m € M; and y € M, (recall the formula of Theorem 2). Since PM1

is Fréchet-Cl near x, we can find an ¢ > 0 so small that
”x' - x|| <3 => x'€e V and ||RX;" <K3=K,/2.

If |[x-x[|<eand me M, 0 {z: lz| <e?}, then by the mean-value inequality for
Fréchet derivatives | Py, (%' +m) - PMl(x')If <Kz [m].

Let r be a positive number less than £¢/6. We can easily verify that if
w € ker Pyp; and "w - x" <r, then Lemma 2 applies uniformly to all such w. The
conclusion is that
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IPamw+ 3| < {(K;+1) Ko+ 1)+ Ko} |y
provided that w € ker Py, |w - x| <r, and ||y| <r/2K,(1 +K;). We now set

A, = max {(2K1+ DX, +1)+K,, 2(1 +4(1 + r"l)KZ 1+ Kl))},
and we observe that by Proposition 2, " Pyp(w +y) || < Axﬂy" for all y € LP and all
w € ker Py, with lw - x| <r. Finally, we may take

Ny = {z |z - x| <r/2} 0 {z [Pu@)] <r/2}.
This is a neighborhood of x, since Pp(x) = # and Pyp4 is continuous, and we see that
[Py +v) - P(x)]| < a_|ly] whenever x' € N and y € LP.

This completes the proof for LP-spaces of infinite dimension. In the finite-dimen-
sional case, we can go further, for here we have observed that every x € X \ M is
contained in a neighborhood N, on which Py, satisfies a uniform Lipschitz condition
with constant A, . Since the set S N ker Pps is compact, it can be covered by finitely
many sets of the form SN ker Pyy N N,.. If we let A be the maximum of the corre-
sponding numbers A, , we can apply the corollary to Proposition 2 to conclude that
Py is Lipschitzian on LP. m

We next show that in spite of the preceding theorem, the LP-spaces (1 <p < =)
do not have property (UL) except in trivial special cases.

THEOREM 5. If 1 <p < =, the space LP = LP(Q, S, 1) does not have property
(UL) unless p =2 or dim LP < 2,

Proof. The two exceptional cases have already been discussed. In all other
cases, the underlying measure space must contain three disjoint sets of finite posi-
tive p-measure. The characteristic functions of these sets then span a subspace of
LP isometric with some (¢P(3, w), for a suitable w. Thus it suffices to prove the
theorem for the case LP(Q, S, 1) = ¢P(3, w). From now on, p and w are fixed, and

3
Syd,u. means Eizl wiy; for any y € £P(3, w). Suppose that m is a nonzero vector

in ¢P(3, w) and that M = span {m}. If x= yYp(x) and y € S, then we know, by
Theorem 2 and Lemma 1(a), that

Pi(x, y) = Pyla(y)m = { Smy |x|P'2du/S m? |x|P~%dp } m,
provided that S m? |x|P-2dp # 0. If we define

Q(m, x) = max{Smy |x|P"2dp.: y € S},

then Q(m, x) = | m |x|p'2ﬂq, where | -
shall show that

||q is the norm in ¢9(3, w) = (¢P(3, w))'. We

Q(m, x)
S m? |x|P~2du

sup cm| > 1, x=ymx), Sm2]x|P'2du >0} = oo,
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and this will prove that ¢P(3, w) does not have property (UL). For there exists
y'=y'(m, x) € S such that Smy' lep'zdu = Q(m, x). Hence, if A is a Lipschitz

constant for Py, then certainly

A > | Pylx+ty') - Ppx)|/|t|  for each t %0,

and therefore, by Theorem 2, A > Q(m, x)/S m? |X|p'2 du, since ||m“ = 1.

