CYCLOTOMIES AND DIFFERENCE SETS MODULO A PRODUCT OF TWO DISTINCT ODD PRIMES

Thomas Storer

1. INTRODUCTION

A theory of cyclotomy modulo a product of two distinct odd primes was developed in [5], where it was used in the construction of a family $\{W_e\}$ of difference sets. Necessary and sufficient conditions for the existence of W_e -difference sets were given, with a detailed analysis of the cases e=2, 4. In [1] it was shown that W_6 -and W_8 -difference sets do not exist, and it has been conjectured that those of type W_{2n} exist for no n>2.

The purpose of the present paper is to investigate some other cyclotomies modulo a product of two distinct odd primes, and to determine necessary and sufficient conditions that certain subsets of the above residue systems constitute difference sets.

2. CYCLOTOMY MODULO A PRODUCT OF PRIMES

Throughout the paper, p and q denote distinct odd primes, ζ and η divisors of p - 1 and q - 1, respectively, and g an integer modulo pq that belongs to the exponents $\frac{p-1}{\zeta}$ modulo p and $\frac{q-1}{\eta}$ modulo q. Further, we define

$$e = g.c.d. (p - 1, q - 1), \quad \epsilon = g.c.d. \left(\frac{p - 1}{\zeta}, \frac{q - 1}{\eta}\right), \quad f = \frac{p - 1}{e}, \quad f' = \frac{q - 1}{e}, \quad d = eff'.$$

If g has d distinct powers modulo pq, we call g a *generator* (or, alternately, a *quasi-primitive root*) of pq; when $\zeta = \eta = 1$, g is called a *primitive root* of pq. We shall be concerned with the special case $\zeta = 1$.

LEMMA 1. If g' is a primitive root of q, and if g is a generator of pq and

$$x \equiv 1 \pmod{p}$$
 and $x \equiv g' \pmod{q}$,

then the de integers

$$g^{s} x^{i}$$
 (s = 0, 1, ..., d - 1; i = 0, 1, ..., e - 1)

constitute a reduced residue system modulo pq.

This lemma (as well as further lemmas whose proofs we suppress) can be proved by techniques developed in [5]. We remark that, if η is odd, then g is a nonsquare modulo q. Also, $\alpha = g.c.d.(\eta, f') = 1$, since otherwise $g^{d/\alpha} \equiv 1 \pmod{pq}$.

COROLLARY 1. There is an integer μ : $0 \le \mu \le d - 1$ such that $x^e \equiv g^{\mu} \pmod{pq}$.

Received June 2, 1966.

Supported by a National Science Foundation Post-doctoral Research Grant.

COROLLARY 2. There is an integer ν : $0 \le \nu \le d-1$ such that

$$-1 \equiv \begin{cases} g^{d/2} \pmod{pq} & \text{if } ff'\eta \text{ is odd,} \\ g^{\nu} x^{e/2} \pmod{pq} & \text{if } ff'\eta \text{ is even.} \end{cases}$$

For the fixed elements g and x, we now define the *cyclotomic classes* C_i ($i = 0, 1, \dots, e - 1$) by the rule

$$C_i = \{g^s x^i \pmod{pq}: s = 0, 1, \dots, d - 1\}.$$

For fixed i and j, the *cyclotomic number* (i, j) is the number of solutions modulo pq in s and t (s, $t = 0, 1, \dots, d - 1$) of the trinomial congruence

$$g^s x^i + 1 \equiv g^t x^j \pmod{pq}$$
.

LEMMA 2. The cyclotomic numbers satisfy the following relations.

(i) (i, j) = (i
$$\pm$$
 ae, j \pm be) for all integers a and b;

$$(ii) (i, j) = (e - i, j - i);$$

(iii)
$$(i, j) = \begin{cases} (j, i) & \text{if } ff' \eta \text{ is odd,} \\ \left(j + \frac{e}{2}, i + \frac{e}{2}\right) & \text{if } ff' \eta \text{ is even;} \end{cases}$$

(iv) if $-1 \in C_I$, then

$$\sum_{j=0}^{e-1} (i, j) = \frac{(p-2)(q-1)}{e} - \eta \frac{p-1}{e} \gamma_i + \delta_i,$$

where
$$\gamma_i = \begin{cases} 1 & \text{if } I + i \equiv 0 \pmod{\eta}, \\ 0 & \text{otherwise} \end{cases}$$
 and $\delta_i = \begin{cases} 1 & \text{if } i = I, \\ 0 & \text{otherwise}. \end{cases}$

LEMMA 3. η | e.

