ON THE REMOVAL OF SINGULARITIES OF ANALYTIC SETS

Bernard Shiffman

1. INTRODUCTION

The purpose of this paper is to give a measure-theoretic condition guaranteeing
the removability of singularities of an analytic set. Our main theorem, which states
this condition, generalizes a result of Remmert and Stein [8] and is similar to a re-
cent result of Bishop [2].

We write R™ and C" for real and complex Euclidean n-space. By an analytic
set in an open subset U of C" we mean a closed analytic subvariety of U; by an
analytic function on U we mean a complex-valued function holomorphic on U. Sup-
pose E is a closed, nowhere dense subset of U, and A is an analytic setin U - E.
In analogy with the theory of analytic functions, we can regard the points of E as
“singularities” of A and ask whether these “singularities” are “essential” or “re-
movable.” Our main result is the following theorem on the removability of singular-
ities.

THEOREM. Let U be open in C™, and let E be closed in U. Let A be a pure
k-dimensional analytic set in U - E, and let A' be the closure of A in U. If E has
Hausdorff (2k - 1)-measure zevo, then A' is a pure k-dimensional analytic set in U.

In Section 3, we also prove some results concerning the removability of singular-
ities of analytic functions that we apply in the proof of our theorem.

In this paragraph, let U, E, A, and A' be given as above. We let HP denote
Hausdorff p-measure, which we discuss in Section 2. Remmert and Stein proved in
1953 that if E is analytic in U and of dimension less than k, then A' must be analy-
tic in U [8, Satz 13, p. 299]. This result is often referred to as the Remmert-Stein
Theorem, although it is only a special case of the main result of [8]. Our theorem
generalizes this result of Remmert and Stein, since if E is analytic of dimension
less than k, then H2k-1(E) = 0 (see Section 2). In fact, our theorem tells us that A’
is analytic whenever E is a countable union of real %!-submanifolds of (real) di-
mension at most 2k - 2. Bishop proved a similar generalization of this result of
Remmert and Stein, which states that if H2K(E) = 0 and E is contained in an analy-
tic subset of U that does not intersect A, then A' must be analytic [2, Lemma 9, p.
294]. In Section 4, we use the methods of Bishop to complete the proof of our theo-
rem. We also give a proof (Section 5) of an integral-geometric inequality that is
stated without proof in [2].

An equivalent statement of our theorem is the following characterization of
analytic sets:

Let U be open in C™. Then a subset A of U is an analytic set of pure dimen-
sion k if and only if A is the closure (in U) of some complex k-dimensional
submanifold M of U such that

Hek-1(a - M) = 0.
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(Note that M is not necessarily closed in U, but that it must be relatively closed.)
This result follows from our theorem if we let E = A - M; conversely, our theorem
follows from this characterization of analytic sets if we let M equal the set of regu-
lar (simple) points of A. The terminology and basic results concerning analytic sets
that we use in this paper can be found in [5 (see especially Chapter III) ].

2. HAUSDORFF MEASURE

To prove our theorem, we need some elementary results involving Hausdorff
measures. We state these results in greater generality than is necessary for the
purpose of this paper, since the proofs are most apparent in the general setting. For
a more detailed discussion of similar results, the reader can consult the literature
of the foundations of integral geometry—for example [4]. We begin by introducing
our terminology and notation.

Definition. Let u be a nonnegative measure on X. For any function
f: X — [0, +], the upper integral of f is defined as

*
S fdp = inf { ggdu: g is integrable and g > f} .
By convention (throughout this paper), inf @ =+,
We state the following elementary properties of the upper integral:
%k
1) If f: X — [0, +] is such that S fdu = 0, then f = 0 almost everywhere.
Let f : X — [0, +»] for n=1, 2, ---. Then

%k *
2) § lim inf £, dpp < lim inf S £,du,

3) S* 2if,dp < 20 S* f,dy.

Definition. Let A be a subset of a metric space X. Let 6(A) denote the diame-
ter of A, and let

6P(A) = [6(A)]P for p >0,
1 it A=zp,
6%(a) =
0 ifA=¢.

