EXTENSIONS OF ALGEBRA HOMOMORPHISMS
Thomas J. Grilliot

The Hahn-Banach Theorem [1, pp. 28-29] has a variant, called the Monotone
Extension Theorem [2, p. 20], [3, Corollary 2.3], in which the subadditive, nonnega-
tively homogeneous function of the former theorem is replaced by a partial-ordering
condition. The Hahn-Banach Theorem has been generalized by Vincent-Smith [5] to
the extent that the scalar ring of real numbers may be replaced by any ring of real-
valued continuous functions on an extremely disconnected compact Hausdorff space.
In a similar fashion the Monotone Extension Theorem can be so generalized. We
cite the Hahn-Banach and Monotone Extension Theorems in this greater generality
below. In this paper, we shall prove analogues of these two theorems for algebras
and rings instead of modules. Our Theorem 1 is the analogue of the Monotone Exten-
sion Theorem for commutative algebras. We sharpen this result in Theorem 2 by
replacing the requirement of commutativity by a weaker condition, and then we give
a comparable result for rings instead of algebras (Theorem 3). Then, in Theorem 4,
we convert the partial-ordering condition of Theorem 2 into a subadditive, nonnega~
tively homogeneous function, which yields a curious analogue of the Hahn-Banach
Theorem for algebras instead of modules. Finally we give several applications of
Theorems 2, 3, and 4.

Throughout the paper, R denotes the field of real numbers, X the partially
ordered ring of real-valued continuous functions on some extremely disconnected
compact Hausdorff space, and Y a subring of X. We consider X as an algebra over
Y. We use the customary definitions of partially ordered modules, rings, and alge-
bras, except that we do nof require antisymmetry. An element a of a partially
ordered module, ring, or algebra A is positive if 0 < a, and the set of all positive
elements of A (sometimes called the positive wedge of A) is denoted by At. A
subset B of a partially ordered set A is cofiral in A if, for every a € A, there
exists some b € B such that a <b. If < and <' denote two partial orderings of a
module, ring, or algebra A, then < is called finev than <'if 0 <'a implies 0 <a,
for all a € A. '

HAHN-BANACH THEOREM. Let B be a submodule of a module (A, +, .) over
X, and let P: A — X satisfy the conditions

P(xa) = aP(a) and  P(a+b) < P(a) + P(b)

Jor all o € X* and a,be A. If T: (B, +, . ) = (X, +, . ) is a homomorphism such
that T < P, then there exists a homomorphism T*: (A, +, . ) — (X, +, . ) that extends
T and satisfies the inequality T* < P.

MONOTONE EXTENSION THEOREM. Let B be a submodule of a partially
ordeved module (A, +, ., <) over Y such that B is cofinal in A (or if X =R, B*
is cofinal in A*). If T: (B, +, ., <) > (X, +, ., <) is a homomorphism, then there
exists a homomorphism T*: (A, +, ., <) — (X, +, ., <) that extends T.

Since the proofs of these theorems do not require significantly more technique
than is involved in the proof of the classical Hahn-Banach Theorem, we leave the
proofs for the reader.
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THEOREM 1. Let B be a subalgebra of a parvtially ovdeved commutative algebra
(A, +, -, ., <L) over Y such that Bt is cofinal in A. If

T: (B, +} : 3 2 S) - (X’ +’ ) 0 _S)
is a homomorphism, then theve exists a homomorphism
T*: (A, +’ Ty ey S) - (X, +’ Ty e S)

that extends 'T.

Proof. First of all, we may assume that A has a positive identity, say e, which
is also the identity of the subalgebra B, and that T(e) is the identity of X. For we
can adjoin an identity e to A in the usual manner, and then extend the ordering of A
by the rule

0<a+cae+ne if 0<a, 0< @, and 0 <n,

for all a € A, @ € Y and all integers n. Then we can extend T to the algebra gen-
erated by B and e by the equation T(b + ae + ne) = T(b) + @ + n, for all b € B,
& € Y and all integers n.

Let
¢ = {(C, To): C is a subalgebra of A and T: (C, +, -, ., <) —
(X, + *, ., <) is a homomorphism } .

