SUBDOMINANT SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH POLYNOMIAL COEFFICIENTS

Yasutaka Sibuya

1. PRELIMINARIES

Let us consider differential equations of the form

(1.1)
$$\frac{d^2 y}{dx^2} - P(x) y = 0,$$

where x is a complex independent variable,

(1.2)
$$P(x) = x^{m} + a_1 x^{m-1} + a_2 x^{m-2} + \cdots + a_{m-1} x + a_m,$$

and a_1 , ..., a_m are complex parameters. Previously, P. F. Hsieh and Y. Sibuya [2], [3] obtained the following result.

THEOREM 1. Equation (1.1) has a solution

(1.3)
$$y = y_m(x, a_1, \dots, a_{m-1}, a_m)$$

such that (i) \mathcal{Y}_m is an entire function of (x, a_1, \cdots, a_m) ; (ii) \mathcal{Y}_m and \mathcal{Y}_m admit respectively the asymptotic representations

$$\mathscr{Y}_{m} \cong x^{r_{m}} \left(1 + \sum_{N=1}^{\infty} B_{m,N} x^{-N/2} \right) \times \exp \left(-\frac{2}{m+2} x^{(m+2)/2} + \sum_{N=1}^{m+1} A_{m,N} x^{(m+2-N)/2} \right),$$

$$(1.4)$$

$$\mathscr{Y}_{m}^{!} \cong x^{\frac{m}{2} + r_{m}} \left(-1 + \sum_{N=1}^{\infty} C_{m,N} x^{-N/2} \right) \times \exp \left(-\frac{2}{m+2} x^{(m+2)/2} + \sum_{N=1}^{m+1} A_{m,N} x^{(m+2-N)/2} \right)$$

uniformly on each compact set in (a_1, \cdots, a_m) -space as x tends to infinity in any sector of the form

$$\left|\arg x\right| \leq \frac{3\pi}{m+2} - \delta ,$$

Received August 2, 1966.

This paper was written with partial support from the National Science Foundation (GP-3904).

where ' denotes d/dx, δ is an arbitrary positive number, the quantities r_m , $A_{m,N}$, $B_{m,N}$, and $C_{m,N}$ are polynomials of (a_1, \dots, a_m) , and

$$x^r = \exp \{r(\log |x| + i \arg x)\}$$

for any constant r. Furthermore, if we put

(1.6)
$$\left\{x^{-m}P(x)\right\}^{1/2} = 1 + \sum_{h=1}^{\infty} b_h x^{-h},$$

we get

(1.7)
$$\mathbf{r}_{m} = \begin{cases} -\frac{m}{4} & \text{if m is odd,} \\ -\frac{m}{4} - \mathbf{b}_{1+m/2} & \text{if m is even} \end{cases}$$

and

(1.8)
$$\sum_{N=1}^{m+1} A_{m,N} x^{(m+2-N)/2} = -\sum_{1 \le h < \frac{m}{2} + 1} \frac{2}{m+2-2h} b_h x^{(m+2-2h)/2}.$$

The solution \mathcal{Y}_m tends to zero as x tends to infinity in any sector of the form

$$|\arg x| \leq \frac{\pi}{m+2} - \delta,$$

where δ is an arbitrary positive number. Hence \mathscr{Y}_m is subdominant in each sector (1.9). Subdominant solutions are uniquely determined by their asymptotic representations at infinity. Hence \mathscr{Y}_m is the unique solution of equation (1.1) that satisfies conditions (i) and (ii) of Theorem 1.

2. THE MAIN THEOREM

For each fixed (x, a_1, \dots, a_{m-1}) , the quantities \mathscr{Y}_m and $\mathscr{Y}_m^!$ are entire functions of a_m . In this paper we shall compute their orders. Before we state our result, we want to study the two cases m=1 and m=2. If m=1, equation (1.1) can be written as

$$\frac{d^2 y}{dx^2} - (x + \lambda)y = 0,$$

where λ is a complex parameter. Hence we get the solution

$$\mathcal{Y}_1(x, \lambda) = 2\sqrt{\pi}Ai(x + \lambda)$$
,

where Ai is the Airy function of the first kind. This implies that the orders of \mathscr{Y}_1 and \mathscr{Y}_1' as entire functions of λ are equal to 3/2 (see [1, 10.4.1 (p. 446), 10.4.7 (p. 446), and 10.4.59 (p. 448)]). If m = 2, we get the solution

$$\mathscr{Y}_{2}(x, 2a, \lambda) = 2^{-\rho/2} \exp\left(\frac{1}{2}a^{2}\right) D_{\rho}(\sqrt{2}(x+a)),$$

where $\rho = -(\lambda - a^2 + 1)/2$ and D_ρ is the parabolic cylinder function of Whittaker. This implies that the orders of \mathscr{Y}_2 and \mathscr{Y}_2' as entire functions of λ are equal to 1 (see [1, 19.3.5 (p. 687) and 19.8.1 (p. 689)]).