Proof. g belongs to the exponent $\frac{(p-1)(q-1)}{\epsilon\eta} = \frac{(p-1)(q-1)}{\epsilon} = d$ modulo pq.

When $\eta = 1$, the discussion reduces to the case where g is a primitive root of pg [5].

LEMMA 4. (i) Let g^* be a primitive root of q other than $g^!$, and use Lemma 1 with g^* in place of $g^!$ to define an integer $x^* \equiv g^u x^k \pmod{pq}$. Then g.c.d.(k, e) = 1, and if $(i, j)^*$ are the cyclotomic numbers corresponding to g and x^* , then

$$(i, j)^* = (ki, kj).$$

(ii) For each η there are $\varphi(\epsilon)$ disjoint classes G_i (i = 0, 1, …, $\varphi(\epsilon)$ - 1) of generators g of pq characterized by the following: If $g \in G_i$ and g.c.d. (r, d) = 1, then $g^r \in G_i$.

Proof of (ii).
$$\phi(p-1)\phi\left(\frac{q-1}{\eta}\right) = \phi(\epsilon)\phi(d)$$
.

We remark that for fixed x, the elements g and g^r generate the same cyclotomy modulo pq.

3. DIFFERENCE SETS MODULO pq

We define several subsets of the integers modulo pq:

$$P = \{ap: a \in RRS \pmod{q}\},\$$
 $Q = \{aq: a \in RRS \pmod{p}\},\$
 $Q^* = \{aq: a \in CRS \pmod{p}\},\$
 $P^1 = \{ap: (a/q) = -1\},\$
 $P^2 = \{ap: (a/q) = +1\}.$

For each pair g and x, we define the sets

$$D_1 = C_0 + Q^*, \quad D_2 = C_0 + P^1 + Q,$$

and we shall discuss conditions under which D_i constitutes a difference set modulo pq in terms of η .

The following lemma is independent of η .

LEMMA 5. (i) If α is an element of P^1 , then the number of solutions of the congruence $\beta - \gamma \equiv \alpha \pmod{pq}$ $(\beta, \gamma \in P^1)$ is

$$\frac{q-5}{4} if q \equiv 1 \pmod{4}, \quad \frac{q-3}{4} if q \equiv 3 \pmod{4}.$$

(ii) If α is an element of P^2 , then the number of solutions of the above congruence is

$$\frac{q-1}{4} if q \equiv 1 \pmod{4}, \quad \frac{q-3}{4} if q \equiv 3 \pmod{4}.$$

Proof. The number of solutions in (i), for example, of our congruence is precisely the number of times that the difference of two nonsquares is again a nonsquare modulo q.

4. THE CASE
$$\eta = 1$$

It was shown in [5] that D₁ forms a difference set modulo pq if and only if

A(i)
$$q = (e - 1)p + 2$$
,

A(ii)
$$(i, 0) = (e - 1) \left(\frac{p-1}{e}\right)^2$$
 $(i = 0, 1, \dots, e-1)$.

Quite similarly, it can be shown that D_2 forms a difference set modulo pq if and only if

B(i)
$$q = 4(e - 1)(\frac{p - 1}{e}) - 1$$
,

B(ii)
$$(0, 0) = (i, 0) + 3 = \frac{(p-1-e)(q+e^2-2e-1)}{e^2} + (e-1) \quad (i = 1, 2, \dots, e-1).$$

LEMMA 6. If $\eta=1$, then for no primes p and q does D_2 form a difference set modulo pq.

Proof. Let

$$M = (i, 0) = \frac{(p-1-e)(q+e^2-2e-1)}{e^2} + (e-4) \qquad (i = 1, 2, \dots, e-1).$$

Then

$$\sum_{i=0}^{e-1} (i, 0) = (e-1)M + (M+3) = \frac{(p-2)(q-2)-1}{e} + 1,$$

so that $e^2 M = (p - 2)(q - 2) - 2e - 1$. Substituting the value of M into this equation and simplifying, we find that

$$q = (e - 1)(p - 3) - 1$$
,

which, together with condition B(i), implies that $\frac{p-1}{e} = \frac{p-3}{4}$, whence e=6 and p=7. Then B(i) gives q=19; but both inequivalent cyclotomies modulo $7 \cdot 19 = 133$ have (0,0)=0 for $\eta=1$, in violation of B(ii).