Partially order & by the condition that (C, T¢) < (D, Tp) whenever C C D and Tp
is an extension of T¢. By Zorn’s Lemma, there is a maximal element of ¢, say
(C, Tc), such that (B, T) < (C, T¢). Abbreviate Tc by T. Suppose that C # A. Let
z € A - C, and let D be the subalgebra of A generated by C and z. Define

I = {T(a)/T(b): a € C, b € C*, T(b) invertible, a < bz} .

By the cofinality condition, there exist ¢, d € C such that ¢ <z < d. Hence
T(c) € T' and T(d) is an upper bound of I'. Since X is boundedly complete, sup I
exists. Therefore, let v =sup I'.

Let P(n) be the proposition: If 0 523 a;z!, where a; € C, then
0L 23 T(a;) vi. Assume that P(n) is true for all n. Then the function
T™: (D, +, -, ., <) — (X, +, +, ., <) given by the equation

T*(Z} aizi) = 2 T(a;) y!
0 0

is a well-defined homomorphism. This contradicts the maximality of (C, T o).
Therefore, C = A, and T is the desired extension of T.

It remains to show that P(n) is true for all positive integers n. Let
0<ag+a;z where ag,a; € C. Let c € C* be suchthat a; <c, andlet b=c +e.
Thus a; < b and T(b) is invertible. Let 6 € T, so that & = T(p)/T(q) for some
p € C and q € C" such that p < qz. Then
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(b-2a;)p <(b-aj)gz < apgq +bgz.

By the definition of y, we have the relation T((b - a;)p - aga)/T(bq) < y; replacing
T(p)/T(q) by 6, we find that T(b - a1)8 < T(ag) + T(b)y. Therefore

0= sup T(b-2a;)(6 -y) < T(ag) + T(a;)y.
6el’

This establishes the truth of P(1).

Assume that P(n) is true for some n> 1. Let 0 < 28“ a;zl, where a; € C.
By the cofinality condition, there exists b € C* such that a,;; < b, and there exist
c,d € C suchthat c <z <d. Let 6 € T, sothat 6 = T(p)/T(q) for some p € C and
q € C' such that p < qz. Then
n+l

0 < 27 aiqzi-l-(qz -p)(b-a,1)(z-c)+(qz - p)b(d - z)(z - c)n-1,
0

After cancellation, this inequality contains no term in z™"! . It follows from P(n)
that

n+1
0 < 27 T '+ (T(@)v - T())B,
0

where
B =T -ay, 1) - T()™ + T(O)(T@) - 7) (v - T(e))*" L.

After c}lifliding by T(q) and replacing T(p)/T(q) by &, we obtain the inequality
0< 27,  T(a;)y'+ (y - 8)B. Thus

n+1
0= sup (6 -7 < 2 T(ai)'yi.
6eT’ 0

Therefore P(n+ 1) is true. This completes our proof.

Remavrk 1. If A, B, and T satisfy the hypotheses of Theorem 1, and if z € A - B,
then, by the techniques used in the proof of Theorem 1, we can construct our exten-
sion T*: A — X in such a way that

T*(z) = sup {T(a)/T(b): 2 € B, b € B*, T(b) invertible, a < bz} .
Alternatively, we may construct T* so that

T*(z) = inf {T(a)/T(b): a € B, b € B", T(b) invertible, a > bz} .
In general, these are the only two admissible values that can be assigned to z to en-
large the homomorphism T. For example, let A = R X R (with the cartesian-product
definitions of +, -, ., <), let B be the diagonal, and let T: B — R be given by

T((@, @)) = @. Then the numbers 0 and 1 are the only admissible values that can be
assigned to the point (0, 1) to enlarge the homomorphism T.
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Remark 2. The cofinality condition in Theorem 1 is not superfluous. In fact, it
cannot even be weakened to the condition that B* be cofinal in A*. For example, let
A Dbe the partially ordered algebra of complex numbers over R with positive wedge
At =RT let B =X =R, and let T be the identity on B. Although Bt is cofinal in
AT, T cannot be extended to A.