In general, if we put $x = z a_m^{1/m}$, equation (1.1) takes the form

$$\frac{d^2 y}{dz^2} - a_m^{(2+m)/m} \{ z^m + a_m^{-1/m} a_1 z^{m-1} + \dots + 1 \} y = 0.$$

From this we may surmise that the orders of \mathscr{Y}_m and \mathscr{Y}_m' as entire functions of a_m are equal to $\frac{1}{2} + \frac{1}{m}$, since for m = 1 and m = 2 this is true. In this paper, we shall prove it for every m. Namely, we shall establish the following theorem.

THEOREM 2. The orders of \mathcal{Y}_m and \mathcal{Y}_m^1 as entire functions of a_m are equal to $\frac{1}{2} + \frac{1}{m}$.

It should be remarked that $\frac{1}{2} + \frac{1}{m}$ is less than 1, if $m \geq 3$, and that the order of a polynomial of \mathscr{Y}_m and \mathscr{Y}_m^1 as an entire function of a_m is not greater than $\frac{1}{2} + \frac{1}{m}$.

3. REMARKS

Let us write equation (1.1) in the form

(3.1)
$$\frac{d^2 y}{dx^2} - \{Q(x) + \lambda\} y = 0,$$

where

(3.2)
$$Q(x) = x^{m} + a_1 x^{m-1} + \cdots + a_{m-1} x$$

and

$$\lambda = a_{\rm m}.$$

For each complex number x_0 , let us put

(3.4)
$$Q(x + x_0) = x^m + u_1 x^{m-1} + \dots + u_{m-1} x + u_m.$$

Then the quantities u_k are polynomials of x_0 , a_1 , \cdots , a_{m-1} . Hence the u_k are independent of λ . Now

(3.5)
$$y = \mathcal{Y}_m(x + x_0, a_1, \dots, a_{m-1}, \lambda)$$

is a solution of the equation

(3.6)
$$\frac{d^2 y}{dx^2} - \{Q(x + x_0) + \lambda\} y = 0.$$

On the other hand.

(3.7)
$$y = \mathcal{Y}_m(x, u_1, \dots, u_{m-1}, u_m + \lambda)$$

is another solution of equation (3.6). From (1.4) we can derive the respective asymptotic representations of the two solutions (3.5) and (3.7) as x tends to infinity

in any sector (1.5). Then the uniqueness of \mathcal{Y}_{m} yields the following result.

THEOREM 3. The function \mathcal{Y}_{m} satisfies the identity

(3.8)
$$\mathscr{Y}_{m}(x + x_{0}, a_{1}, \dots, a_{m-1}, \lambda) = K_{m} \mathscr{Y}_{m}(x, u_{1}, \dots, u_{m-1}, u_{m} + \lambda),$$

where

$$K_{m} = \begin{cases} 1 & \text{if m is odd,} \\ \exp\left(-\frac{2}{m+2}x_{0}^{(m+2)/2} + \sum_{N=1}^{m+1}A_{m,N}x_{0}^{(m+2-N)/2}\right) & \text{if m is even.} \end{cases}$$

In particular, we have the relations

(3.9)
$$\mathscr{Y}_{m}(x_{0}, a_{1}, \dots, a_{m-1}, \lambda) = K_{m} \mathscr{Y}_{m}(0, u_{1}, \dots, u_{m-1}, u_{m} + \lambda),$$

$$\mathscr{Y}_{m}^{'}(x_{0}, a_{1}, \dots, a_{m-1}, \lambda) = K_{m} \mathscr{Y}_{m}^{'}(0, u_{1}, \dots, u_{m-1}, u_{m} + \lambda).$$

The quantities K_m , u_1 , \cdots , u_m are independent of λ . Hence the two functions $\mathscr{Y}_m(x_0, a_1, \cdots, a_{m-1}, \lambda)$ and $\mathscr{Y}_m(0, u_1, \cdots, u_{m-1}, u_m + \lambda)$ have the same order as entire functions of λ . The same is also true for \mathscr{Y}_m . Therefore, in order to prove Theorem 2, it is sufficient to consider the functions $\mathscr{Y}_m(0, a_1, \cdots, a_{m-1}, \lambda)$ and $\mathscr{Y}_m'(0, a_1, \cdots, a_{m-1}, \lambda)$.

