ON AN UNKNOWN RAMSEY NUMBER
J. G. Kalbfleisch

1. INTRODUCTION

A complete graph on n vertices will be called an n-cligue. Suppose that each of
the (g) edges of the n-clique is painted either red or blue. For p, q> 2, a (p, q)-

colouring of the n-clique is a colouring that contains no red p-clique (no set of p
points interjoined entirely by red edges) and no blue g-clique. A theorem of Ramsey
[7] implies the existence of a least integer M{p, q) such that for n > M no (p, q)-
colouring of the n-clique exists.

It is obvious that M(p, q) = M(q, p), and M(2, q) =q. Lemmas 1 and 2 were given
by Erdds and Szekeres [1]. Lemma 2 provides an inductive upper bound for M(p, q).

LEMMA 1. Each point in a (p, q)-colouring is the endpoint of at most
M(p - 1, q) - 1 red edges and at most M(p, q - 1) - 1 blue edges.

LEMMA 2. M(p, q) < M(p - 1, q) + M(p, q - 1), with strict inequality if both
tevyms on the vight ave even.

Greenwood and Gleason [2] have proved that
M(3, 3) = 6, M(3,4) =9, M(3, 5) = 14, M(4, 4) = 18.

For these cases, Lemma 2 gives the least upper bound, and there exist “extremal”
(p, g)-colourings of a remarkably symmetrical nature. However, for q > 5 the
evaluation of M(3, q) is much more difficult. Kéry [6] and Kalbfleisch [4] have
proved that M(3, 6) = 18. In this case, the upper bound given by Lemma 2 is not
best, and this seems to be the case in general. Several of these upper bounds are
reduced in [5]. Furthermore, all (3, 6)-colourings of the 17-clique are irregular,
and this may also be the case in general.

M(3, 7) is the smallest unknown Ramsey number. Lemma 2 yields an upper
bound of 25 for M(3, 7), but it is proved in [5] that in fact M(3, 7) < 24. The best
lower bound given previously is M(3, 7) > 22 (see [3] and [6]). In this paper, we
construct a (3, 7)-colouring of the 22-clique, and the uncertainty is thus reduced to
the inequalities

23 < M3, 7) < 24.
In addition, we discuss the structure of (3, 7)-colourings of the 22-clique. We are
unable to establish whether or not there exists a (3, 7)-colouring of the 23-clique,
but we make some progress toward solving this problem.

2. PRELIMINARY RESULTS

Two colourings G and H will be called isomorphic if there exists a one-to-one
mapping f of the vertices of G onto the vertices of H sucn that for each vertex pair
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XY in G, edge f(X)£(Y) in H has the same colour as edge XY in G. A (p, q)-
colouring G of the n-clique will be called unique if every other (p, q)-colouring of
the n-clique is isomorphic to G. If a vertex is the endpoint of m red (blue) edges,
it will be called m-valent in red (blue).

Several uniqueness theorems for (p, q)-colourings were proved in [4] and [6].
Only two of these will be needed here. Note that in all diagrams only the rved edges
are dvawn,

LEMMA 3. Of the twelve non-isomorphic (3, 5)-colouvings of the 12-clique,
only one (given by the subgraph of lettered vertices in Figure 2(1)) contains 20 ved
edges.

LEMMA 4. Of the seven non-isomorphic (3, 6)-colourings of the 11-clique, only
one (given in Figure 2(i)) has both the following properties:

(a) It contains 40 red edges:

(b) One of its points (the point 1 in Figure 2(i)) is 4-valent in ved, and each of
the four points (2, 3, 4, 5) to which it is joined by red edges is 5-valent in
red.

Lemma 3 was proved by Kéry [6], who also constructed the (3, 6)-colouring
referred to in Lemma 4. A simpler proof of Lemma 3 was given in [4], where a
complete list of all (3, 5)-colourings of the 12-clique will be found. Lemma 4 is
proved in [4], and a complete list of all (3, 6)-colourings of the 17-clique is given
there.

The following lemma on the possible structures of (3, 6)-colourings of the 17-
clique was also proved in [4], where it was used in the reduction of the upper bound
for M(3, 7) to 24, and in the proof that in a (3, 7)-colouring of the 23-clique, each
point has red valency 6. It is this lemma which suggests the construction to be at-
tempted in Section 4.