Remark 3. The commutativity condition in Theorem 1 is not superfluous. For
example, let A be the partially ordered algebra of 2-by-2 matrices over R, where
At is the set of all matrices whose entries are all’ nonnegative. Let B be the sub-
algebra generated by [1] (the matrix whose entries all equal 1), and let T: B — R be
defined by T(«[1]) = 2a¢. The algebras A and B and the homomorphism T satisfy
all hypotheses of Theorem 1 except that A is not commutative. However, T cannot
be extended to A. For whereas T([1]) = 2, the matrix [1] is the sum of one idem-
potent and two nilpotent elements.

Remark 4. The commutativity condition in Theorem 1 can be relaxed to the con-
dition that ab < ba for all a, b € A; for we can apply Theorem 1 to the partially
ordered algebra A' consisting of all equivalence classes of A, where a and b belong
to the same equivalence class whenever a < b < a. This particular variant of Theo-
rem 1 will be useful in the proof of the next theorem, which allows the commutativity
of A to be dispensed with whenever B is in the center of A.

THEOREM 2. Let B be a subalgebra in the center of a partially ovdeved alge-
bra A over Y such that BY is cofinal in A. If T: B, +, *, ., ) - X, +, , ., <)
is a homomorphism, then theve exists a homomorphism

™ A+ -, ., ) > X+, .,

that extends T.

Proof. As in the proof of Theorem 1, we may assume that A has an identity, say
e, which is in B, and that T(e) is the identity of X. The following two useful proper-
ties follow from the cofinality condition:
[*] If a € A, there exist elements b € Bt and ¢ € At suchthat a=b - c.

[**] If <'is finer than <, then a <'b <'a implies ac <'be <'ac and
ca< cb <'ca, forall a, b, c e A.

Let
¢ = {(c, <¢, Tc): C is a subalgebra of A, <c is a partial ordering on A

(compatible with +, -, . ) such that ac < ca < ac for all a € A and

ceC,and Tc: (C,+, *, ., <= X+ -, ., isa homomorphism } .
Partially order € by the condition that (C, <, T¢) < (D, <p, Tp) whenever
C € D, <p is finer than <, and Tp is an extension , of Tc. By Zorn’s Lemma,
there is a maximal element of €, say (C, <c, Tc), such that

(B’ S’ T) S (C’ _<_C’ TC)'

Suppose that C # A. Let z € A - C, and let D be the subalgebra of A generated by
C and z. Since each element of D has the form
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m

27

i=1 j

1

Xij (xij e CU {Z}),

-
=1

one can easily show with the help of [**] that ab <g ba <C ab for all a, b € D. Thus,
by Remark 4, there exists a homomorphism Tp: (D, + , <o) = X, +, , <)
that extends TC , and furthermore, by Remark 1, we may require that TD(z) = sup T,
where

I = {Tc(a)/Ts(b): 2, b € C, 0 < b, Ti(b) invertible, a < bz} .

Let I be the ideal of A generated by all elements of the form az - za, where
a € A, Let <p be the partial ordering of A defined by the rule

0 <pa if 0 <c a+b for some b € I.

Clearly, the ordering <p is finer than the ordering < and is compatible with the
algebraic operations of A. From the facts that elements of D have the form dis-
played above and that ab <p ba <pab for all a € A and be CU {z} we infer that
ab <p ba <p ab for all a € A and b € D. Finally, we shall show that 0 <pa im-
plies 0 < Tp(a). This will complete our proof, because then we shall have the rela-
tion (C, <¢, Tc) < (D, <p, Tp) € ¥, which contradicts the maximality of

(C, <c, Tc).

Suppose that 0 <p a. By [*] and the definition of the ordering <p, there exist
r;, S, t;, u;, vi, w; € AT such that

n

0 <¢ a+2u r;(s;z - zsi)ti+2 u; (zv; - viz)wy.
1 1
There exist b;, ¢;, d;, f;, 8;, h; € B such that

r;i <bj, s;<¢c;, t;<d;, ui<f;, vi<g;, w;<h; for each i between 1 and n.

Let 6 € T, so that 6 = Tc(p)/Tc(q) for some p, q € C such that 0 <c q and
p <c qz. Then

n

n n n
0<c0qa —I—? r; s;(az - p)t; - Zl>ri(qz -p)s;t, + ZIDui(qz -p)vyw; - ?uivi(qz - p)w;

n n n

<caa +? r;s;(qz - p)t; +§ u;(qz - p)v;w; <c qa+ (qz - p) 213 (b;c;id; + f; g5 h;).
Hence

0 < Tp(qa) + (Tp(az) - Ty(p)) TD(E (b;c;d; +1;8; hi));
1

from which we derive the inequality
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n
0 = sup (6 - TD(Z))TD(E (bicidi"‘figihi)) < Tpa).
6el’ N1

This completes the proof.