4. ESTIMATES FOR
$$\left|\arg\lambda\right|\leq\pi$$
 - ρ_0

In this section, we shall derive some estimates of \mathscr{Y}_m and \mathscr{Y}_m' for $|\arg \lambda| \leq \pi - \rho_0$, where ρ_0 is an arbitrary positive number. It is easily seen that there exist two positive numbers r_0 and M_0 such that

$$|P(x)| \ge r_0 |\lambda| \quad \text{and} \quad |P(x)| \ge r_0 x^m$$

for

(4.2)
$$x \geq 0$$
, $|\lambda| \geq M_0$, $|\arg \lambda| \leq \pi - \rho_0$.

The two numbers \mathbf{r}_0 and \mathbf{M}_0 depend only on ρ_0 , \mathbf{a}_1 , \cdots , \mathbf{a}_{m-1} .

Now let us put

$$\mathbf{u} = \begin{bmatrix} \mathbf{y} \\ \mathbf{y}^{\dagger} \end{bmatrix}, \quad \mathbf{A}(\mathbf{x}) = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{P}(\mathbf{x}) & \mathbf{0} \end{bmatrix}.$$

Then equation (1.1) is equivalent to

$$\frac{du}{dx} = A(x)u.$$

Put

$$T(x) = P(x)^{-1/4} \begin{bmatrix} 1 & 1 \\ P(x)^{1/2} & -P(x)^{1/2} \end{bmatrix}$$

and

$$R(x) = \begin{bmatrix} 1 & -g(x) \\ g(x) & 1 \end{bmatrix},$$

where

$$arg[P(x)]^r = r arg[P(x)]$$
 for any r

and

$$g(x) = \frac{P'(x)}{8[P(x)]^{3/2}}.$$

Then the transformation

$$(4.4) u = T(x)R(x)v$$

reduces equation (4.3) to

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}\mathbf{x}} = \mathbf{B}(\mathbf{x})\mathbf{v}$$

with

(4.6)
$$B(x) = P(x)^{1/2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} + \frac{S(x)}{1 + [g(x)]^2},$$

where

(4.7)
$$S(x) = h(x)g(x) \begin{bmatrix} 1 & -g(x) \\ -g(x) & -1 \end{bmatrix} - g'(x) \begin{bmatrix} g(x) & -1 \\ 1 & g(x) \end{bmatrix}$$

and

(4.8)
$$h(x) = \frac{P'(x)}{4P(x)}.$$

Let us denote by ||S(x)|| the sum of the absolute values of the components of the matrix S(x). Then we get the inequality

(4.9)
$$\|S(x)\| \le Kx^{-2-\frac{1}{2}m}$$

for $x\geq 1$, $\left|\lambda\right|\geq M_0$, $\left|\arg\lambda\right|\leq\pi$ - ρ_0 , where K is a positive constant that depends only on ρ_0 , a_1 , ..., a_{m-1} . On the other hand, for each positive number x_0 , there exists a positive constant $K(x_0)$ such that

$$||S(x)|| < K(x_0) |\lambda|^{-3/2}$$

for $0 \le x \le x_0$, $|\lambda| \ge M_0$, $|\arg \lambda| \le \pi$ - ρ_0 . The constant $K(x_0)$ depends also on ρ_0 , a_1 , ..., a_{m-1} . The quantity g(x) satisfies similar inequalities, namely,

(4.11)
$$|g(x)| \le Kx^{-1-\frac{1}{2}m}$$

for
$$x \geq 1$$
, $\left| \lambda \right| \geq M_0$, $\left| \arg \lambda \right| \leq \pi$ - ρ_0 , and