LEMMA 5. In a (3, 6)-colouring of the 17-clique, each point is 4-valent or 5-
valent in ved, and the number of 4-valent points is 1, 3,0r 5. There are 40, 41, or
42 ved edges.

3. SOME STRUCTURAL PROPERTIES OF (3, 7)-COLOURINGS

By Lemma 1, in a (3, 7)-colouring, each point has red valency at most
M(2, 7) - 1 = 6 and blue valency at most M(3, 6) - 1 = 17. Since in the 22-clique
there are 21 edges from each point, only three types of points may occur in a (3, 7)-
colouring of the 22-clique:

A — endpoints of 4 red edges and 17 blue edges,
B — endpoints of 5 red edges and 16 blue edges,
C — endpoints of 6 red edges and 15 blue edges.

LEMMA 6. In a (3, T7)-colouring of the 22-clique, no point can be joined by ved
edges to more than one point of type A.

Proof. If some point 1 were joined by red edges to two points 2 and 3 of type
A, then 2 - 3 would be blue, and 3 would be at most 3-valent in red within the 17-
clique joined to 2 by blue edges. By Lemma 5, this 17-clique contains a red tri-
angle or a blue 6-clique. But a blue 6-clique joined by blue edges to 2 is a blue 7-
clique. Thus the 22-clique could not be (3, 7)-coloured.



ON AN UNKNOWN RAMSEY NUMBER 387

Now consider a (3, 7)-colouring of the 22-clique containing a point 1 of type A.
Let & denote the subgraph formed by the 4 points joined to 1 by red edges, and %
the subgraph formed by the 17 points joined to 1 by blue edges. Let & contain
XA, Xp, X points of types A, B, C, respectively. Then by Lemma 6,

Now % must be (3, 6)-coloured, and we can apply Lemma 5 to %. A point of type A
in % is joined by red edges to no points in Z°; let there be yOA such points. A point

of type B in # is joined by red edges to no points in & or to one point in Z°; let
there be y§ and yP such points. Finally, a point of type C in % is joined by red

edges to 1 or 2 points in &Z; let there be y(f and yg such points. Then, by
Lemma 5,

(2) Vo +yg +yP+y§ +yS = 17,
A B C _
(3) Yoty +yy =1,3,0rb.
By counting the number of red edges from & to % and using (1), we find that
B C C _
(4) yp +yy +2yy =20 - X, - Xp.

Also, & contains no red edges, and thus there can be no blue triangle joined to &
by blue edges. The number of points joined by blue edges to all points in & is at
most M(3, 3) - 1 =5. Thus

A B
(5) Yo +Vo < 5.

If there were four points joined by red edges to a particular point of & and by blue
edges to the other three points of &, there would be a blue 7-clique. Therefore

(6) yP+yy <3-4=12.

For each set (X,, Xy, X) satisfying (1), we can write down all the numbers y
satisfying conditions (2) to (6). There are 68 possibilities, but most of these may be
eliminated. It soon becomes apparent that the best prospects for (3, 7)-colourings
lie with cases having a large number of red edges from & to #. Accordingly, we
consider the case x, = Xxg =0, X = 4. Of the three sets of y’s corresponding to
these x-values, we take the simplest,

ve&=1, y&=yP=0, yp=12, y§-=4.

In the following section, we shall construct a (3, 7)-colouring of the 22-clique with
these parameters.

It would be interesting to know for what sets of parameters (3, 7)-colourings
exist. This information would be of considerable help in establishing the value of
M(3, 8). Although some results have been obtained (for example, there can be at
most two points of type A), an examination of all cases has not been completed.
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4, CONSTRUCTION OF A (3, 7)-COLOURING OF THE 22-CLIQUE

We shall now construct a (3, 7)-colouring of the 22-clique with the parameters
set out in Section 3. A point 1 of type A is joined by red edges to points 2, 3, 4, 5
of type C. There is a point 6, also of type A, joined by blue edges to 1, 2, 3, 4, 5

(yf} = 1). All remaining points 7, 8, -+, 22 are of type C. Twelve of these

(yf' = 12), say 1, 8, ***, 18, are joined by red edges to exactly one of the points

2, 3, 4, 5, while 19, 20, 21, 22 are joined by red edges to two of 2, 3, 4, 5. By the
argument preceding condition (6), each of the points 2, 3, 4, 5 is joined by red edges
to exactly three of the points 7, 8, ---, 18. Let 2-7, 2-11, 2-15; 3-8, 3-12, 3-16;
4-9, 4-13, 4-17; 5-10, 5-14, 5-18 be red (Figure 1(i)).

