CYCLOTOMIES AND DIFFERENCE SETS MODULO A PRODUCT
OF TWO DISTINCT ODD PRIMES

Thomas Storer

1. INTRODUCTION

A theory of cyclotomy modulo a product of two distinct odd primes was developed
in [5], where it was used in the construction of a family {W_} of difference sets.
Necessary and sufficient conditions for the existence of W.-difference sets were
given, with a detailed analysis of the cases e = 2, 4. In[1] it was shown that W-
and Wg-difference sets do not exist, and it has been conjectured that those of type
W, exist for no n > 2.

The purpose of the present paper is to investigate some other cyclotomies
modulo a product of two distinct odd primes, and to determine necessary and suffi-
cient conditions that certain subsets of the above residue systems constitute differ-
ence sets.

2. CYCLOTOMY MODULO A PRODUCT OF PRIMES

Throughout the paper, p and q denote distinct odd primes, { and 7 divisors of
p -1 and q - 1, respectively, and g an integer modulo pq that belongs to the expo-

nents 2 é L modulo p and 9 ;7,1 modulo q. Further, we define

= - - = .p_.:.lg_-_l) _b-1 e _a-1 5
e=g.c.d.(p-1,q-1), s—g.c.d.( T ) f o s d eff'.

If g has d distinct powers modulo pg, we call g a generator (or, alternately, a
quasi-primitive voot) of pq; when £ =n =1, g is called a primitive root of pq. We
shall be concerned with the special case € =1,

LEMMA 1. If g' is a primitive voot of q, and if g is a genevator of pq and
x =1(modp) and x =g'(modaq),
then the de integevs
gsxt  (s=0,1,-,d-1;i=0,1, -, e - 1)

constitute a veduced vesidue system modulo pq.

This lemma (as well as further lemmas whose proofs we suppress) can be proved
by techniques developed in [5]. We remark that, if 5 is odd, then g is a nonsquare

modulo q. Also, @ =g.c.d. (n, f') = 1, since otherwise gd/& =1 (mod pq).

COROLLARY 1. Theve is an integer pu: 0 < p < d - 1 such that x° = g/ (mod pq).
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COROLLARY 2. There is an integer v: 0 < v <d - 1 suck that

g9/2 (mod pq) if ff'n is odd,
_1 =
gV x¢/2 (mod pq) if ff'n is even.

For the fixed elements g and x, we now define the cyclotomic classes C;
(i=0,1, ---, e - 1) by the rule

C, = {g°x' (modpq): s=0, 1, --,d-1}.

"For fixed i and j, the cyclotomic number (i, j) is the number of solutions
modulo pq in s and t (s, t=0, 1, -=-, d - 1) of the trinomial congruence

g5x' +1 = gtxd (mod pq).
LEMMA 2. The cyclotomic numbers satisfy the following velations.
(i) (4, j) = (i + ae, j & be) for all integers a and b;
(i) (G, §) = (e-1,j-1);
(iii) G, i) if ff'm is odd,
@ 1) = | e ., e . ' .
(j+-§,1+§) if ff n is even;

(iv) if -1 € C;, then

e-1
.. -2 -1) -1
2\_‘J(1,3)=(p )éq -npe v+ %,
j=0
1 if1+i=0(modn), 1éi=1,
wheve ;= -and 6; =
0 otherwise 0 otherwise.

LEMMA 3. 7 |e.

(p-1)(Qq-1)_(@-1(@-1)_
en e

Proof. g belbngs to the exponent

modulo pg. H

When 7 = 1, the discussion reduces to the case where g is a primitive root of
pa [5].
LEMMA 4. (i) Let g* be a primitive voot of q other than g', and use Lemma 1

with g* in place of g' to define an integer x* = giuxKk (mod pq). Then
g.c.d. (k, e) =1, andif (i, j)* are the cyclotomic numbers covvesponding to g and

x*  then
G, i = (ki, kj).

