SUBDOMINANT SOLUTIONS OF LINEAR DIFFERENTIAL
EQUATIONS WITH POLYNOMIAL COEFFICIENTS

Yasutaka Sibuya

1. PRELIMINARIES
Let us consider differential equations of the form

dZ
(1.1) &%" - P(x)y = 0,

where x is a complex independent variable,
(1.2) P(x) = x™+ alxm‘1+azxm"2+---+am_1x+am,

and aj, ---, a, are complex parameters. Previously, P. F. Hsieh and Y. Sibuya
[2], [8] obtained the following result.

THEOREM 1. Equation (1.1) has a solution
(1.3) y =& (&xa;,,a__;,a)

such that (i) % ., is an entive function of (%, ay, =+, am); (i) ¥ and ¥, admit
respectively the asymptotic vepresentations

R
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uniformly on each compact set in (a1 y *tT, am)—space as X tends to infinity in any
sector of the form
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where ' denotes d/dx, & is an arbitrary positive number, the quantities
Tms Am N> Bm,N, and Cp, N ave polynomials of (ay, **-, a,), and

xT = exp {r(log |x| +iargx)}

Jor any constant r. Furthermore, if we pul

o0
(1.6) {x'mP(x)}l/2 =1+ 2o bhx'h,
h=1
we get
- % if m is odd,
(1.7) rm =

m . .
-7 b1+tm/2 % m is even

and
m+l
g (mt2-N)/2 _ _ 2 +2-2h)/2
(1.8) :NZDI A_ Em ———5 5 by x{™ )z,
l_<_h<?+l

The solution %_  tends to zero as x tends to infinity in any sector of the form
T
(1.9) |arg XI Sm— 6,

where 6 is an arbitrary positive number. Hence % ,, is subdominant in each sector
(1.9). Subdominant solutions are uniquely determined by their asymptotic represen-
tations at infinity. Hence %, is the unique solution of equation (1.1) that satisfies
conditions (i) and (ii) of Theorem 1.

2. THE MAIN THEOREM

For each fixed (x, ay, -+, a,,_ 1) the quantities %, and % ., are entire func-
tions of a,, . In this paper we shall compute their orders Before we state our re-
sult, we want to study the two cases m =1 and m = 2. If m = 1, equation (1.1) can
be written as

b

2
dy -(x+ ANy =

dax
where A is a complex parameter. Hence we get the solution

¥(x, A) = 2V 7Ai(x+ ),

where Ai is the Airy function of the first kind. This implies that the orders of %;
and %] as entire functions of A are equal to 3/2 (see [1, 10.4.1 (p. 446), 10.4.7 (p.
446), and 10.4.59 (p. 448)]). If m = 2, we get the solution

#,(x, 2a, A) = 2'-0/2 exp (% az) Dp(ﬁ(x +a)),
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where p=-(A - a®+ 1)/2 and D, is the parabolic cylinder function of Whittaker.
This implies that the orders of %, and ‘%) as entire functions of A are equal to 1
(see [1, 19.3.5 (p. 687) and 19.8.1 (p. 689)]).

In general, if we put x = zarlr{ m " equation (1.1) takes the form

a?y 2+m)/m -1 -1 =
-dz—z—a(m )/ {zm+am/malzm +ee+1}y = 0.

From this we may surmise that the orders of %, and .@/;n as entire functions of

a,, are equal to %+?n1_’ since for m =1 and m = 2 this is true. In this paper, we

shall prove it for every m. Namely, we shall establish the following theorem.

THEOREM 2. The ovders of ¥y, and %, as entive functions of a,, ave equal
1,1

to '2‘[‘"5

It should be remarked that %+ —;; is less than 1, if m > 3, and that the order of a
1

polynomial of %,, and %j, as an entire function of a,, is not greater than —%+ e

3. REMARKS

Let us write equation (1.1) in the form

dzy
(3.1) — -{Qx +2a}y = o,
dx
where
- -1, ...
(3.2) Qx) = x™+ a x™ "+ e da X
and
(3.3) A=a.
For each complex number X, let us put
(3.4) Qx +x4) = xm+u1xm'1+~--+um_1x+um.
Then the quantities ujy are polynomials of x4y, a;, ***, a,,,_; . Hence the u, are in-
dependent of A. Now
(3.5) y = @m(X‘i' XpsQ3, **°y 1 A-)
is a solution of the equation
(3.6) ﬂ-{Q(x+x)+)\} =0
) dx2 0 y==
On the other hand,
(3.7) y = @m(xx Uy, W1, Uy + A)

is another solution of equation (3.6). From (1.4) we can derive the respective
asymptotic representations of the two solutions (3.5) and (3.7) as x tends to infinity
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in any sector (1.5). Then the uniqueness of %, yields the following result,
THEOREM 3. The function %, satisfies the identity