(4.12)
$$|g(x)| \le K(x_0) |\lambda|^{-3/2}$$

for $0 \le x \le x_0$, $\left|\lambda\right| \ge M_0$, $\left|\arg\lambda\right| \le \pi$ - ρ_0 . Therefore

$$\sup_{0 \le x < +\infty} |g(x)| \quad \text{and} \quad \int_0^{+\infty} \frac{\|S(x)\| dx}{1 + [g(x)]^2}$$

tend to zero as λ tends to infinity in the sector $\left|\arg\lambda\right|\leq\pi$ - ρ_0 . Put

$$v = w \exp \left(-\int_0^x [P(t)]^{1/2} dt\right).$$

Then

$$\frac{\mathrm{d}\mathbf{w}}{\mathrm{d}\mathbf{x}} = \left\{ \begin{bmatrix} 2[\mathbf{P}(\mathbf{x})]^{1/2} & 0 \\ 0 & 0 \end{bmatrix} + \frac{\mathbf{S}(\mathbf{x})}{1 + [\mathbf{g}(\mathbf{x})]^2} \right\} \mathbf{w}.$$

Letting

$$\mathbf{w} = \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{bmatrix}, \quad \frac{\mathbf{S}(\mathbf{x})}{1 + [\mathbf{g}(\mathbf{x})]^2} = \begin{bmatrix} \mathbf{s}_{11}(\mathbf{x}) & \mathbf{s}_{12}(\mathbf{x}) \\ \mathbf{s}_{21}(\mathbf{x}) & \mathbf{s}_{22}(\mathbf{x}) \end{bmatrix},$$

we get the equations

$$\frac{dw_1}{dx} = 2[P(x)]^{1/2}w_1 + s_{11}(x)w_1 + s_{12}(x)w_2,$$

$$\frac{dw_2}{dx} = s_{21}(x)w_1 + s_{22}(w)w_2.$$

Let us transform equations (4.13) into

$$w_{1}(x) = -\int_{x}^{+\infty} \left\{ s_{11}(t) w_{1}(t) + s_{12}(t) w_{2}(t) \right\} \exp \left(2 \int_{t}^{x} [P(\sigma)]^{1/2} d\sigma \right) dt,$$

$$(4.14)$$

$$w_{2}(x) = 1 - \int_{x}^{+\infty} \left\{ s_{21}(t) w_{1}(t) + s_{22}(t) w_{2}(t) \right\} dt.$$

Since

(4.15)
$$\Re \left[P(x) \right]^{1/2} > 0$$

for (4.2) if M_0 is sufficiently large, equations (4.14) have a solution of the form

$$w_1(x) = E_1(x), \quad w_2(x) = 1 + E_2(x),$$

where E_1 and E_2 tend to zero uniformly for $0 \le x < +\infty$ as λ tends to infinity in the sector $\left|\arg\lambda\right| \le \pi$ - ρ_0 , and they also tend to zero uniformly for $\left|\lambda\right| \ge M_0$, $\left|\arg\lambda\right| \le \pi$ - ρ_0 as x tends to $+\infty$.

Thus equation (4.5) has a solution of the form

$$v(x) = \begin{bmatrix} E_1(x) \\ 1 + E_2(x) \end{bmatrix} exp \left(-\int_0^x [P(t)]^{1/2} dt\right).$$

Substituting this solution of (4.5) into (4.4), we get a solution of equation (1.1) of the form

$$y(x) = \left\{1 + F_1(x)\right\} [P(x)]^{-1/4} \exp\left(-\int_0^x [P(t)]^{1/2} dt\right),$$

$$(4.16)$$

$$y'(x) = \left\{-1 + F_2(x)\right\} [P(x)]^{1/4} \exp\left(-\int_0^x [P(t)]^{1/2} dt\right),$$

where F_1 and F_2 are similar to $E_1(x)$ and $E_2(x)$. Since $\Re[P(t)]^{1/2} > 0$, this solution is subdominant along the positive real axis. Hence y(x) is a constant multiple of $\mathscr{Y}_m(x, a_1, \dots, a_{m-1}, \lambda)$. We shall now determine this constant multiplier.