(ii) For each n theve are ¢(c) disjoint classes G;-(i=0,1, =+, ¢(c) - 1) of
genevators g of pq chavacterized by the following: If g € G; and g.c.d. (r, d)=1,
then gr € G, . '
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Proof of (ii). &(p - 1)¢(ﬂ-;7—1) = ¢(e) ¢(d). m

We remark that for fixed x, the elements g and g' generate the séme cyclotomy
modulo pq.

3. DIFFERENCE SETS MODULO pq

We define several subsets of the integers modulo pq:

P = {ap: a € RRS (mod q)},
Q = {aq: a € RRS (mod p)},
Q* = {aq: a € CRS (mod p)},
P! = {ap: (a/q) = -1},
P? = {ap: (a/q) =+1}.

For each pair g and x, we define the sets
and we shall discuss conditions under which D, constitutes a difference set
modulo pq in terms of 7.

The following lemma is independent of 7.

LEMMA 5. (i) If a is an element of Pl, then the number-of solutions of the
congruence B -y = a (mod pq) (8, y € P1) is

if q =1 (mod 4), q;3ifq53(mod4).

(ii) If o is an element of P2, then the numbey of solutions of the above congru-
ence is

q-3
4

q-1 if ¢ =1 (mod 4),

7} if q =3 (mod 4).

Proof. The number of solutions in (i), for example, of our congruence is pre-
cisely the number of times that the difference of two nonsquares is again a nonsquare
modulo q. W

4. THE CASE nn = 1

It was shown in [5] that D; forms a difference set modulo pq if and only if

A(i) q=(e-1)p+2,

p-1)2
e

A(ii) (i, 0) = (e-1)( i=0,1,,e-1).
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Quite similarly, it can be shown that D, forms a difference set modulo pq if and
only if

B(i) q=4(e-1)(-p—;—1) -1,

B@i) (0, 0) = (i, 0)+ 3 =

(p—l—e)(q+ez‘2e'1)+(e-1) (i=1,2, -, e-1).

el

LEMMA 6. If n =1, then for no primes p and q does D, form a difference set
modulo pq.

Proof. Let
M= 0,0 = (p_l_e)(q;ez_ze_l)ﬂe—‘l) (i=1,2 -, e-1).
e
Then
e-1
23 G, 0)=(e—l)M+(M+3)=(D'2)(qe-2)-1+1,
i=0

so that e2M = (p - 2)(q - 2) - 2e - 1. Substituting the value of M into this equation
and simplifying, we find that

q=(-1)(p-3)-1,

which, together with condition B(i), implies that 2 - 1_p N 3 whence e = 6 and
p =7. Then B(i) gives ¢ = 19; but both inequivalent cyclotomies modulo 7-19 = 133

have (0, 0) = 0 for 5 = 1, in violation of B(ii). ®

5. THE CASE 5 = 2

LEMMA 7. A necessary condition that D; (i =1, 2) be a difference set
modulo pq is that q = 3 (mod 4).

Proof. Suppose q =1 (mod 4). Exactly one of the elements 1 - nq
(n=0,1, ---, p - 1) is congruent to mp modulo pq. I (m/p) =1 (or (m/p) = -1),
then

g5(1-nq) = m'p and (_n;_') =1 (or (_r%_') = -1) }

Hence only P2 (only Pl) occurs among the C, -Q-differences. Further, since
(-1/q) =1,

(gs(lp- nq)-) _ (gs(ncla)- 1)) .