For p>0 and ¢ > 0, define
[>e]
HE(A) = inf { E GP(An): AC UAn and O(An) <g } ,
1

HP(A) = lim HE(A) = sup HS(A).
£—0t >0

We refer to HP as Hausdorff p-measure. For any A C X, HO(A) equals the number
of points of A. These set functions HP (for p > 0) are regular metric outer
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measures, and hence the Borel sets are HP-measurable (see, for instance, [7]). If
A is HP-0 -finite, then H(A) = 0 whenever r > p. If M is an n-dimensional
Riemannian manifold, then M is H"-o0-finite, the compact sets in M have finite
Hausdorff n-measure, and the open sets have nonzero Hausdorff n-measure. (For a
nonnegative integer k, the usual notion of k-volume in a Riemannian manifold differs
from HK by a universal multiplicative constant

7k/2

) ok r(k/2 + 1)

cyx = Volume {x € Rk "x" < %}
See [9], for instance. Many authors refer to cka as Hausdorff k-measure.) It fol-
lows that k-dimensional analytic sets have Hausdorff (2k + 1)-measure zero, since a
k-dimensional analytic set is the union of manifolds of real dimension at most 2k.
One can show that the Hausdorff 2k-measure of a k-dimensional analytic set is lo-
cally finite (see [10, pp. 13-15]), but we do not need this result.

If f: X — Y is a mapping of metric spaces, we write

at@), 1) _ .,

Lip(f) = sup @ D) =

a#b

and we say that f satisfies a Lipschitz condition of order 1 (f € L;) if Lip(f) <+,
A subset A of a metric space X is said to be of type L(p, c), for 0 < ¢ <+, if
there exists 6 > 0 such that HP(B) < ¢ 6P(B) for all B ¢ A with diameter smaller
than 6.

Each compact, n-dimensional Riemannian manifold is clearly of type L(n, ¢) for
some constant c¢. It can be shown that R" is of type L(n, 1) (see [9]), and hence
each compact Riemannian manifold is of type L(n, 1 + ¢) for all positive €.

Let HP denote the restriction of HP to the Borel sets, and write
* * *
S f(x)dPx = S f(x)dBP (x) = 5 fafiP.

The following fundamental inequality is our basic measure-theoretic tool.

LEMMA 1 (Federer). Let X and Y be metvic spaces, and let T map X into Y,
with Lip(f) =x <+, Let a >0, B> 0, and suppose that £(X) is of type L(8, c)
and HYTP(X) <+, Then

*
{2l yndPy < erfr(x).

Federer proved a more general version of Lemma 1 [4, p. 243]. We give an ele-
mentary proof of our version: Pick & as in the definition of L(B, ¢). Let AC X
with 8(A) < 6/(x + 1), and let B = f(A). Then 6(B) < A6(A) < 6, and therefore

* ~
S 5%(a N1 Yy)dPy < s%(A)HE®B) < caP o2tB(a).
Let € < 6/(A + 1), and pick a covering {A,} of X such that

5(Ap) <& and 2 0%PA)) < HIYAX)+¢.
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Then, by the above inequality and property 3 of the upper integral,
*
5 HY(Ey)dPy < e 6@ ha ) < cA3H§+B(x) +eaPe
and therefore
* *
{ % onefy < 1imins 5 HY, (1) y < e u**Bx),

COROLLARY 1., Let X be a metric space, and let a € X. Then
*
H%(S,.(a)) dlr < HY (X))  for a >0,
[0,+)
where S_(a) = {x € X: d(x,a)=r}.
Proof. Consider the function f: X — [0, +«) given by #(x) = d(x, a).

COROLLARY 2. Let HY(X) =0, and let a € X. Then S_.(a) is empty for (H!)-
almost all r.

COROLLARY 3. If HMU(X) = 0, then the topological dimension of X is at most
n.

Our proof of Lemma 1 was inspired by Hurewicz and Wallman’s proof [6, pp.
104-105] of Corollary 3.

COROLLARY 4. Let A be an arbitrary subset of R", let a >0, and let
Rn — RK denote the projection onto the first k coordznates

(i) I Hk+a(A) =0, then H*(A N 71121 (x)) = 0 for (HX)-almost all x € RX,
(ii) If HEYO(A) <+, then HE(A N T 1(x)) <+ for (HX)-almost all x € RE.

LEMMA 2. Let Y be an avbitrvary subset of C* with 0 ¢ Y, and let a > 0. If
H2ktQ(Y) = 0, then theve exists a complex (n - k)-plane P through O such that

HY(Y N P) =
Remark. If a > 0, the hypothesis 0 ¢ Y is inessential. If o = 0, the conclusion
asserts that Y N P = @.