5. THE CASE
$$\eta = 2$$

LEMMA 7. A necessary condition that D_i (i = 1, 2) be a difference set modulo pq is that $q \equiv 3 \pmod{4}$.

Proof. Suppose $q \equiv 1 \pmod 4$. Exactly one of the elements 1 - nq $(n = 0, 1, \dots, p - 1)$ is congruent to mp modulo pq. If (m/p) = 1 (or (m/p) = -1), then

$$g^{s}(1 - nq) = m'p$$
 and $\left(\frac{m'}{p}\right) = 1$ $\left(or\left(\frac{m'}{p}\right) = -1\right)$.

Hence only P^2 (only P^1) occurs among the C_0 -Q-differences. Further, since (-1/q) = 1,

$$\left(\frac{g^{s}(1-nq)}{p}\right) = \left(\frac{g^{s}(nq-1)}{p}\right).$$

But P occurs among the C_0 - C_0 -differences $\left(\frac{p-1-e}{e}\right)\left(\frac{q-1}{e}\right)$ times.

Now consider D_2 . Arguing as above, we can show that, exclusive of the P^1-P^1- differences, P^1 and P^2 each occur an even number of times. But P^1 and P^2 occur $\frac{q-5}{4}$ and $\frac{q-1}{4}$ times, respectively, among the P^1-P^1 -differences.

We now examine the ways in which elements of P and Q (or P and Q*) can arise among the D_i - D_i -differences (i = 1, 2) for $q \equiv 3 \pmod{4}$.

LEMMA 8. The number of solutions of the congruence $x - y \equiv z \pmod{pq}$ is

(i)
$$\frac{(p-1)(q-1-e)}{e^2}$$
 (x, y \in C₀, z \in P),

(ii)
$$\eta \frac{(p-1-\varepsilon)(q-1)}{e^2}$$
 $(x, y \in C_0, z \in Q \text{ or } z \in Q^*),$

(iii)
$$\frac{q-3}{4}$$
 (x, y \in P¹, z \in P),

(iv) p
$$(x, y, z \in Q^*),$$

(v)
$$p - 2$$
 (x, y, $z \in Q$),

(vi)
$$\eta = \frac{p-1}{e}$$
 (x \in C₀, y \in Q or y \in Q*, z \in P),

(vii)
$$\left[1-\left(\frac{p}{q}\right)\right]\frac{q-1}{e}$$
 (x \in C₀, y \in P¹, z \in Q).

Proof. (ii) Consider the differences

$$g^{i+m(q-1)/\eta} - g^{i} = (m = 1, \dots, \frac{p-1-\epsilon}{\epsilon}; i = 0, \dots, d-1).$$

There are $\frac{p-1-\epsilon}{\epsilon}$ classes of differences, each class containing p-1 distinct elements, and each element occurring $\frac{q-1}{e}$ times.

(vi) The proof is contained in the proof of Lemma 7.

(vii) If $(\alpha/q) = -1$ and the congruence $1 - \alpha p \equiv nq \pmod{pq}$ has solutions, then it has exactly one, and in this case

Q =
$$\{g^{i}(1 - ap) \pmod{pq}: i = 0, 1, \dots, p - 2\}$$
.

(Whether such an α exists clearly depends upon the quadratic character of p with respect to q.) Hence each element $z \in Q$ occurs $\frac{q-1}{e}$ times among the C_0-P^1- differences; similarly, it occurs $\frac{q-1}{e}$ times as a P^1-C_0 -difference. Otherwise, the element z does not occur.

From Lemmas 7 and 8 we get immediately the following necessary conditions for D_i (i = 1, 2) to be a difference set modulo pq when η = 2:

(1) When $\eta = 2$, D_1 is a difference set modulo pq only if

$$q \equiv 3 \pmod{4}$$
 and $q = -\frac{(e^2 - e - 1)p + (2e + 1)}{p - (e + 1)}$.

(2) When $\eta = 2$, D_2 is a difference set modulo pq only if

$$q \equiv 3 \pmod{4}$$
 and $q = \frac{(1+2\varepsilon-4\varepsilon^2)p - [1+2(\varepsilon\pm\varepsilon)-5\varepsilon^2]}{p - (1\pm\varepsilon)^2}$,

where the + or - sign is chosen, throughout, according as (p/q) = +1 or (p/q) = -1.