If m is odd, we get

$$y(x) = \mathscr{Y}_{m}(x, a_{1}, \dots, a_{m-1}, \lambda) \times$$

$$\exp \left[- \int_{0}^{+\infty} \left([P(t)]^{1/2} - t^{m/2} - \sum_{1 \leq h < \frac{m}{2} + 1} b_{h} t^{\frac{m}{2} - h} \right) dt \right],$$

since

$$\begin{split} \int_0^x \left[P(t) \right]^{1/2} dt &= \frac{2}{m+2} \, x^{(m+2)/2} - \sum_{N=1}^{m+1} A_{m,N} \, x^{(m+2-N)/2} \\ &+ \int_0^x \left(\left[P(t) \right]^{1/2} - t^{m/2} - \sum_{1 \le h < \frac{m}{2} + 1} b_h \, t^{\frac{m}{2} - h} \right) dt \, . \end{split}$$

Then

$$\mathscr{Y}_{m}(0, a_{1}, \dots, a_{m-1}, \lambda) = \left\{1 + C_{1}(\lambda)\right\} \lambda^{-1/4} \times \\ \exp \left[\int_{0}^{+\infty} \left(\left[P(t)\right]^{1/2} - t^{m/2} - \sum_{1 \leq h < \frac{m}{2} + 1} b_{h} t^{\frac{m}{2} - h} \right) dt \right],$$

$$(4.18)$$

$$\mathscr{Y}_{m}^{I}(0, a_{1}, \dots, a_{m-1}, \lambda) = \left\{-1 + C_{2}(\lambda)\right\} \lambda^{1/4} \times \\ \exp \left[\int_{0}^{+\infty} \left(\left[P(t)\right]^{1/2} - t^{m/2} - \sum_{1 \leq h < \frac{m}{2} + 1} b_{h} t^{\frac{m}{2} - h} \right) dt \right],$$

where C_1 and C_2 tend to zero as λ tends to infinity in the sector $\left|\arg\lambda\right|\leq\pi-\rho_0$. In the integral

(4.19)
$$\int_0^{+\infty} \left([P(t)]^{1/2} - t^{m/2} - \sum_{1 \le h < \frac{m}{2} + 1} b_h t^{\frac{m}{2} - h} \right) dt,$$

the variable t is real and positive. However, if we examine the singular points of the integrand and its behaviour at t=0 and $t=\infty$, we easily see that we can take the path of integration along the line arg $t=\frac{1}{m}\arg\lambda$. Hence let us put $t=\lambda^{1/m}\tau$, where $0\leq\tau<+\infty$. Then the integral (4.19) can be written as

$$\lambda^{3/2} \int_0^{+\infty} \left((\tau + 1)^{1/2} - \tau^{1/2} - \frac{1}{2} \tau^{-1/2} \right) d\tau = -\frac{2}{3} \lambda^{3/2} \quad \text{if } m = 1,$$

and as

$$\lambda^{\frac{1}{2} + \frac{1}{m}} \left[\int_{0}^{+\infty} \left((\tau^{m} + 1)^{1/2} - \tau^{m/2} \right) d\tau + O(\lambda^{-1/m}) \right] \quad \text{if } m \geq 3.$$

In a similar manner, if m is even, we get the expressions

$$(4.20) \quad \mathscr{Y}_{m}(0, a_{1}, \dots, a_{m-1}, \lambda) = \{1 + C_{1}(\lambda)\} \lambda^{-1/4} \exp L_{m}(\lambda),$$

$$\mathscr{Y}_{m}^{1}(0, a_{1}, \dots, a_{m-1}, \lambda) = \{-1 + C_{2}(\lambda)\} \lambda^{1/4} \exp L_{m}(\lambda),$$

where

(4.21)
$$L_{m}(\lambda) = \int_{0}^{+\infty} \left([P(t)]^{1/2} - t^{m/2} - \sum_{h=1}^{m/2} b_{h} t^{\frac{m}{2} - h} - \frac{b_{1+m/2}}{t+1} \right) dt.$$

In computing $L_m(\lambda)$, we can change the path of integration in the same way as in the case where m is odd. If m = 2, then

$$b_{1+m/2} = \frac{1}{2} \left(\lambda - \frac{1}{4} a_1^2 \right).$$

Hence

$$L_2(\lambda) = \lambda \left\{ -\frac{1}{4} \log \lambda + O(1) \right\}.$$

This implies that \mathscr{Y}_2 may be an entire function of λ of order 1 and of maximal type. This is evident, since the initial values of the parabolic cylinder functions involve Gamma functions. If $m \geq 4$, the quantity $b_{1+m/2}$ is independent of λ . Hence

$$L_{m}(\lambda) = \lambda^{\frac{1}{2} + \frac{1}{m}} \left[\int_{0}^{+\infty} \left((\tau^{m} + 1)^{1/2} - \tau^{m/2} \right) d\tau + O(\lambda^{-1/m}) \right].$$