CaseI (2 <p < ). Let ¢ >0, and choose ¢ so that cP~! = w, /w;. Let
m = (P, ¢, 1) and x = r(c, -¢, 0), where r = r(c) is chosen so that x € S. Since

5 msgn(x) |x|P~1dp = 0, we see that x = y,(x). Now
Jm %P2 ] = (w1 P9 (e)A®2) 4w, g9re)2P-2)1 /9 = g()eP-1

where f(g) — (w,rP-9)1/d as ¢ — 0+. Here we have used the relations pq = p + a,
p/a=p-1,and q(p - 2) =p - q. Similarly, we find that

sz |x|P-2dp = w, £2P (rc)P-2 +Wzsz(rs)p‘2 = g(e)eP,
where g(g) also approaches w,rP"2 as ¢ — 0+. Therefore
Q(m, x)/S m? |x|P-2dy = [f(c)/g(c)]eP 1P — +o as ¢ — 0+.

Case II (1 < p < 2). We have not discussed the case p < 2 before; but this
causes no problem in the present situation, because of the simple structure of the
spaces (P(3, w). In fact, we can clearly extend Lemma 1(a) to the case 1 < p < 2 by
restricting attention to points x with nonvanishing components. Theorem 2 will then

apply, and as in Case I it will suffice to show that Q(m, x) / S m?2 !xIP'Zdu is un-

bounded. To this end, we let
m=(1-g*tP-1) _1 ¢) and x=r@,0bst).

Here ¢ >0, t > 2/(2 - p), and b = b(e) is chosen so that x € S. We then verify that

sz |x|P-2dp = rP-2g2*tP-2) (w3 +0(1)) as & — O+,

and that
| m |x[P-2 Hq = P2 1HP-2) (o 1 0(1))/9  as e — 0+

(here we have used the relations 2+ t(p - 2) < 0 and 1 +t(p - 1) > 0). Thus
Q(m, x)/j- m? |x|P-2dp = £~1(w, +o)/D-l & 4o as g -0+, m

We have already observed in the Introduction that the negative result of Theorem
5 is new only for the case dim LY < oo, Indeed, it is meaningless to inquire about
property (UL) for infinite-dimensional LP spaces, since not every BAO on such
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spaces is even Lipschitzian. For it has recently been shown by Lindenstrauss [12,
Section 3, Corollary 2] that if a subspace M of a reflexive Banach space X is the
range of a Lipschitzian (or even uniformly continuous) projection on X, then M is
actually the range of a bounded /inear projection on X, that is, M is complemented
in X. But by Murray’s well-known result [1 5], not every subspace of infinite-dimen-
sional LP is complemented. In Example 2 below, we strengthen this result by show-
ing that even a BAO supported by a line in ¢P may fail to be Lipschitzian.

Our final theorem concerns the Gateaux differentiability of BAO’s supported by
finite-dimensional subspaces of LP spaces (p > 2). Theorem 2 is not a complete
answer to the existence of such derivatives, because the formula established there is
valid only if a certain matrix P, is nonsingular. As a simple example, consider
244, w), where each w; is 1, and where the subspace M is

span {(1, 0, 0, 0), (0, 1, 1, -1)}.

We see that Py (x) = 0 is equivalent to x; =0 and X3 + X3 = x3; in particular, Py
is not linear. Suppose that x = y/4(x). Then the matrix

0 0
4
P _= s
* 0 2 xl2
i=2

and so Theorem 2 is totally inapplicable to the problem of the differentiability of Pyy.

THEOREM 6. Let M be a finite-dimensional subspace of LP = LP(Q, S, u),
wheve 2 < p <. Then P\(x, y) exists for each x € LP\ M and each y € LP.

Proof. As usual, it suffices to assume that x = y4(x) and that y € S. Let
{m, ---, m_} be a basis for M. As in the proof of Theorem 4, we may assume

n
that u ﬂi=1 Z(mi)) = 0. We then choose the complementary subspaces M; and
M, of M as in that proof. We claim that Pj(x, y) = Pi\,{l (%, y) + PMz(y - PMl (%, y)).
For the rest of this proof we shall write P; in place of Py, (i=1, 2). Now, if t is
any real number, we know by Proposition 5 that the map T,,;, has a unique fixed

point in M;, say m(t). That is, m(t) = P;[x+ ty - P2(x + ty - m(t))]. We make the
following observations about P;, P,,and m(t).