But P occurs among the Cj-C,-differences ( P~ (12 - e“) (q ; 1) times.
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Now consider D,. Arguing as above, we can show that, exclusive of the Pl-Pl-
differences, P! and P2 each occur an even number of times. But Pl and P2 occur

9 ; 5 and q+41 times, respectively, among the Pl-pl_gifferences. =

We now examine the ways in which elements of P and Q (or P and Q*) can
arise among the D;-D;-differences (i = 1, 2) for q =3 (mod 4). ‘

LEMMA 8. The numbev of solutions of the congruence x - y =z (mod pq) is

o @-Da-1-¢

(X,YE C_O; ZEP)’

el
(ii) n(p—1—e§)(q-1) (x, y€ Cy, 2 € Q or z € Q5),
(iii) q;3 (x,y € Pl ze P),
(iv) p (x, 5, z € Q%),
(v) p-2 (x,5, z€Q),
(vi) g 222 (x€Cop,yeQoryeQ*, zeP),

e
(vii) [1—(%)]3—(}1 (xeCo,yePl,zeQ).
Proof. (ii) Consider the differences
. _ . -1-& .
g1+m(q 1)/77_g1 (m = 1, .--’p—g__.; 1:0’ -..,d_l)‘.

There are classes of differences, each class containing p - 1 distinct

q-1
e

p-1-¢
£

elements, and each element occurring times.

(vi) The proof is contained in the proof of Lemma 7.

(vii) I (@/q) = -1 and the congruence 1 - ap = nq (mod pq) has solutions, then
it has exactly one, and in this case

Q = {gi(1 - ap)(mod pq):i =0, 1, -=-, p - 2}.

(Whether such an a exists clearly depends upon the quadratic character of p with
q-1
e

respect to q.) Hence each element z € Q occurs times among the Cj -pl-

differences; similarly, it occurs q; 1 times as a PITCO—difference. Otherwise,

i

the element z does not occur. m

From Lemmas 7 and 8 we get immediately the following necessary conditions for
D; (i =1, 2) to be a difference set modulo pq when 7 = 2:
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(1) When 7 = 2, D; is a difference set modulo pq only if

_(e2-e-1)p+(2e+1)

q = 3 (mod 4) and a= p-(e+1)

(2) When 7 = 2, D, is a difference set modulo pq only if
(1+ 2¢ - 4e2)p - [1 +2(e + &) - 5e2]
p - (1+¢)?

q=3(mod4) and q

)

where the + or - sign is chosen, throughout, according as (p/q) =+1 or (p/q) = -1.

It is clear from the second condition in (1) that when 1 = 2, D; cannot form a
difference set modulo pq for any primes p and q, since e + 1 < p. We now examine
the case for D, with n = 2 for the first few values of £ = ¢/2 (note that
p <(1+¢g)2):

If e=1,then p=3 and q=1 or q=—:1,;.

The case € =0 (mod 2) cannot occur, since q =1 (mod e) = 3 (mod 4).
X e=3,thenp=17 q=19 or p=13, q= 115.
If £e=5,then p=11 and q=35 or q=171; or p =31, q= 531.

If ¢ =%, then p=29 and q=-'%9- or q="1T15; or p =43, q=_10.381.

If £ =9, then p=19 and q =67 or q=—@-; or p =37 andq=12713 or

5
qg=403; or p="173, q=811.
Hence, for e < 20, 1 = 2, there are two possibilities:
e=6; p=17, q=19

(p/q) =1,
e=18: p=173, q =811

whence A = 2= 1)(q2- 1-¢),49 ; 3. n 2 ; L 8, 386; respectively.
e

Proceeding as in Lemma 8, we find that for n = 2, D, forms a difference set
modulo pq if and only if
(i) q =3 (mod 4),
(1+2e - 462)p ™~ [1+ 2(e + &) - 5e2]
p-(1+e)

s

(ii) q =

@if) A = B 1).(22

-1-¢e) , g-3 p-1 p-1
+Eg— 55— =1(0,0)+7 = —+Ng+Ng, and

(i, 0) = (0, 0) - 1+ Ny +Ng -N, - Ng,. (i=12,-,e-1),
where N; is the number of solutions of the congruence

y + 1 = z (mod pq) (ye C;, z e Pl).
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We remark that it is not necessary to construct C; (i=1, 2, -*-, e - 1) in order to
evaluate N;, since N; is also the number of solutions of the congruence

Pl if i is even,
y +x¢-1 = z (mod pq) (yeCo,ze > )
P~ if i is odd

We now examine the set D, for the cases where p=7, q=19 or p= 173, q = 811.
Case 1. p=17, q=19; e=6: v=133, k=32, A = 8.