It is clear from the second condition in (1) that when $\eta=2$, D_1 cannot form a difference set modulo pq for any primes p and q, since $e+1 \le p$. We now examine the case for D_2 with $\eta=2$ for the first few values of $\epsilon=e/2$ (note that $p<(1\pm\epsilon)^2$):

If
$$\epsilon = 1$$
, then $p = 3$ and $q = 1$ or $q = \frac{1}{3}$.

The case $\varepsilon \equiv 0 \pmod{2}$ cannot occur, since $q \equiv 1 \pmod{e} \equiv 3 \pmod{4}$.

If
$$\epsilon = 3$$
, then $p = 7$, $q = 19$ or $p = 13$, $q = 115$.

If
$$\epsilon = 5$$
, then $p = 11$ and $q = 35$ or $q = 171$; or $p = 31$, $q = 531$.

If
$$\epsilon = 7$$
, then $p = 29$ and $q = \frac{719}{5}$ or $q = 715$; or $p = 43$, $q = \frac{1081}{3}$.

If $\epsilon = 9$, then p = 19 and q = 67 or $q = \frac{599}{5}$; or p = 37 and $q = \frac{1213}{7}$ or q = 403; or p = 73, q = 811.

Hence, for $e \le 20$, $\eta = 2$, there are two possibilities:

e = 6; p = 7, q = 19
e = 18: p = 73, q = 811
$$(p/q) = 1$$
,

whence
$$\lambda = \frac{(p-1)(q-1-e)}{e^2} + \frac{q-3}{4} + \eta \frac{p-1}{e} = 8$$
, 386; respectively.

Proceeding as in Lemma 8, we find that for $\eta = 2$, D_2 forms a difference set modulo pq if and only if

(i)
$$q \equiv 3 \pmod{4}$$
,

(ii)
$$q = \frac{(1+2\varepsilon-4\varepsilon^2)p - [1+2(\varepsilon\pm\varepsilon)-5\varepsilon^2]}{p - (1+\varepsilon)^2}$$
,

(iii)
$$\lambda = \frac{(p-1)(q-1-e)}{e^2} + \frac{q-3}{4} + \frac{p-1}{\epsilon} = (0, 0) + \eta \frac{p-1}{e} + N_0 + N_{\epsilon}, \text{ and}$$

(i, 0) = (0, 0) - 1 + N₀ + N_{\epsilon} - N_{\text{i}} - N_{\text{i}} (i = 1, 2, \cdots, e - 1),

where N_i is the number of solutions of the congruence

$$y+1 \equiv z \pmod{pq}$$
 $(y \in C_i, z \in P^1).$

We remark that it is not necessary to construct C_i ($i=1, 2, \cdots, e-1$) in order to evaluate N_i , since N_i is also the number of solutions of the congruence

$$y + x^{e-1} \equiv z \pmod{pq}$$
 $\left(y \in C_0, z \in \begin{cases} P^1 & \text{if i is even,} \\ P^2 & \text{if i is odd} \end{cases} \right)$.

We now examine the set D_2 for the cases where p = 7, q = 19 or p = 73, q = 811.

Case 1.
$$p = 7$$
, $q = 19$; $e = 6$: $v = 133$, $k = 32$, $\lambda = 8$.

There are $\phi(\varepsilon) = 2$ distinct classes of generators modulo 133 for $\eta = 2$:

$$G_0 = \{5, 54, 66, 80, 101, 131\}, G_1 = \{17, 24, 47, 61, 73, 82\}.$$

Let us choose x = 15.

If we let 5 and 17 represent G_0 and G_1 , respectively, then

$$D_2^* = \{1, 17, 23, 125, 130, 82, 64, 24, 9, 20, 74, 61, 106, 73, 44, 83, 81, 47; 14, 21, 56, 70, 84, 91, 98, 105, 126; 19, 38, 57, 76, 95, 114\}$$
 modulo 133.

For D_2 , we find directly that

$$N_0 = 1$$
, $N_1 = 1$, $N_2 = 2$, $N_3 = 3$, $N_4 = 1$, $N_5 = 1$

and (0, 0) = 2, (1, 0) = 3, (2, 0) = 2. Hence

$$(i, 0) = (0, 0) - 1 + N_0 + N_{\varepsilon} - N_i - N_{i+\varepsilon}$$
 $(i = 1, 2, \dots, 5)$

and

$$\lambda = \frac{(p-1)(q-1-e)}{e^2} + \frac{q-3}{4} + \eta \frac{p-1}{e} = 8.$$

Therefore D_2 forms a difference set modulo 133 with v=133, k=32, $\lambda=8$ [4, page 986].