(i) By the uniqueness of m(t) for each t, m(0) = 6;

(ii) |m(t)/t]| is bounded as t — 0; in fact, we noted in the proof of Proposition 5
that if 7 is the projection of M onto M; along M,, then m(t) = 7 © Pp{(x + ty); since
7 is linear and continuous and Py, is Lipschitzian at x (Theorem 4), it follows that
m is Lipschitzian at 0;

(iii) P;(x+ w) = Pj(x, w) + Ry(w), where the remainder Ry has the property that
for each € > 0 there is a 6 > 0 such that ” Rx(w)| <e "w", provided that "W" < 9;
here w is any element of LP, and the result is a consequence of the fact that P; is
Fréchet-C! near X;

(iv) Pi(x, y) = 6 if y € M, by the formula for Pi(x, y) and the choice of M3 ;
(v) P,y(x+w)=P,(w) for each w, by the choice of M.

In view of these facts, we see that
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m(t)

P} [x, ty - Po(x+ty - m(t))] + R, [ty - Po(x + ty - m(t))]

tP|(x, y) + R [ty - P,(ty - m(t))].

Let € > 0. Since ||y - P,(y - m(t)/t)| is bounded for small t, say by A, we have the
inequality |m(t)/t - Pi(x, y)| < A€, provided that t is sufficiently small; that is,
m'(0) = Pi(x, y). Finally,
PM(x +ty) - Pyy(x) B Py, (x + ty) B m(t) +P2(x+ ty - m(t))
t N t Tt t

=El-{j(t—)+P2(y-_r£t£Q)—)m'(o)_l'PZ(y—m'(o)) as t—0;

that is, Pj4(x, y) = Pj(x, y) + Po(y - Pi(x,y)). ®

Remarks on Theorem 6. (a) Pp,(x, y) is not always linear in y; hence, in par-
ticular, we cannot prove in general that Pjs has a Fréchet derivative at x or that
Pys(x, y) depends continuously on x. As a simple example, let m = (m;, m,, m3)
be a nonzero vector in ¢P(3, w), where p > 2 and w; =1 for all i. Let
M = span {m}, and let M = span {(m;, m,, m3, 0)} in ¢P(4, w). Since ¢P(3, w) is
not a Hilbert space, we can choose m so that Pg; is not linear. Let
x=(0,0,0,1) € ¢P(4, w). Then x = 4(x). If p denotes the restriction map from
2P(4, w) to ¢P(3, w) that drops the last component, then Py (x + ty) = t Pz(p(y)),
whence P(x, y) = Px;(p(y)). However, the map y +~ Pxa(p(y)) is not linear. (b) Py
is not generally Gateaux differentiable if M is an infinite-dimensional subspace of
an LP-space with 2 < p <. This will emerge as a consequence of Example 3
below.

The remainder of this section consists of the examples to which we have referred
throughout the paper. The first example exhibits a method of constructing finite-
dimensional non-Hilbert spaces with property (UL), thus proving that property (UL)
is not sufficiently strong to characterize the geometry of Hilbert spaces (for 2-
dimensional Banach spaces, this has already been observed as a consequence of
Theorem 3). We believe, however, that only spaces having equivalent Hilbert norms
can have property (UL).

EXAMPLE 1. Examples of finite-dimensional non-Hilbert (UL) spaces. To be-
gin, let H be any Hilbert space with norm o. Let p be a bounded seminorm on H,
so that p(-) <ko(-) for some k > 0. We assume that p(u+ tv) is twice differenti-
able at t = 0 for all u, v € H; this second derivative is then nonnegative, since
p(u+ tv) is convex in t. We define a newnorm n on H by n(:)=o0(-)+p(-).
Since o is strictly convex, n is also strictly convex, and thus all convex subsets of
H are n-Chebyshev sets. We consider approximation in the n-norm; hence if M is
a subspace of H and x € H, then x = Y4(x) means 7n(x) =1 and 5(x) < n(x - m), for
all m € M. We now claim that

*) inf{dzn(x - tm)

dtz :G(m) =1, X="bspan{m} (X)} >0.