6

Figure 1(i).

Figure 1(ii).
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The point 2 is also joined by red edges to 19 and 20. By symmetry, we may
take 3-19 to be red. If 3-20 were also red, {7, 11, 15, 19, 20, 4, 5} would be a
blue 7-clique. Therefore 3-20 is blue and 4-20, say, is red. Now 5-21 and 5-22
must be red.. By symmetry, take 3-21 and 4-22 to be red.

{6, 7, 11, 15, 3, 4, 5} is a blue T-clique, unless 6 is joined by a red edge to
7, 11, or 15. Take 6-7 red, by symmetry. Similarly, 6-8, 6-9, and 6-10 are red.
There are no more red edges from 6.

Thus in a (3, 7)-colouring of the type sought, the situation must be as illustrated
in Figure 1(ii). Each of the points joined to 1 by a red edge is joined by a red edge
to one of the points joined to 6 by a red edge. For convenience of notation, rename
the remaining points A, B, ---, H, J, ---, M. This 12-clique is joined by blue edges
to both 1 and 6, and it must be (3, 5)-coloured. All points of the graph other than 1
and 6 are 6-valent in red. There are 4-8 = 32 red lines from 2, 3,4,5,7, 8, 9, 10

to this 12-clique, and the 12-clique thus contains %(6 -12 - 32) = 20 red lines. By

Lemma 3, it is coloured as in Figure 2(i).

J K
1
2/ 3 4 \5
™M 0 L
(iii)
(ii)
J K
9 \10 7 /8
/3
M L

Figure 2, (3, 7)-Colouring of the 22-Clique.
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The 17-clique {1, 2, 3, 4,5, A, B, *-, M} joined by blue edges to 6 must be
(3, 6)-coloured. In this colouring, 1 is 4-valent in red and is joined by red edges to
four points 2, 3, 4, 5 that are 5-valent in red in the 17-clique. The 17-clique con-
tains 4 + 4.4 + 20 = 40 red edges. By Lemma 4, it may be coloured uniquely as in
Figure 2(i).

The same comments apply to the 17-clique {6, 7, 8, 9, 10, A, -, M} joined by
blue edges to 1, and it may also be coloured uniquely by Lemma 4. However,
A, B, --», M are common to the two 17-cliques, and each of these points must be
6-valent in red in the completed colouring. Because of the way in which the graphs
have been drawn, it is easy to see how this may be accomplished. To get the colour-
ing of the second 17-clique given in Figure 2(ii), merely “rotate” the picture in
Figure 2(i) through a quarter turn clockwise. If Figures 2(i) and 2(ii) are taken to-
gether, each of A, B, -+, M is 6-valent in red.

Finally, each of 2, 3, 4, 5 must be joined by a red edge to one of 7, 8, 9, 10 in
such a way that no red triangles are created. Now 2 is joined by red edges to
1, B, D, F, J, and 7 is joined by red edges to 6, A, D, G, J. If 2-7 were red, 2-7-D
would be a red triangle. By similar arguments it may be shown that the only red
edges that we may add without introducing any red triangles are 2-9, 3-10, 4-7, and
5-8 (Figure 2(iii)).

We shall now prove that Figures 2(i), (ii), (iii) together give the red edges in a
(3, T)-colouring of the 22-clique. First, any red triangle in the overall graph must
have one vertex in 1, 2, 3, 4, 5 and one in 6, 7, 8, 9, 10, because Figures 5.2(i) and
(ii) are (3, 6)-colourings. However, red edges from 2, 3, 4, 5 to 6, 7, 8, 9 were
added in such a way that no red triangles were created.