For D_2^* , we find that

$$N_0 = 3$$
, $N_1 = 1$, $N_2 = 1$, $N_3 = 1$, $N_4 = 2$, $N_5 = 1$

and (0, 0) = 4, (1, 0) = 1, (2, 0) = 2. Now

$$1 = (1, 0) \neq (0, 0) - 1 + N_0 + N_{\varepsilon} - N_i - N_{i+\varepsilon} = (0, 0) = 4;$$

hence D₂* does not form a difference set modulo 133.

Case 2.
$$p = 73$$
, $q = 811$; $e = 18$: $v = 59203$, $k = 3717$, $\lambda = 386$.

It would be tedious indeed to verify the sufficient condition (iii) that D_2 be a difference set modulo 59203; instead, we employ the elementary necessary condition $k(k-1) = \lambda(v-1)$. In this case, we find that

$$k(k-1) < 16000 < \lambda(v-1)$$
.

Hence no difference set occurs in this case.

6. A RELATED CYCLOTOMY; $\eta = 2$, $\varepsilon = e$

When $\eta=2$ and $\epsilon=g.c.d.$ $\left(p-1,\frac{q-1}{\eta}\right)=e$, then $f=\frac{p-1}{e}$, $f'=\frac{q-1}{2e}$, and d'=eff'. Hence g is not a generator of pq. In this case we define x as in the following lemma.

LEMMA 9. Let g' and g" be primitive roots of p and q, respectively, and define x (modulo pq) by the conditions

$$x \equiv g' \pmod{p}, \quad x \equiv g'' \pmod{q}.$$

Then, when $\eta = 2$, $\varepsilon = e$, the 2ed integers

$$g^{s} x^{i}$$
 (s = 0, 1, ..., d - 1; i = 0, 1, ..., 2e - 1)

constitute a reduced residue system modulo pq.

We again define $C_i = \{g^s x^i : s = 0, 1, \dots, d-1\}$ for $i = 0, 1, \dots, 2e-1$, and we easily derive results for this system corresponding to the Lemmas 2, 3, and 4.

7. DIFFERENCE SETS MODULO pq;
$$\eta = 2$$
, $\epsilon = e$

Using the above methods we can prove the following theorem.

THEOREM 1. If $\eta = 2$, $\varepsilon = e$, and f' is even, then the set $C_0 + C_1 + Q^*$ forms a difference set modulo pq if and only if

(1)
$$3q = 2(e+1)p+1,$$

(2)
$$(i, 0) + (i - 1, 0) + (i, 1) + (i + e, 1) = (e + 1) \left(\frac{p - 1}{e}\right)^2 - 2\left(\frac{p - 1}{e}\right)$$

$$(i = 0, 1, \dots, 2e - 1).$$

COROLLARY. If $C_0 + C_1 + Q^*$ forms a difference set modulo pq, then $\lambda = (e+1)\left(\frac{p-1}{e}\right)^2$.

Clearly there is no difference set of the above type for e = 2, for then $0 \equiv 3q \neq 6p + 1 \equiv 1 \pmod{3}$ by the necessary condition (1) of the theorem.

When e = 4, the form of the cyclotomic matrix is

i	0	4	0	0	4	_	0	n
i j	0	1	2	3	4	5	6	7
0	A	В	C	D	E	F	G	H
1	Ι	J	K	L	F	D	L	M
2	N	0	N	M	G	L	С	K
3	J	0	0	I	H	M	K	В
4	A	I	N	J	A	I	N	J
5	I	Н	M	K	В	J	0	0
6	N	M	G	L	C	K	N	0
7	J	K	L	F	D	L	M	I

Array 1.

(by Lemma 2, (i), (ii), and (iii)); therefore condition (2) of the theorem becomes

$$\begin{array}{c}
 A + B + I + J \\
 A + H + I + J \\
 I + M + N + O \\
 J + K + N + O
 \end{array}
 = (e + 1) \left(\frac{p - 1}{e}\right)^{2} - 2\left(\frac{p - 1}{e}\right).$$

Then, a modification of the techniques developed in [2], [3], and [5] can be used to prove the following result.