Since every partially ordered ring is a partially ordered algebra over the inte-
gers of X, Theorem 2 yields the following special case:

THEOREM 3. Let B be a subrving in the center of a partially ovdered ving
(A, +, -, <) such that BY is cofinal in A. If T: (B, +, -, <) = (X, +, -, <) is a ho-
momorphism, then theve exists a homomorphism T*: (A, + 0, D= (X, +, -, L) that
extends T.

In view of the close connection between the Monotone Extension Theorem and the
Hahn-Banach Theorem, we might expect that Theorem 2 is closely connected with a
theorem of the Hahn-Banach type for algebras. Indeed this is the case, as we now
show.

THEOREM 4. Let B be a subalgebra in the center of an algebra (A, +, -, . )
over X, and let P: A — X be a function satisfying the conditions

P(ca) = aP(a), P(a+b) < P(a)+ P(b), P(P(a)b+ P(b)a - ab) < P(a)P(b)

forall a € Xt and a,b€ A. If T: (B, +, -, . ) = (X, +, -, . ) is a homomorphism
such that T < P, then theve exists a homomovphism T : (A, +, -, . ) = (X, + -, .)
that extends T and satisfies the inequality T* < P.

Proof. Let C be the algebra (A X X, +, -, . ), where addition and scalar multi-
plication have the usual product definitions and where

(a, @)-(b,B) = (ab+ab+pa, af) forall @,B € X and a,b € A.

We can make C into a partially ordered algebra by defining < by the rule 0 < (a, o)
if P(-a) < a. To see that Ct-Ct c C*, let (a, @), (b, B) € C*, so that P(-a) < «
and P(-b) < B. Then

P(-ab - Ba - ab) < P((P(-a) - a)b) + P((P(-b) - B)a) + P(-P(-a)b - P(-b)a - ab)
< (a - P(-a)) P(-b) + (B8 - P(-b)) P(-a) + P(-a) P(-b) < ap.

Hence (a, a)-(b, B) € C*. Let D be the subalgebra B X X, and define T: D — X by
the equation T((a, @)) = T(a) + . Note that D is in the center of C, that T is an
order-preserving algebra homomorphism, and that Dt is cofinal in C because

(a, @) < (0, |P(@a) + a]), for all a € A and o € X. Therefore, by Theorem 2, there
exists a homomorphism T*: (C, +, -, ., <) = (X, +, *, ., <) that extends T. Define
T*: A — X by the equation T*(a) = T*((a, 0)) for all a € A. Since (a, 0) < (0, P(a)),
we see that

T*(a) = T*((a, 0)) < T*((0, P(a))) = P(a) forall ae A;

consequently, T* < P. Therefore, T* is the desired extension of T.

Remark 5. The condition P(P(a)b + P(b)a - ab) < P(a) P(b) in Theorem 4 seems
to be the simplest additional condition sufficient to give a theorem of the Hahn-
Banach type for algebras. The simpler condition P(ab) = P(a)P(b) fails (hence the



EXTENSIONS OF ALGEBRA HOMOMORPHISMS 113

conditions P(ab) < P(a) P(b) and P(ab) > P(a) P(b)) also fail), as one easily sees by
letting A be the algebra of complex numbers over R, P the absolute-value function,
and T the identity on R.

Example 1. Let C*(S) be the Banach algebra of all bounded continuous functions
from S into R with the usual norm ([|f]| = sup {|#(s)|: s € S}). Let B be a subalge-
bra of C*(S). Then any continuous algebra homomorphism T: B — R can be extended
to a continuous algebra homomorphism T*: C*(S) — R with equal norm. For assume
that T # 0. Then, by using the Weierstrass Approximation Theorem, one can show.
successively that "TH =1 and that T < P, where P is given by the equation
P(f) = sup {f(s): s € S}. (To obtain the inequality T < P, suppose that P(f) < T(f)
for some f. We may assume that T(f) # 0; for if T(f) = 0, consider instead the func-
tion 2T(g2)f + P(f)g2, where g € B is such that T(g) # 0. Let [@, B] be an interval
of R that contains 0, T(f), and the range of f, and let F: [a@, B] — R be continuous
and satisfy the conditions

F(0) = 0, F(T(f)) = 1, F(range f) = 0.