No blue 7-clique contains 1, because the 17-clique joined by blue edges to 1 is
(3, 6)-coloured (Figure 2(ii)). Similarly, no blue 7-clique contains 6. A blue 7-
clique containing at most one of 2, 3, 4, 5 would imply a blue 6-clique lying in
6, 7, ---, 10, A, ---, M, contrary to the facts. Therefore, any blue 7-clique contains
at least two of the points 2, 3, 4, 5 and at least two of 7, 8, 9, 10 as well. Since
2, 3, 4, 5 are paired by red edges with 7, 8, 9, 10, any blue 7-clique confains exactly

two of 2, 3, 4, 5 and exactly two of 7, 8, 9, 10. There are (g ) = 6 possibilities:

(i) 2+ 3 + 7+ 8 + blue triangle in ELM (LM red),
(ii) 2+ 4 + 8 + 10 + blue triangle in FH,
(iii) 2+ 5+ 7 + 10 + blue triangle in CKL (KL red),
(iv) 3 + 4+ 8 + 9 + blue triangle in BJM (MJ red),
(v) 3+ 5+ 17+ 9 + blue triangle in AG,
(vi) 4 +5 + 9 + 10 + blue triangle in DJK (JK red).

None of these gives a blue T-clique. Therefore, a (3, 7)-colouring of the 22-clique
has been constructed, and M(3, 7) > 23.

5. (3, 7)-COLOURINGS OF THE 23-CLIQUE

It is possible to show, by means of Lemma 5, that if there exists a (3, 7)-colour-
ing of the 23-clique, all points in it must be 6-valent in red. A proof is given in [5].
Thus, M(8, 7) is 24 or 23 according to whether a (3, 7)-colouring of the 23-clique
with all points 6-valent in red exists or does not exist.
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Suppose that such a colouring exists, and let 1 be any point in it. Denote by &
the subgraph of 6 points joined to 1 by red edges, and by % the subgraph of 16
points joined to 1 by blue edges. & can contain no red edges, and % must be (3, 6)-

coloured with -%(6 .16 - 5-6) = 33 red edges. Although it is demonstrated in [4] that

such (3, 6)-colourings do exist, results as strong as Lemmas 4 and 5 are not avail-
able, and appear quite difficult to obtain. It will thus be more difficult to construct a
colouring or to prove its nonexistence than it was for the 22-clique in Section 3.

Define y; to be the number of points in % that are joined by red edges to i
points in & (i=0, 1, ---, 6). Lemma 1 implies that every point of # is 2, 3, 4, or
5-valent in red in the (3, 6)-colouring of %, and is therefore joined by red edges to
4, 3, 2,or 1 points in &'. Thus

(2) Vit+ty,+tys3+ty, = 16,

By arguments similar to those used to obtain (4) and (6) in Section 3,
(b) yy+ 2y, + 38y, +4y, = 30,

(c) y; < 6.

We shall now prove that y4 = 0. Let & consist of the points 2, 3, ---, 7, and ¥
of the points 8, 9, ---, 23. Suppose that y, > 0; some point 8 in % is joined by red
edges to four points 2, 3,4, 5 in & and to 9, 10 in ¥ (Figure 3). Then 1-8 is
blue, and 1, 8 are both joined by blue edges to the 13-clique {11, 12, <, 23}. This
13-clique contains no red triangle, and if it contained a blue 5-clique, the whole
graph would contain a blue 7-clique. The 13-clique must be (3, 5)-coloured, and by
Lemma 1, all points of the 13-clique are 4-valent in red and 8-valent in blue within
the 13-clique.

Figure 3,

But there are no red triangles, and therefore there are 4-4 = 16 red edges from
2,3,4,5 and at least 3:4 = 12 red edges from 6, 7, 9, 10 to this 13-clique. The

number of red edges within the 13-clique is at most %(6 13 - 16 - 12) = 25. The

13-clique contains a point at most 3-valent in red—a contradiction. Thus y4 = 0.
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It is also proved in [4] that y; > 0. For every point 1 in a (3, '7)-colouring of
the 23-clique, the parameters y; defined above satisfy the relations

(a) y1+tvyz2tys =16,
(b) y;+ 2y, +3y3 = 30,
(c) y, L6,
(d) vy > 1.

There exist five parameter sets satisfying (a) to (d). I think it likely that these
possibilities can also be eliminated, and this would prove that M(3, 7) = 23. How-
ever I have not yet succeeded in doing this, and the question remains unresolved.

Added June 7th, 1966: At the conference in Combinatorial Mathematics held at
the University of Waterloo on April 4 to 9, 1966, Professor Jack Graver of Dart-
mouth College announced that he and Dr. Jim Yackel had proved that there exist no
(3, 7)-colourings of the 23-clique. This would establish M(3, 7) = 23.
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