t=0

To prove (*), it clearly suffices to show that d20(x - tm)/dt?| +=0 is bounded below

for all such m and x. Pick such an m, and let M = span {m}. By direct computa-
tion, the o-derivative is (1/0(x))(o(m)? - (x, m)%/0(x)%), where (-, -) is the origi-
nal inner product on H. But o(m) =1 and 1 = n(x) > 0(x), whence this derivative is
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at least (1 - (x, m)?/0(x)%). We now prove that (x, m)2 < o(x)% - (k + 1)-2 (if we
grant this, it follows that the derivative in question is at least (k + 1)-2). To esti-
mate (x, m)? we first note that the o-distance from x to M is at least (k+ 1)-1.
For suppose that there is z € M with o(x - z) < (k+1)"! . Then 7(x - z) < 1,
since 5 (-) < (k + 1)o(-); but this contradicts x = ¢4(x). Now let Q denote the
orthogonal projection of H on M; that is, let Q be the 0-BAO supported by M.
Then

1l

(x, m = (Qx, m¥ < 0(Qx)® = 0(x)? - o(x - Qx)?

0(x)? - o-dist (x, M < o(x)%- (k+1)"2,

This completes the proof of (*).

To obtain our examples, we choose H to be R™, ¢ to be the usual euclidean
norm on R™, and p to be the norm of ¢P(n, w), where 2 < p <« and w is an arbi-
trary n-tuple of positive weights. Because all norms on R™ are equivalent, there
exist positive constants ¢ and k for which co(-) < p(:-)<ko(-). We now set
n(-)=p(-)+ o(-), and we claim that (R™, ) has property (UL). Indeed if M is
the subspace spanned by a o -unit vector m, then (*) together with the differenti-
ability of n allows us to deduce from Theorem 2 that P}(x, y) exists if x = y;(x)

P;lg(y)m = {m, Y>x(<m, m>x)'l m

and 7(y) = 1. In fact,
-1
3% n(x + sm + ty) d?n(x - sm) ) m
s=t=0 dSZ s=0 |

osot
We now show that sup { IP;{qu(y)l: o(m)=1 and M = span {m}, x = y,(x),
n(y) = 1} <. If we grant this, then the uniform Lipschitz property of (R®, 77) is a
consequence of Theorem 1(b) and Proposition 3. But the content of (*) is exactly the

Pux, y)

assertion that the set of numbers { <m, m > X} is uniformly bounded below over all

such x and m. Therefore it suffices to verify that the numbers g, (y) = <m, y )X
are uniformly bounded above. But this is quite straightforward: we simply perform
the indicated differentiation and make several applications of the Schwarz-and-
Holder inequalities. In making these estimates, we use the following relations: if
7(z) = 1, then

o(z), p(z) <1, 1/o(z) <k+1, 1/p(z) <1+ct;

also, p(m) <k, since o(m) = 1.

Remarks on Example 1. (a) The ¢P(n, w)-norm as the perturbing seminorm p
was a convenient choice, because of its differentiability and the ease with which its
derivatives could be bounded. Although other choices for p will work, some care
must be exercised in making the choice. For example, it can be shown that if we
perturb the euclidean norm ¢ on R® by adding the seminorm |(-, x¢)|, where Xy is
a fixed nonzero vector in R®, then the resultant space does not have property (UL).
(b) Our results in this example, together with the negative results for LP-spaces
(p # 2) as presented in Theorem 5, suggest that a Banach space X has property (UL)
only if its unit sphere S is sufficiently “curved”. Indeed, the essential part of the
argument in Example 1 is the bounding away from zero of a measure of the curvature,
namely (*). On the other hand, for p # 2 the LP-spaces do not have this property,
and, in fact, their spheres are “flattened” at certain points.
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EXAMPLE 2. A non-Lipschitzian BAO supported by a one-dimensional sub-
space of 4P (p > 2). By (P we mean LP(Q, S, u), where © = {1, 2, --- }, S is the

family of all subsets of ©, and p({n})=1 for n=1, 2, ---. Define m € (P by
2 2
m = (1, 1, %, -;—, %) , (—;—) , ), and let M = span {m}. In the notation of the

proof of Theorem 5, we shall show that

sup {Q(m, X)/S m? |x|P-2du: x = v,bM(x)} = 4o

which will prove that Py, is not Lipschitzian. Let
X = z'l/P(O’ O: T 0, —1: 12 0, 0) "')3