There are ¢(c) = 2 distinct classes of generators modulo 133 for 7 = 2:
G, = 15, 54, 66, 80, 101, 131}, G; = {17, 24, 47, 61, 73, 82}.

Let us choose x = 15.

If we let 5 and 17 represent G, and G, , respectively, then
D, = {1, 5, 125, 93, 66, 64, 54, 4, 20, 100, 101, 106, 131, 123, 16, 80;
14, 21, 56, 70, 84, 91, 98, 105, 126; 19, 38, 57, 76, 95, 114 } modulo 133,

>k
DZ

{1, 17, 23, 125, 130, 82, 64, 24, 9, 20, 74, 61, 106, 73, 44, 83, 81, 47;
14, 21, 56, 70, 84, 91, 98, 105, 126; 19, 38, 57, 76, 95, 114 } modulo 133.
For D, , we find directly that
Ng=1, Ny, =1, N,=2, N3=3, Ny=1, Ng=
and (0, 0) =2, (1, 0) = 3, (2, 0) = 2. Hence

(1,0) = (0,00 -1+Ny;+Ng - N, -N,,. (i=1,2 -, 5)
and

_{p-1)(g-1-e),q-3 p-1_
A= oz o=+ P = 8.

Therefore D, forms a difference set modulo 133 with-v =133, k=32, A =8 [4,
page 986].
For D}"‘ , we find that

N,=3 N;=1, N,=1, N;=1, N,=2, Ng=1

and (0, 0) =4, (1,0)=1, (2, 0) = 2. Now

1=(1,0)#(0,0)-1+N,+Ng -N, - N, = (0, 0) = 4;

1

hence D’; does not form a difference set modulo 133.
Case 2. p=13, q=811; e =18: v=59203, k = 3717, A = 386.

It would be tedious indeed to verify the sufficient condition (iii) that D, be a dif-
ference set modulo 59203; instead, we employ the elementary necessary condition
k(k - 1) = A(v - 1). In this case, we find that
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k(k - 1) < 16000 < A(v - 1).

Hence no difference set occurs in this case.

6. A RELATED CYCLOTOMY; 7 = 2, ¢ = e

Whenn—z and € =g.c.d. (p-—]_ 1)—e thenf—p~e1, fl=-q2-el,and

= eff'. Hence g is not a generator of pq In this case we define x as in the fol-
lowing lemma.

LEMMA 9. Let g' and g" be primitive voots of p and q,rvespectively, and de-
fine x (modulo pq) by the conditions

=g'(modp), x =g"(modq).
Then, when 1 = 2, € = e, the 2ed integers
gsxl  (s=0,1,-+,d-1;i=0,1, ---, 2¢ - 1)

constitute a veduced residue system modulo pq.

We again define C; = {gSx: s=0,1,--,d-1} for i=0, 1, -=-, 2e - 1, and we
easily derive results for this system corresponding to the Lemmas 2, 3, and 4.

7. DIFFERENCE SETS MODULOpq; n =2, €¢ = e

Using the above methods we can préve the following theorem.

THEOREM 1. If n =2, ¢ =e, and {' is even, then the set Cy+ Cy + Q* forms
a difference set modulo pq if and only if

(1) 3qg = 2(e+1)p+1,

(2) (i, 0+ @G -1,00+(@G, 1)+ (i+e, 1) = (e+ 1)(—p;1)2 - z(p; 1)
(i':O: 1, Tt 2e - 1)'

COROLLARY. If Cy + C, + Q* forms a difference set modulo pq, then
= (e+ (B2 1)

Clearly there is no difference set of the above type for e = 2, for then
0=3q #6p+ 1 =1 (mod 3) by the necessary condition (1) of the theorem.

When e = 4, the form of the cyclotomic matrix is



CYCLOTOMIES AND DIFFERENCE SETS MODULO A PRODUCT

S O G B W N O

(by Lemma 2, (i), (ii), and (iii)); therefore condition (2) of the theorem becomes

A+B+I+J.