(3.8) ‘ﬂJm(x'l' X0,a1, ***s Am-1s A) = Km m(x, up, v, Uiy, Uy A),

where
1 if m is odd,
K_ = m+1

m
expé(— w3 X 8m+2)/2 + 1:4/:‘1 Am’ngm"'Z‘N)/z) z'f‘ m is even.

In particular, we have the relations

( ) gm(xo’ ai, *°*, Am-1, }\) = Km gm(oy ul, ***, Um-1, um+;\):
3.9
1
gm(XO, al, cety, am_l, A) = ng_’/;n(o, ul, *ty, um_l, um+h).

The quantities K, u;, ***, u,, are independent of A. Hence the two functions
Ym(Xg, a1, >, a1, ) and #,,(0, uy, -=-, u,,_7, U, + A) have the same order
as entire functions of A. The same is also true for %,,. Therefore, in order to
prove Theorem 2, it is sufficient to consider the functions %, (0, a;, -+, a,,_1, A)
and #7,(0, a;, -+, a,,.1, A).

4. ESTIMATES FOR |arg A| <7 - p,
In this section, we shall derive some estimates of %, and 27/ for

Iarg ll <7 - pg, where Po is an arbitrary positive number It is easﬂy seen that
there exist two positive numbers ry and Mg such that

(4.1) |Px)| > ro|r| and |P(x)| > rox™
for
(4.2) x>0, Ix] > My, larg A| < 7 - pg .

The two numbers r, and M depend only on pg, a;, **, a_ ;.

M N
u = , A(x) = .
y! P(x) O

Then equation (1.1) is equivalent to

Now let us put

(4.3) r ——)E = A(x)u.

Put

1/4 1 ‘ 1
T(x) = P(x)
o pe)/% B!/
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and
l: 1 -g(X)]
R(x) = ,
g(x) 1
where
arg [P(x)]* = r arg [P(x)] for any r
and

Then the transformation
(4.4) u = Tx)REE)V
reduces equation (4.3) to

dv

(4.5) ax B(x)v
with
1 0
= 1/2 _S(x)
(4.6) B(X) P(X) [ 0 _1] + 1+ [g(x)]z ’
where
1 -g(x) gx) -1
(4.7) S(x) = h(x)g(x) - g'(x)
-g(x) -1 1 gx)
and
_ P'(x)
(4.8) h(x) = 2P

Let us denote by “S(x) || the sum of the absolute values of the components of the
matrix S(x). Then we get the inequality

-2-Zm
(4.9) s < Kx
for x> 1, |x| > Mg, |arga| <7 - pg, where K is a positive constant that depends
only on py, ay, ***, a,,_1 - On the other hand, for each positive number xg, there
exists a positive constant K(xy) such that

(4.10) Is@| < Kixg) |r| =372

for 0 <x < xp, IAI > Mg, Iarg )\] <7 - pgy. The constant K(x;) depends also on
Po, 2y, -+, a,,_1. The quantity g(x) satisfies similar inequalities, namely,

1
-l-—m
(4.11) lex)| < kx 2

for x> 1, |h| > My, Iarg AI <7 - pgy, and
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(4.12) le(x)| < K(x,) || -3/2

for 0 <x<xy, |A| >M,, |argr| <7 - p,. Therefore

+o ||s(x)] ax
stxug . |gx)| and ‘S(; PR S

tend to zero as A tends to infinity in the sector Iarg AI <m- Py -
Put

v=w exp( [P(t)]l/ 2dt)
dw _ 2“’"‘”1/2 o
dx o | 1+[ex)]?