where the nonzero elements occur in the (2i - 1)st and (2i)th places; then
X = WM(Xi)- But

o0

o 1/q -1
Q(m, ’S)/S m? |x; [P~2dp = (j‘z ]mjlqlxiﬂq(P-Z)) (E m{ |Xij|p'2)

j=1

- (2-23.2719.9a2-P/Pyl/a (9. 92 521 5(2-P)/p)-1 _ oll/q)+i-2

which is unbounded as i — <o,

EXAMPLE 3. An infinite-dimensional subspace of (P that supports a nondiffer-
entiable BAO without the pointwise Lipschitz property. The space (P is the same
as in the previous example. From Theorem 5 we know that if 1 <p <« (p #2),
then for each k > 0 there exists a line L in ¢P(3) spanned by a unit vector m, an
x = ¥1,(x), and a unit vector y such that Pj(x, y) exists and equals cm with ¢ > k.

Here (P(3) means ¢P(3, w) with w; =1 for all i. Now, for n=1, 2, ---, let X, be
the subspace of ¢P consisting of all z = (z;, z2, ***) such that z; = 0 if
i#3n-2,3n-1, 3n, and let 7,: ¢P — ¢P(3) be defined, for n=1, 2, ---, as the

operator whose value at z € (P is (z3,_2, 23n-1, %3n). BY the results of Theorem
5, we can choose three sequences {my}?, fxrj‘f, {y,}$ of unit vectors, all in
¢P(3), and a sequence {t,}] of reals with the following properties:

(i) lim t,=0;

n — o

(ii) PLn(Xn) = 6, where L is the line in ¢P(3) spanned by my;

(151) | Py, (oo + oy | 2 47|t

Now let M be the subspace of ¢P consisting of all vectors z such that n,(z) € L,
for n=1, 2, ---, and let x and y be the unique elements of ¢P such that

7,(x) = 2% and 7,(y)=2""y,. Then | x(ﬂ <1, llyll €1, and moreover, it is easy
to see that

Pyz) = m < 7, (m) = PLn o 7,(z) for every n.

Thus we find in particular that Py,(x) = 6, while
" Pylx +t,y) " > ||7Tn ° Pp(x +t,Y) H = “ PLn o mu(x + tny)"

IP, @0, +tay ) = 2 [Py (o, + tav) | > 2747 |1

I

2% [ty| > 27 =+ tny) - %]
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Thus the restriction of Py, to the line {x+ty: t real} fails to be Lipschitzian, and,
of course, P),(x, y) does not exist.

EXAMPLE 4. A Chebyshev subspace of codimension 2 that supports a discon-
tinuous BAO. This example also exploits the results of Theorem 5. We begin by
showing that in each ¢P(3) (1 <p <) we can find vectors my, x,, yp such that

@) sup { oy, Ixpllp, Bypllp: 1 <p <o} < oo
(ii) if L, is the line in £P(3) spanned by mp, then PLp(xp) = 6 for all p;

(iii) |yplp decreasesto 0 as p increases;
iv) | PLP(Xp + yp)"p >1

(because we now work with different values of p, we distinguish the norm in ¢P(3)
with the subscript p). To prove this, we first take x,= (0, 1, 1) for all p. We con-

sider the function E(e, p) = e[(1 + 28)p 1. (1+¢)P- 1] Clearly, E is strictly in-
creasing in each variable,

lim E(g, p) = lim E(g, p) = +<  for each € >0, p>1,

& — 00 p—0

while E(0, p) = 0. Thus for each p there exists a unique £(p) > 0 such that

E(e(p), p) = 1, and e(p) decreases to 0 as p — «. Now we set yp = (0, 3e(p), 0) and
my, = (1, £(p), -e(p)), and we claim that conditions (i) to (iv) are satlsfled Clearly
(i) and (111) hold, and (ii) follows readily. Finally, (iv) is certainly satisfied if
PLp(xp + yp) = m,,, which is equivalent to P]_,p(xp +¥p - mp) = 6. But

-1
{ mpsen (e + vy - mp) |xp+ yp - mp|P7 A = -1+ Ee(p), p) = 0;

hence (iv) is also satisfied.