There exists a polynomial G such that G(0) = 0 and |G - F| < 1/3 on [@, B]. Then
T(G(£)) > 2/3 and ||G()| < 1/3, contradicting | T| = 1.) SinGe P and T satisfy the
conditions of Theorem 4, there exists a homomorphism T*: C*(S) — R that extends

T and satisfies the condition T* < P. Thus || T*| = 1.

The continuity of T is actually necessary as well as sufficient for the existence
of an extension to C*(S), since each algebra homomorphism T*: C*(S) — R is con-
tinuous. Not every algebra homomorphism on a subalgebra of C*(S) need be contin-
uous, however. For example, let B be the subalgebra of C*( [0, 1]) consisting of
restrictions of polynomials to [0, 1], and let T: B — R be given by the equation
T(p) = p(2) for all p € B.

Example 2. Let a and b denote arbitrary sequences of real numbers, and let e
and e' be the sequences defined by e(n) =1 for all n and

e'(0) = 1, e'(1) = -1, e'(n+2) = 0 for all n.

Let (S, +, -, . ) be the algebra with identity e, over R, of all real-valued sequences,
where multiplication is given by the equation a-b=a*b*e' and * is the Cauchy

product multiplication defined by the formula a*b(n) = Z)E a(i)b(n - i). Let A be the
subalgebra of S generated by the space of all bounded sequences. We shall show that
there exist Banach limits that can be expanded into algebra homomorphisms on the
algebra A. To this end, we define a partial ordering <g on S by the rule that 0 <g a
if 0 < a(n) for all n. Because the ordering <s. is not compatible with multiplication,
we define a finer ordering that is compatible by the condition

n
0 <a if Ogsa*<* e)' for some n.
i=1

Let B be the subalgebra of A consisting of all sequences that are constant except for
finitely many values. Let T: B — R be the order-preserving algebra homomorphism
defined by T(a) = lim a(n). Because B' is cofinal in A, T has an extension to A, by
Theorem 2. Call this extension T. If o is the shift operator, that is, if

o(a)(n) =a{n+ 1) for all a € A and all n, then T = Too. This follows from the fact
that
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a = o(a) 7y(e)+ Ta(o)(O) for all a € A,
where 7, is the operator defined by the conditions T,(a)(0) = @ and
To@)(n+1) = a(n) for all n.

Also, if o = sup, Ia(n)l exists, then a < ae, and hence T(a) < @. Consequently, the
restriction of T to the space of bounded sequences is a Banach limit.

Example 3. Let (F, +, *, . ) be the algebra of formal power series over R in
one indeterminate X. The algebra A in Example 2 is isomorphic to the subalgebra
G of F generated by the space

L) n
i %/-‘ aiXi: sup,, % ot < *,

[>e) -,
under the isomorphism that maps a into (1 - X)* (Z;o a(i) Xl) Therefore, as a
consequence of Example 2, there is an algebra homomorphism T: G — R that satis-

fies the relation T;(Eo a;X') <lim supp EO a;, whenever the latter exists.

Example 4. We can achieve a result quite analogous to the preceding example,
by using instead of (F, +, *, . ) the algebra (L, +, *, . ), where L is the set of all
functions f: R¥ — R that are Lebesgue integrable on every finite interval, and where

o
multiplication is defined by the formula f*g(a) = 5 f(B) g(a - B)dB.
0

Example 5. It is well known that every totally ordered division ring whose inte-
gers are cofinal is isomorphic to a subfield of R. In view of Theorem 3, this char-
acterization can be sharpened to any partially ordered division ring whose integers
are cofinal, provided the ordering is not the discrete or indiscrete ordering. To see
this, let (A, +, -, <) be such a division ring, let Z be the set of integers of A, and
let T Z >R be the natural homomorphism defined by T(n.1) = n (the symbol n.1
denotes the sum of 1 added to itself n times). By the ordering conditions, T is
well-defined and preserves order. By Theorem 3, T has an extension T* to A.
Since A is a division ring, the kernel of T* is {0}. Therefore, T* is a ring iso-
morphism (but not necessarily an ordered-ring isomorphism) onto some subfield
of R.