5. ESTIMATES FOR
$$\pi$$
 - $\rho_0 \le \arg \lambda \le \pi$

In this section, we shall derive some estimates of \mathscr{Y}_m and \mathscr{Y}_m^1 for π - $\rho_0 \leq \arg \lambda \leq \pi$. Similar estimates can be derived also for $-\pi \leq \arg \lambda \leq -\pi + \rho_0$. First of all, put

$$\omega = \frac{\pi}{2(m+2)}$$

and assume that

$$\rho_0 < 2\omega.$$

Since the direction $\arg x = \omega$ lies in a sector (1.9), the solution \mathscr{Y}_m is subdominant as x tends to infinity in this direction. It is easily seen that there are two positive constants \mathbf{r}_0 and \mathbf{M}_0 such that

(5.3)
$$|P(x)| \ge r_0 |\lambda|$$
 and $|P(x)| \ge r_0 \xi^m$

for

(5.4)
$$x = \xi e^{i\omega}, \quad \xi \geq 0, \quad |\lambda| \geq M_0, \quad \pi - \rho_0 \leq \arg \lambda \leq \pi.$$

The quantities r_0 and M_0 depend only on a_1 , \cdots , a_{m-1} .

Let us reduce equation (4.3) to equation (4.5) by the transformation (4.4). Then we get the inequalities

$$\|S(x)\| \le K\xi^{-2-\frac{m}{2}}$$
 and $|g(x)| \le K\xi^{-1-\frac{m}{2}}$

for $x=\xi\,\mathrm{e}^{\mathrm{i}\omega}$, $\xi\ge 1$, $\left|\lambda\right|\ge M_0$, π - $\rho_0\le\arg\lambda\le\pi$, where K is a positive constant depending only on a_1 , \cdots , a_{m-1} . On the other hand, for each positive number ξ_0 , there is a positive constant $K(\xi_0)$ such that

$$||S(x)|| \le K(\xi_0) |\lambda|^{-3/2}$$
 and $|g(x)| \le K(\xi_0) |\lambda|^{-3/2}$

for x = $\xi \, \mathrm{e}^{\mathrm{i} \omega}$, $0 \le \xi \le \xi_0$, $|\lambda| \ge M_0$, π - $\rho_0 \le \arg \lambda \le \pi$. The constant K(ξ_0) depends also on $a_1, \cdots, a_{\mathrm{m-1}}$.

Now let us reduce equation (4.5) to (4.13), and then let us consider equations (4.14). The path of integration in the present case is

(5.5)
$$x = \xi e^{i\omega} \quad (0 < \xi < +\infty).$$

We want to find an interval of values ξ where

(5.6)
$$\Re([P(x)]^{1/2}e^{i\omega}) > 0.$$

To do this, put

$$P(x) = x^{m}\{1 + Q(x)\} + \lambda, \quad \dot{\Omega} = \arg\{1 + Q(x)\}, \quad \theta = \arg\lambda.$$

Let R₀ be a positive number such that

$$\left| \text{arg} \left\{ 1 + Q(x) \right\} \right| \, \leq \, \pi/4 \quad \text{and} \quad \left| 1 + Q(x) \right| \, \geq \, 1/2 \qquad \text{for} \ \left| \, x \right| \, \geq \, R_{\,0}.$$

Then, for $|x| \ge R_0$, we find that

$$\frac{1}{4}\pi\,\leq\,m\omega\,+\,2\omega\,+\,\Omega\,\leq\frac{3}{4}\pi\,.$$

On the other hand,

$$\pi < \pi + 2\omega - \rho_0 < \theta + 2\omega < \pi + 2\omega < 2\pi$$
.