Now let X denote the linear space of all bounded functions defined on the set of
positive integers; any such function is identified with a bounded sequence of real
numbers. We define an operator 7,: X — R3 by

1,(2) = (Z3,,_2, Z35.15 Z3) if z=(z,,2,,*)eXandn=1, 2, -

We now norm X by

oo 1/2
Izl = swp{llmn@)nin=1,2 -} + 2 @!]r,()],)°
n=1
The space (X, || H) is a strictly convex Banach space. Let M be the subspace of
(X, | |) consisting of vectors z such that ﬂn(Z) € L, for n=1, 2, ---. Then M is

a Chebyshev subspace, and 7, o Py = PL on,. Now let x and y be the unique

vectors in X such that 7,(x) = x, and ’ITn(Y) = lynll5ly, for every n. Then
Py(x) = 6, while

IPaC+ [ynllan) ] > 7 0 Pyl + [yl 9)la

IIPLn oﬂn(x'l_ “yn“nY)"n = ||PLn(Xn+yn)"n Z 1:
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for n> 1. But x+ ||y, ,y — x along the line {x+ty:t real} as n — . Thus the 1

restriction of Py, to this line is discontinuous. “
Finally, let Y be the subspace of X spanned by x, y, and M. Then M has codi- l
mension 2 in Y and Py is discontinuous on a line in Y. We claim that (Y, | ||) is .
topologically isomorphic with ¢ , that is, with the space X normed by !
z| w = Sup { Izn|: n=1,2, -+ }. To see this, observe that each element z of Y |
can be written uniquely as a(z)x + b(z)y + c(z), where a and b are continuous linear
functionals on Y, and where c¢ is a projection in L(Y, M). It is easy to see that
M, | |) is topologically isomorphic with ¢ . If the map ¢: Y — £ * is defined by
¢(z) = (a(z), b(z), (c(z));, (c(z))2, *-*), then ¢ is clearly one-to-one, onto, and con-
tinuous; hence ¢-! is continuous.

A conjecture. The space Y of the preceding example is strictly convex, but not
reflexive. It seems unlikely to us that a convex subset of a space that is both reflex-
ive and strictly convex can support a discontinuous BAO.

EXAMPLE 5. A line in a 3-dimensional, uniformly convex space that supports a
BAO without the pointwise Lipschitz property. The computations involved in this
example are completely elementary, but the details are tedious. Hence we shall
simply sketch the salient points. Our Banach space is (R3, 1), where the norm 7
has the form 7(-)=p(-)+ | - |5 (the norm p remains to be defined). We represent
a point p € R3 as p = (%, y, z). Consider the semicircles

Ci:x=+v1-y2, ]y|§1,z=1 and Crix=- 1-y?2, |y|_<_1,z=—1.

Let K be their (compact) convex hull. Then p is the norm whose closed unit ball is
K. Next we develop a formula for computing the p-norm of certain points: if R is
the region

{x,y,2):x<0, y<0, 2>-1, x>y+z, x2+y2>z?}
and p = (x, y, z) € R3, then p(p) = -(y + x4y + z)~1). Since 7 is strictly convex, the
z-axis is an 77-Chebyshev set, and we let P denote its BAO. We observe that
P((0, 1, 0)) = 6 (= (0, 0, 0)), because & is both an £°(3) - best approximation and a
p-best approximation to (0, 1, 0). We claim that P satisfies no Lipschitz condition
at (0, 1, 0). To see this, we first choose an ¥ (0 < % < 1), and we show that

p((%, 1, 0) - (0, 0,2)) > p(X, 1,0) if z>0,
Suppose - —;-\/?{ <z < 0. Then the formula for the p-norm shows that

(& 1, -z)) = 9((-%, -1,2)) = A - 2Dz - 1) 1+ @+ 1+ |2]|D)1/5,
Since dn((x, 1, -z))/dz > 3%2/16 > 0, it follows that Z < -VE/2 if
P((iy 1’ 0)) = (O’ 0’ 2)-

Therefore, n(P(%, 1, 0) - P(0, 1, 0)) = n((0, 0, Z)) > v&/27(0, 0, 1). But
(%, 1, 0) - (0, 1, 0)) = %7(0, 0, 1).
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