A+H+I+J

I+M+N+O

J+K+N+O

0 1 2 3 4 5 6 T
A B C D E F G H
I J K L F D L M
N ) N M G L C K
J O o I H M K B
A I N J A I N J
I H M K B J O O
N M G L C K N o)
J K L F D L M I
Array 1.

= ern(2gh) -2(25).

e

125

Then, a modification of the techniques developed in [2], [3], and [5] can be used
to prove the following result.

LEMMA 10. If n =2, e=¢ =4, and f' is even, then the inequivalent cyclotomic
numbers can be given in the form

32A

32B

32C

32D

32E

32F

32G

32H

321

32J

4M, + 7+ 2a+ 3x + 25 + 2X,

4M,
4M,,
am,
4M,
aM,
4M

0

1+4b+ 2c - x+ 2y + 2T + 2X + 4Y,

1+2a+4c - x+ 28 - 4T - 2X,

1-2c+4d - x~ 2y - 2T + 2X + 4Y,

1-6a+3x
1-4b+ 2c
1+ 2a-4c
1-2c-4d

6S - 6X,
X+ 2y + 2T + 2X - 4Y,
x+ 2S5+ 4T - 2X,

X - 2y - 2T + 2X - 4Y,

4M; + 3 - 2¢ - x+ 2y - 2T - 2X,

4M; + 3+ 2c - x - 2y + 2T - 2X,
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32K = 4M, - 1+ 2a+ 2b+ 2d + x - 28 - 4Y,
32L = 4M, - 1 - 2a+ 2b - 2d + x + 25,
32M = 4M; - 1+ 2a - 2b - 2d + x - 25 + 4Y,

32N

4M, + 3 - 2a - x - 25 + 2X,
320 = 4M; - 1 - 2a - 2b+ 2d + x + 28,
where 2eM,; = (p - 2)(q - 1), eM, =eM,; - 2(p - 1), and

pq = a? +b% +c2 +d?,

q = x% +y?, x = 1 (mod 4),
pq = 8% + T2, S = 1 (mod 4),
q=Xt+2Y%, X =1 (mod4),

the signs of y, T, and Y being ambiguously determined.
Hence by Lemma 10, Theorem 1 for e =4 can be restated as follows.

THEOREM 2. Ifn =2, e=¢ =4, and ' is even, then necessary conditions for
the existence of a diffevence set of the type described in Theorem 1 are

(1) y+2Y =0, b+c+d+T =0, 2+a+b-d+8S =0;
2
-1 . -1
(2) M0+3M1+2=8l:5(—p4 ) —2(—p4 ):I

Condition (2) reduces to (p - 5)(5p - 4) = 0, and condition (1) of Theorem 1 with
p =5 yields q = 17. Hence there are at most ¢(¢) = 2 difference sets of the above
type, that is, modulo 85.

Inspection of the decompositions of pq = 85 and q = 17 show that there is at
most one difference set modulo 85 (by condition (2) of Theorem 2), when

a=-3,b=

!
1
no
-

c=-6,d=6;
x=1, y=-4;
S=9, T=2;

X=-3,Y=2.

Substitution of these constants into Lemma 10 yields the set of values
A B C D E F G H I J K L M N O
1 0 0 2 0 0 2 0 1 1 0 1 0 0 2

which, by Array 1, determines all the cyclotomic numbers corresponding to this -
case,



CYCLOTOMIES AND DIFFERENCE SETS MODULO A PRODUCT 127

This cyclotomy is afforded, for example, by the choice g =2, x = 7. The differ-
ence set arising from Theorem 1 is then the set

Co+C; +Q* = {1, 2, 4, 8, 16, 32, 64, 43; 1, 14, 28, 56, 217, 54, 23, 46;
0, 17, 34, 51, 68} modulo 85,

which corresponds (see [4, p. 98]) to a plane in 3-space.
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