LEMMA 10. If $\eta=2$, $e=\epsilon=4$, and f' is even, then the inequivalent cyclotomic numbers can be given in the form

$$32A = 4M_0 + 7 + 2a + 3x + 2S + 2X,$$

$$32B = 4M_1 - 1 + 4b + 2c - x + 2y + 2T + 2X + 4Y,$$

$$32C = 4M_0 - 1 + 2a + 4c - x + 2S - 4T - 2X,$$

$$32D = 4M_1 - 1 - 2c + 4d - x - 2y - 2T + 2X + 4Y,$$

$$32E = 4M_0 - 1 - 6a + 3x - 6S - 6X,$$

$$32F = 4M_1 - 1 - 4b + 2c - x + 2y + 2T + 2X - 4Y,$$

$$32G = 4M_0 - 1 + 2a - 4c - x + 2S + 4T - 2X,$$

$$32H = 4M_1 - 1 - 2c - 4d - x - 2y - 2T + 2X - 4Y,$$

$$32I = 4M_1 + 3 - 2c - x + 2y - 2T - 2X,$$

$$32J = 4M_1 + 3 + 2c - x - 2y + 2T - 2X,$$

$$32K = 4M_1 - 1 + 2a + 2b + 2d + x - 2S - 4Y,$$

$$32L = 4M_1 - 1 - 2a + 2b - 2d + x + 2S,$$

$$32M = 4M_1 - 1 + 2a - 2b - 2d + x - 2S + 4Y,$$

$$32N = 4M_0 + 3 - 2a - x - 2S + 2X,$$

$$32O = 4M_1 - 1 - 2a - 2b + 2d + x + 2S,$$
where $2eM_1 = (p - 2)(q - 1)$, $eM_0 = eM_1 - 2(p - 1)$, and
$$pq = a^2 + b^2 + c^2 + d^2,$$

$$q = x^2 + y^2, \qquad x \equiv 1 \pmod{4},$$

$$pq = S^2 + T^2, \qquad S \equiv 1 \pmod{4},$$

$$q = X^2 + 2Y^2, \qquad X \equiv 1 \pmod{4},$$

the signs of y, T, and Y being ambiguously determined.

Hence by Lemma 10, Theorem 1 for e = 4 can be restated as follows.

THEOREM 2. If $\eta=2$, $e=\epsilon=4$, and f' is even, then necessary conditions for the existence of a difference set of the type described in Theorem 1 are

(1)
$$y + 2Y = 0$$
, $b+c+d+T = 0$, $2+a+b-d+S = 0$;

(2)
$$M_0 + 3M_1 + 2 = 8 \left[5 \left(\frac{p-1}{4} \right)^2 - 2 \left(\frac{p-1}{4} \right) \right].$$

Condition (2) reduces to (p-5)(5p-4)=0, and condition (1) of Theorem 1 with p=5 yields q=17. Hence there are at most $\phi(\epsilon)=2$ difference sets of the above type, that is, modulo 85.

Inspection of the decompositions of pq = 85 and q = 17 show that there is at most one difference set modulo 85 (by condition (2) of Theorem 2), when

$$a = -3$$
, $b = -2$, $c = -6$, $d = 6$;
 $x = 1$, $y = -4$;
 $S = 9$, $T = 2$;
 $X = -3$, $Y = 2$.

Substitution of these constants into Lemma 10 yields the set of values

A	В	C	D	E	\mathbf{F}	G	H	I	J	K	L	M	N	Ο
					_									
1	0	0	2	0	0	2	0	1	1	0	1	0	0	2

which, by Array 1, determines all the cyclotomic numbers corresponding to this case.

This cyclotomy is afforded, for example, by the choice g = 2, x = 7. The difference set arising from Theorem 1 is then the set

$$C_0 + C_1 + Q^* = \{1, 2, 4, 8, 16, 32, 64, 43; 7, 14, 28, 56, 27, 54, 23, 46; 0, 17, 34, 51, 68\}$$
 modulo 85,

which corresponds (see [4, p. 98]) to a plane in 3-space.

REFERENCES

- 1. J. W. Bergquist, *Difference sets and congruences modulo a product of primes*, Dissertation, University of Southern California (1963).
- 2. L. Carlitz and A. L. Whiteman, The number of solutions of some congruences modulo a product of primes, Trans. Amer. Math. Soc. 112 (1964), 536-552.
- 3. L. E. Dickson, Cyclotomy, higher congruences, and Waring's problem, Amer. J. Math. 57 (1935), 391-424.
- 4. M. Hall, Jr., A survey of difference sets, Proc. Amer. Math. Soc. 7 (1956), 975-986.
- 5. A. L. Whiteman, A family of difference sets, Illinois J. Math. 6 (1962), 107-121.

The University of Michigan