Proof. We use downward induction on k. If k = n, the lemma is trivial. Now
suppose the lemma is true for k + 1, and let Y be given as above. Then the Haus-
dorff (2k + 2 + a)-measure of Y also vanishes; therefore we can pick a complex
(n - k - 1)-plane Q through 0 such that H¥(Y ﬂ Q) = 0. After rotating the coordi-
nate system, we may assume that

= {Zl =T F Zpyy T 0}.
Let

7: C? - Q — PX = complex projective k-space

be defined by 7(z;, ***, zn) =[z;, ***, Zx41 |. Let
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Y, ={ze¥Y: |22+ +]|21|2>1/m} form=1,2 -

Since 7 | Y., satisfies a Lipschitz condition of order 1 and Pk isa compact 2k-
dimensional Riemannian manifold, we conclude by Lemma 1 that

HO‘(Ym Nnr-lw)) =0 for (H2X)-almost all w € pk
Since Y=(Y NQ) U ( mYm) , there exists wg € PX such that
HA(Y N 771 (wy)) = 0,
and P = 7r‘1(w0) is our desired (n - k)-plane. W

In fact, almost all (n - k)-planes P through 0 have the property that
HY(Y N P) =0 (see Section 5).

3. REMOVING SINGULARITIES OF FUNCTIONS

In this section we derive measure-theoretic criteria guaranteeing the removabil-
ity of singularities of analytic functions. In Lemma 3 we state several results that
generalize some elementary results in one complex variable. We shall use a special
case of Lemma 3 (stated as Lemma 3') in Section 4. Many of the ideas of this sec-
tion were suggested to the author by Professor Bernard Kripke. Here and in the
following sections, we write 0™ = (0, ---, 0) € C™,

Definition, For o > 0, we say that a mapping f: X — Y of metric spaces satis-
fies a Lipschitz condition of order a (f € L) if

LT () I
a#b d(a’ b)
The following lemma generalizes some elementary results from the theory of
functions of one complex variable.

LEMMA 3. Let U be open in C", and let E be a closed subset of U. Let f be
an analytic function on U - E. Then f can be extended to an analytic function on U
if one of the following conditions is satisfied:

(1) H""4(E) = 0;

(ii) f is bounded and H?>*~1(E) = 0;
(iii) £ can be extended to a continuous function on U, and H22-1(E) < 4w
(iv) for some « in the vange 0 < a <1, f € Ly, and H2o-ltmy = g,

The proof of Lemma 3 for n =1 is elementary: case (i) is a tautology; cases (ii)
and (iii) are proved in [1]; and case (iv) can easily be established by the methods of
[1]. We now prove Lemma 3 for n > 1, utilizing the result for n = 1.

In all cases, H2%(E) = 0; therefore E is nowhere dense. Consider an arbitrary
point p of E, and assume without loss of generality that p = 0. We first consider
cases (i) and (ii). By Lemma 2, we can pick a complex line L through 0" so that
HI(E N L) = 0. Rotate coordinates so that L. = {z; =--- =z,_; =0}. By Corollary

n —
2 of Lemma 1, we can pick an open disk D about 0 in C! such that 0*-! xDc U
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and (0" ! x3D) N E = . Since E is closed in U, there exists an open neighborhood
W of 0n-1 in Cn-! such that WX D C U and (W x3D) N E = . Define

1 £(z1, +++, Zno1, €) a

p for z € WXD,.
2mi D € -z

g(z) =

n

Consider the complex lines L, = w X C! for we W. For case (i), let
F={we W:ENL, #@}; and for case (ii), let F= {we W: H/(E n L,,) > 0}. By
Corollary 4 of Lemma 1, H2n-2(F) = 0. Therefore the set of points w € W such that

g #FfonwXxD-E

is an open subset of F, and hence it is empty. Therefore g extends f | (WXxD ~ E).
Since g is analytic, these cases are proved.

Now consider cases (iii) and (iv). We can assume that f is a continuous function
on all of U. Using the original coordinates, we define g as above, where W and D
are chosen so that W X D C U. For case (iv), let F= {w ¢ W: HIt%(E n Ly,) > 0},
and for case (iii), let F= {w ¢ W: HL(E N Ly) =+~ }. Proceeding as before, we
conclude that

g =1f|WxD.

Hence f | W X D is analytic with respect to z, and is similarly analytic with re-
spect to each z, (1 <k <n). Therefore { is analytic in WX D. ®

We recall the definition of a negligible set.