S(X) _ S 1 I(X) S 1 Z(X)
1+ [P | 5,000 spp(x) |

Then

Letting

we get the equations

dwy 1/2
(4.13) a
W

Let us transform equations (4.13) into

+o0 x
w,(x) = - S {Sll(t)wl(t)+slz(t)wz(t)}exp(z S [P(a)]l/zdo)dt,

x t

(4.14)

Wy = 1= (" s,y Owy0) + 5,0 w0} at.

Since
(4.15) % [Px)]Y/2 > o

for (4.2) if M is sufficiently large, equations (4.14) have a solution of the form
wix) = Ej(x), wy(x) = 1+ E,p(x),
where E;, and E, tend to zero uniformly for 0 < x <+ as A tends to infinity in

the sector |arg A| <= - p,, and they also tend to zero uniformly for |r| > M,
|arg 2| <7 - p, as x tends to +.
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Thus equation (4.5) has a solution of the form

E,(x) ' x
v(x) = l: s } exp (- S [P(t)]l/zdt) .
1+ E,(x) 0

Substituting this solution of (4.5) into (4.4), we get a solution of equation (1.1) of the
form

y(x) = {1+ F )} [P(x)]-l-/4exp(- { [P(t)]l/?-dt),
0
(4.16)

y') = {-1+F,()} [P)]'/4exp ( {7 pemse dt),
0

where F, and F, are similar to E,(x) and E,(x). Since %[P(t)]!/2> 0, this solu-
tion is subdominant along the positive real axis. Hence y(x) is a constant multiple of
Y m(x, a1, =+, a1, A). We shall now determine this constant multiplier.

If m is odd, we get

Y(x) = %m(x, aly °tcy a'1]:1-1’ 7") X

4.17 w / m_,
| | eXplj‘ S+ ([P(t)ll/z "tm/z - 2 bhtz )dt:l,
0 ' 1<h <% +1
since
x 9 m+l
SO [P®)]/%dt = —2 Lm+2)/2 _ i\f?l Am,NX(m+Z'N)/2

+ Sx ([P(t)]l/‘2 -/ . D bht?—h)dt-

0 1Sh<%+l
Then
fym(o, al s °°°y am_l s ).) = {1 + CI(A)}A-1/4 X
+ o0 Zon
exp|: S ( w2 - /2. D pt? )dt:],
0 1<h <%+1 '
(4.18) -

(0, 2y, , a1, = {-1+C()}al/%x

=) E'h
exp[ 5+ ([P(t)]l/z—tm/z- > b t? )dt:|,
0

1< h<F+1
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where C; and C, tend to zero as A tends to infinity in the sector Iarg A| <7m-pp.
In the integral

+00. =-h
(4.19) S ( [Pw1V/2- /2. D pt? )dt,
0 1<h<S

+1

the variable t is real and positive. However, if we examine the singular points of
the integrand and its behaviour at t = 0 and t = «, we easily see that we can take the

path of integration along the line arg t = ;nl— arg A. Hence let us put t = Al/ m 7, where
0 < 7 <+, Then the integral (4.19) can be written as
+ oo
A3/2 S ((T+1)1/2_71/z_% -1/2)d 2 3/2. ifm=1,
0

and as
R
A% m[ S ((7m+ 1)'/2 . Tm/2> d7+0(7\°1/m):| if m> 3.
0

In a similar manner, if m is even, we get the expressions

B0, 3, o, a1, N) = {1+ 0,00 2 expL (0,

m-1»

(4.20)
@1 (0,2, -, a_ 1,0 = {-1+C,MI1  *expr_(),
where
o0 | m/2  m_y b
(4.21) L_() = S) ‘([P(t)]l/z— /2 :E/l b t* - %‘”‘—{%)dt.

In computing L (1), we can change the path of integration in the same way as in the
case where m is odd. ¥ m = 2, then

1 1 2
brim/z =3 (2 -32%)-

Hence

L,(\) = A {-%mg“ou)}.

This implies that %, may be an entire function of A of order 1 and of maximal type.