Example 6. Let (A, +, <) be a partially ordered ring with positive identity e.
Then A is ordered-ring 1somorph1c to a subring of C*(S) for some (discrete) space
S if and only if the following four conditions hold:

(i) the ordering < is antisymmetric;

(ii) A is archimedean, in the sense that if n.a < e for all positive integers n,
then a < 0;

(iii) the integers of A are cofinal in A;
(iv) if 0 < n.a, where n is positive, then 0 < a.

Similarly, a partially ordered algebra (A, +, , <) over R with positive identity
e is ordered-algebra isomorphic to a subalgebra of C*(S) for some space S if and
only if conditions (i), (ii), and (iii) hold.

We shall prove only the first assertion. Let conditions (i), (ii), (iii), and (iv) hold
for a partially ordered ring A with positive identity e. Let {Tg £ e S be the set
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of all nonzero ordered-ring homomorphisms from A into R. Define a homomor-
phism F: A — C*(8) by the equation F(a)(£) = Tz(a). We need to show that F is
one-to-one and that F-1 preserves order. It suffices to show that if 0 < F(a), then
0 < a. So suppose that 0 < F(a). By Theorem 3 and Remark 1, the natural mapping
from the integers of A onto the integers of R can be extended to a homomorphism
Tg: A — R such that

Tg(a) = sup {i/j: i, j integers, 0 <j, i. e<j .at.

Since 0 < Tg(a), it follows that for each positive integer n there are integers i and
j such that 0 <j, -1/n <i/j, and i.e < j.a, and hence that -j.e < jn.a. By (iv),
we get the inequality -e < n.a for each positive integer n. Therefore, by (ii), 0 < a.

Example 1. We shall use Example 6 to prove a representation theorem due to
Stone [4] which states that if (A, +, -, ., <) is a partially ordered algebra over R
with positive identity e such that conditions (i), (ii), and (iii) of Example 6 hold and
such that A is complete in the norm defined by the formula

laff = inf{@ € R*:.-~ae < a < ae},

then A is ordered-algebra isomorphic to C(S) for some compact Hausdorff space S.
By Example 6, A is ordered-algebra isomorphic to some subalgebra of C(S), where
S indexes the set of all nonzero order-preserving algebra homomorphisms from A
into R. By the Weierstrass Approximation Theorem and the completeness condition,
A is isomorphic to a sublattice of C(S) under the same isomorphism. We topologize
S by letting the sets

{£ es:Te(a) # 0} (ac A)

be a basis for the topology. It is an easy exercise to show that the elements of A
are mapped into continuous functions under the isomorphism defined in Example 6.

It remains to show that S is a compact Hausdorff space; for if this is the case,
then A is isomorphic to all of C(S), by the Stone-Weierstrass Theorem. For every
€, £ € S such that ¢ # &, there exists a € A such that Te(a) =0 and Tg(a) # 0; for if
Te(a) = 0 implies Tg(a) = 0 for all a € A, then ker T¢ is a maximal ideal containing
the maximal ideal ker T¢, and hence T¢ = Tg. Let §, £ € S be such that § #£&.
Then there exist a, b € A such that

Te(a) = 0, Te(b) > 0, Tgla) >0, Tgb) = 0.

The sets {n: T,(b-aAb)#0} and {7n: Ty (a-aAb)#0} are disjoint open sets
containing € ang &, respectively. Therefore, S is a Hausdorff space. Suppose the
sets

{¢ € s: Tg(ayl) =0} (ap € A, A € A)

have the finite intersection property. Let* T be the homomorphism from the algebra
generated by the set {e, ay: A € A} into R defined by T(e) =1 and T(ay) = 0 for
all A € A. By the finite intersection property, T is well-defined and preserves
order. By Theorem 2, T has an extension to A, say T;. Then £ is in the total in-
tersection of the sets displayed above. Therefore, S is compact.
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