Definition. Let U be open in C™,' A subset E of U isnegligible in U if E is
closed in U and nowhere dense in U and if for each open subset V of U, each
bounded analytic function f on V - E can be extended to an analytic function on V.

Note that we require negligible sets to be closed. In the proof of our main theo-
rem, we shall use case (ii) of Lemma 3, which we now restate.

LEMMA 3'. Let U be open in C?., Then each closed subset of U with Hausdorff
(2n - 1)-measure zevo is negligible in U.

Lemma 3' contains as a special case a theorem of Bochner and Martin [3, Theo-
rem 6, p. 174].

4, REMOVING SINGULARITIES OF ANALYTIC SETS

Before we can prove our main theorem, we need a simple criterion for recogniz-
ing analytic sets.

LEMMA 4. Let S and T be open in CX and CL, respectively. Let X be a
closed subsel of S X T, and let n: X — S be the projection into the first k coordi-
nates. Assume that n is proper, and that theve exists a (closed) negligible subset F
of S such that the set Xo=X - 7-YF) is dense in X and is a pure k-dimensional
analytic set in (S - F) X T. Then X is a pure k-dimensional analytic set in S X T.

Our proof of this result is taken from Bishop’s proof [2, pp. 293-294] of the re-
sult of Remmert and Stein mentioned in Section 1 of this paper. Our terminology is
that of [5, Chapter III, Section B]. Assume without loss of generality that S is
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connected. Let Sy =8 - F. Then S, is connected, and 7y =7 | X5: Xy — S is an
analytic cover. Let A denote the number of sheets of 7;, and write

7T61(P) = {/‘1, ".’ﬁh}’

each point of 75! (p) appearing in {/’1 , ***, fixt as often as its branching order in-

dicates, for any p € Sg. Let z0 = (pY, q°) € S X T - X be arbitrary. To prove that
X is analytic, we shall find an analytic function on S X T that vanishes on X but not
on z0 ., Pick a sequence pn € Sg such that p? — p? . By taking a subsequence, if
necessary, we may assume that 4! — x; € X for 1 <1i <], since 7 is proper.

Choose a linear function g on Ck*L such that
g(z0) # g(x;) for 1<i<a.

Define f: S; X T — C by
A
f(p, a) = II [glp, q) - g(p,)] for pesS , qe T.
i=1

We can rewrite f in the form
A-1

f(p, @) = glp, ™ + 27 a.(p)elp, a)t,
i=0

where a;(p) = 0;(g(#), -, g(#,)), the 0, being the elementary symmetric poly-
nomijals. Since my: Xy — S is an analytic cover, the a; are analytic on S;. Since
the a, are also bounded in every compact subset of S and F =S - Sj is negligible,
the a; extend analytically to S, and therefore we can extend f to an analytic function
f' on S X T. Since f vanishes on the set X, which is dense in X, f' vanishes on X.
Finally,

A

£'(z0) = £'(p°, ¢°) = lim £(p®, q°) = lim I [g(p™, q°) - g(AD)]
i=1

Il

A
II [g(z°) - g(x))] = 0.
i=1

Therefore X is analytic. Since X; is dense in X and of pure dimension k, X must
also be of pure dimension k. ®

We now use this lemma to prove our main theorem.

Let U, E, A, and A' satisfy the conditions in the theorem, with H2k-1(E) = 0,
Let '#(A) denote the set of regular points of A. Let z% = 0% be an arbitrary point of
U. For any complex (n - k)-dimensional subspace P of C", let mp denote the
orthogonal projection (along P) mapping C" onto the subspace orthogonal to P. In
order to apply Lemma 4, we shall need a P such that P N A' has topological dimen-
sion zero and 7p | A has rank k on a dense subset of #(A). We choose a countable
dense subset {x;} of #(A), and we let Q; be the tangent plane of #(A) at x; re-
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garded as a k-plane through 0" in C" (by identifying C" with the tangent plane to
C™ at x; in the usual way). Since each Q; has real dimension 2k, and since
A'C A JE, the set

=(UQi) UA

has Hausdorit (2k + 1)-measure zero. By Lemma 2, there exists a complex (n - k)-
plane P through 0™ in C® such that H(P N Y) = 0, and therefore

a) PN A' has topological dimension zero, and
b) PN Q; = {07} for each i.