This is evident, since the initial values of the parabolic cylinder functions involve
Gamma functions. If m > 4, the quantity b; ..,/ is independent of A. Hence

1.1
==+ +-00
L) = 2° m[S ((’fm“)l/z’Tm/z)d7+o(x'1/m):l.
0
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5. ESTIMATES FOR 7 - pg<argA <
In this section, we shall derive some estimates of %, and &, for

T - pg <arg A < 7. Similar estimates can be derived also for -7 <arg A < -7+ pg.
First of all, put

_ i
(5.1) @ = 3mT2)
and assume that
(5.2) po < 2w.

Since the direction arg x = w lies in a sector (1.9), the solution ¥ ., 18 subdominant
as X tends to infinity in this direction. It is easily seen that there are two positive
constants rp and M such that

(5.3) | px)| > rq 2] and |P(x)| > ro&™
for
(5.4) x=¢tel®, £ >0, |A|_>_Mo,’ T-pg <argx < 7.

The quantities ryp and My depend only on a;, «*-,a,,_].

Let us reduce equation (4.3) to equation (4.5) by the transformation (4.4). Then
we get the inequalities

m m

Is@] <K& 2  and |et)| < K&

2

for x=£el®, £>1, || >My, 7 - pg<arg A <7, where K is a positive con-
stant depending only on a;, ---, a, _;. On the other hand, for each positive number
¢, there is a positive constant K(£,) such that

Is@l < K(go) A2 and  |g@)| < K(£,) |r]"3/2

for x=£el®, 0 <ELE, |7\| =My, m - pg <arg A < 7. The constant K(£,) de-

pends alsoon aj, *--, a,,_j.

Now let us reduce equation (4.5) to (4.13), and then let us consider equations
(4.14). The path of integration in the present case is

(5.5) x = (el (0< & <+e).
We want to find an interval of values £ where
(5.6) 92 ([P(x)]1/2e1?) > 0.
To do this, put
P(x) = x™1+Qx)}+2, € =arg{1+Qx)}, 6 = arg A.
Let R be a positive number such that

Iarg{1+Q(x)}| < 7/4 and |1+ Q)] > 1/2  for |x| > Ry.
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Then, for |x| > Ry, we find that

1 < mw + 2w + Q <%

N

On the other hand,
T<7T+2w-p, < 60+20w < 7+2w < 27.

Let
5.7) Q) = (—3 |Alsa'zlinn1§/94+ 20) 1/m.
Then
!%[P(x)eizw] = £m|1+Q(x)|sin(mw +Q+2w)+|7t|sin(6 +2w) > 0
for
(5.8) x=te?, £ > 1), Al >My, 7-pyg<argr<m

if My is sufficiently large. Therefore the inequality (5.6) holds for (5.8). There-
fore equations (4.13) have a solution

(5.9) w; = E;(x), w, = E,(x)
such that
(5.10) lim E,(¢el®) =0, lim E,((e'?) =
£ oo £ —eo
and
(5.11) E, [n0)ei®] = o(|2]79), E,[n(n)e*] = 1+0(]2]7%),

where o is a positive constant independent of X.

To estimate the quantities E;(0) and E,(0), let us put
(5.12) x = [a|V/mieiv  (0< T <+w).

Then equations (4.13) take the form

d

%= |7L|1/me1‘*’{2[P(x)]1/2w + 8, (x)w +8; (x)wz},
d .

-dWTZ = |7\|1/m e’ {s,, (X)W, +s,,(x)w, .

On the other hand, x varies from 7 (1) el® to zero as 7 goes to zero from

~3sin(6 + 2w)\ /™
sin 7/4 :

Hence it is easily seen that

1,1

(5.13) |E;(0)| < kexp (h x|z ™ G=1,2)
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for |A| =My, 7 - py garg A <7, where k and h are positive constants.
By inserting (5.9) into (4.4), we get a solution of equation (4.3):

E,(x) x
(5.14) u = T(x)R(x)l: = :Iexp(-S [P(t)]l/zdt).

E 2.(x) 0

In particular,

14 1 1 32 E,(0)
u(0) =2 \1/2 1/ {12+ 0(]] )} E,(0) ’

where 1, is the two-by-two unit-matrix. Hence, by the use of (5. 13) and the same
method as in Section 4, we get estimates of %, and %, that are similar to the
estimates in Section 4. Thus we can complete the proof of Theorem 2.
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