Let

(5.7)
$$\eta(\lambda) = \left(\frac{-3|\lambda|\sin(\theta+2\omega)}{\sin \pi/4}\right)^{1/m}.$$

Then

$$\left|\Im\left[\mathbf{P}(\mathbf{x})\,\mathbf{e}^{\mathrm{i}2\omega}\right]\right| = \xi^{\mathrm{m}}\left|1+\mathbf{Q}(\mathbf{x})\right|\sin\left(\mathrm{m}\omega+\Omega+2\omega\right)+\left|\lambda\right|\sin\left(\theta+2\omega\right)>0$$

for

(5.8)
$$x = \xi e^{i\omega}, \quad \xi \geq \eta(\lambda), \quad |\lambda| \geq M_0, \quad \pi - \rho_0 \leq \arg \lambda \leq \pi$$

if M_0 is sufficiently large. Therefore the inequality (5.6) holds for (5.8). Therefore equations (4.13) have a solution

(5.9)
$$w_1 = E_1(x), \quad w_2 = E_2(x)$$

such that

(5.10)
$$\lim_{\xi \to +\infty} \mathbf{E}_{1}(\xi e^{i\omega}) = 0, \quad \lim_{\xi \to +\infty} \mathbf{E}_{2}(\xi e^{i\omega}) = 1,$$

and

(5.11)
$$\mathbf{E}_{1}\left[\eta(\lambda)e^{\mathrm{i}\omega}\right] = O(\left|\lambda\right|^{-\sigma}), \quad \mathbf{E}_{2}\left[\eta(\lambda)e^{\mathrm{i}\omega}\right] = 1 + O(\left|\lambda\right|^{-\sigma}),$$

where σ is a positive constant independent of λ .

To estimate the quantities $E_1(0)$ and $E_2(0)$, let us put

(5.12)
$$x = |\lambda|^{1/m} \tau e^{i\omega} (0 < \tau < +\infty).$$

Then equations (4.13) take the form

$$\frac{dw_1}{d\tau} = |\lambda|^{1/m} e^{i\omega} \left\{ 2[P(x)]^{1/2} w_1 + s_{11}(x) w_1 + s_{12}(x) w_2 \right\},$$

$$\frac{dw_2}{dx} = |\lambda|^{1/m} e^{i\omega} \left\{ 2[P(x)]^{1/2} w_1 + s_{11}(x) w_1 + s_{12}(x) w_2 \right\},$$

$$\frac{dw_2}{d\tau} = |\lambda|^{1/m} e^{i\omega} \{s_{21}(x)w_1 + s_{22}(x)w_2\}.$$

On the other hand, x varies from $\eta(\lambda)e^{i\omega}$ to zero as τ goes to zero from

$$\tau = \left(\frac{-3\sin(\theta + 2\omega)}{\sin \pi/4}\right)^{1/m}.$$

Hence it is easily seen that

(5.13)
$$|E_{j}(0)| \le k \exp\left(h |\lambda|^{\frac{1}{2} + \frac{1}{m}}\right)$$
 (j = 1, 2)

for $|\lambda| \ge M_0$, $\pi - \rho_0 \le \arg \lambda \le \pi$, where k and h are positive constants. By inserting (5.9) into (4.4), we get a solution of equation (4.3):

(5.14)
$$u = T(x)R(x)\begin{bmatrix} E_1(x) \\ E_2(x) \end{bmatrix} exp\left(-\int_0^x [P(t)]^{1/2} dt\right).$$

In particular,

$$u(0) = \lambda^{-1/4} \begin{bmatrix} 1 & 1 \\ \lambda^{1/2} & -\lambda^{1/2} \end{bmatrix} \{1_2 + O(|\lambda|^{-3/2})\} \begin{bmatrix} E_1(0) \\ E_2(0) \end{bmatrix},$$

where 1_2 is the two-by-two unit-matrix. Hence, by the use of (5.13) and the same method as in Section 4, we get estimates of $\mathscr{Y}_{\mathbf{m}}$ and $\mathscr{Y}_{\mathbf{m}}^{\dagger}$ that are similar to the estimates in Section 4. Thus we can complete the proof of Theorem 2.

REFERENCES

- 1. M. Abramowitz and I. A. Stegun (Editors), Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards, Applied Mathematics Series 55, Third Printing, March 1965, with corrections; U.S. Government Printing Office, Washington, D.C.
- 2. P. F. Hsieh and Y. Sibuya, On the two point connection problem for second order linear ordinary differential equations with polynomial coefficients, MRC Tech. Sum. Rep. No. 505, Univ. of Wisconsin, September, 1964.
- 3. ———, On the asymptotic integration of second order linear ordinary differential equations with polynomial coefficients, J. Math. Anal. Appl. 16 (1966), 84-103.

University of Minnesota Minneapolis, Minnesota