Thus 7p | A has rank k at each x;, and P has the desired properties. Therefore,
the set

R'(A) = {x € ®(A): rank (7o |A) = k}

is an open dense subset of A. Make an orthogonal change of coordlnates (leaving O™
fixed) such that P = {z; = -+ =2, =0}. Since PN A' = (0K x C*"K) 0 A" has topo-
10g1ca1 dlmensmn zero, there ex1sts a bounded open neighborhood T of 0™-¥ in
c?-k guch that 0K X T c U and (0KxaT)Nn A' = @. Choose an open neighborhood S
of 0K in Ck such that SXT C U and (SX3T) N A' =@. Let

X=A'N{ESxT).
Then the projection (into the first k coordinates)
T =Tp |X: X—-S

is proper. Let F =a(X N E). Since 7 is proper and decreases distance, F is
closed in S and H2K-1(F) = 0. Therefore, by Lemma 3', F is negligible in S. Let

Xo=X-7"YF)=AN[S-F)xT].

We can now apply Lemma 4 to conclude that X is analytic of pure dimension k, pro-
vided we verify that X, is dense in A N (S X T). Supposing the contrary, let V be a
nonempty open subset of A N (S X T) such that #(V) C F, and choose an

x € VNA'(A). Since 7 has rank k at x, n(V) contains a neighborhood of 7(x),
contradicting the fact that F is nowhere dense. Thus the hypotheses of Lemma 4
are satisfied. ®

5. REMARKS

In this section, we show how the methods of Section 2 yield a proof of an integral-
geometric inequality stated without proof by Bishop [2, p. 290]. (Stolzenberg
sketched a rather difficult proof {10, pp. 39-42] of this inequality.) In Lemma 5 we
state Bishop’s inequality in a general form.

We denote the (complex) Grassmann manifold of complex k-dimensional sub-
spaces of C" by M, . The real dimension of M, K is 2k(n - k). Let p be the in-
variant Borel measure on M,,  associated with a given metric on M,, , that is
invariant under the action of the unitary group and normalized so that (M, x =1
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LEMMA 5. There exist universal constants a, (for n > 2) such that

*
S HY(Y N P)du(P) < a, HZKT(y)
1\/In,n-k
for @ >0, 0<k<n,and each set Y {z € C™ |z| > 1}.
Proof. Fix k and n, and let M =M, ,,_x. Let

T.(z) = {Pe M:d(z, P) <r} dfor ze C".

Fix a unit vector ey € C , and let N= {P € M: ¢y € P}. Then N=M,_} y_k.; iS
a submanifold of M with real codimension 2k. For r > 0, let

N,={Pe M:dpy(P,N) <r}.

Estimating the volume of a tube about a compact submanifold by the technique of
[11], we see that u(N.)/(cr2k) — Volume (N) as r — 0 (where cr2k is the volume of
a ball of radius r in R2K), Since T,.(eg) C N, for r < 1/2, where ¢' is an appro-
priate constant, we can therefore choose a constant a,, such that u [Tr (eg )<L aank
for r < 1/2. Now consider any nonempty set A C Y with 6(A) < 1/2, and let a € A.
Then

(" o%a n Pyanee) < %@ (@),

where B= {P ¢ M: ANP #@}. Since B C Tg(a)(a), we have the inequalities

2k
n(B) < ulTop) @] = nlTsa) /o (€)] < an[ﬁ < a, 6%%(a).

Therefore

S* 6%(A N P)ap(P) < a, 62KFQ(A),

Our result follows from this inequality exactly as in the proof of Lemma 1.

Bishop uses the inequality of Lemma 5 to obtain a lower bound on the volume of
certain analytic sets [2, Corollary 2, p. 299] which he then uses in the proof of the
following result [2, Theorem 3, p. 299]:

THEOREM (Bishop). Let U be open in C*, let E be an analytic set in U, and
let A be a pure k-dimensional analytic set in U - E. If H2K(A) is finite, then
A N U is analytic in U.

The following stronger form of Lemma 2 is an immediate consequence of Lem-
ma 5:

COROLLARY. Let Y be an arbitvary subset of C* with 0 ¢ Y, and let o > 0.
If H2KYO(Y) = 0, then
H*(Y NP) =0 foralmostall P € My, , x.

In fact, if Y is also assumed to be of type %, then it can be shown that the set of
P such that H¥(Y N P) > 0 is of type Fo and is therefore also of the first category
(in M, ,_x), since a closed set with volume zero is nowhere dense.
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