A NOTE ON INSEPARABILITY
J. D. Reid

1. INTRODUCTION

It is well known that for certain fields E there exist finite extensions P/E that
are not separable, yet contain no purely inseparable elements. However, as far as
the author has been able to determine, the question of when such a phenomenon oc-
curs has not been discussed in the literature; various of the well-known books give
only examples (see [1, p. 136, Exercise 17] and [2, p. 49, Exercise 3]; the example in
the first printing of [2] seems mistaken, but the author understands that this will be
corrected). It seems natural to ask for more general information, and it is the ob-
ject of this note to make some remarks in this direction. Since this paper was writ-
ten, it has come to the author’s attention that R. W. Gilmer, Jr., W. J. Heinzer, and
H. F. Kreimer are preparing a joint paper in which similar problems are considered.

We write P/E to indicate that P is a finite-dimensional extension field of E.
The letter p is reserved for the characteristic of the fields under discussion, and
since our questions generally evaporate when p = 0, we shall always assume that
p > 0. We write Z(P/E) tc denote the subfield of P consisting of all elements
separable over E, and we write Z/E to denote a separable extension of E. For lack
of a better name, we call an extension P/E exceptional if it is not separable yet
contains no purely inseparable elements. We say that a separable extension Z/E is
a vealizable extension of E provided there exists an exceptional extension P/E
such that = = Z(P/E). Otherwise, our terminology is that of [2].

2. A CRITERION

THEOREM 2.1. A sepavable extension Z/E is a vealizable extension if and only
if
U sP(x) # =.

x€eE

Proof, Suppose first that Z = Z(P/E) for some exceptional extension P/E. Then
P/Z is purely inseparable, so that for each y € P there exists an m such that

ypm € Z. We may thus choose z € P, z ¢ =, with zP € Z, Should zP € ZP(x) for
some X € E, then, since the mapping y — yP is one-to-one on P and z € Z, so that
zP ¢ =P, we see that ZP(x) # ZP. Hence both x and zP have degree p over ZP;
thus ZP(x) = Z¥(zP), and

x e ZP(zP) N E < PPNE.

Finally, since P/E is exceptional, it follows that PP N E = EP, so that x ¢ EP L =P,
contrary to the relation ZP(x) # ZP. We thus conclude that zP ¢ ZP(x) for all x € E;
therefore the condition is necessary.
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For the converse, suppose Z/E is separable and there exists s € £ such that
s ¢ ZP(x) for all x € E. Then, with P = Z(SI/P), it is clear that P/Z is purely in-
separaple, so that = = Z(P/E). Suppose that yP =x € E for some y € P, and put
z =sl/P, Then y=sp+tsiz+ - +s8p.) zP-1 for some sj € Z, which implies

x = y® = sf+sls+- +sg_lsp'1 e Z%(s)..

Now if x ¢ =P, then as above, ZP(x) = =P(s), contrary to the choice of s. On the
other hand, x € =P implies y € Z, since yP = x. Separability of =/E now implies
that y € E, as required. Thus P/E is exceptional.

Remark. 1t is well known that separability of Z/E is equivalent to the condition
ZP(E) = . Theorem 2.1 may be interpreted as saying that nonrealizability of the
separable extension Z/E is equivalent to “strong separability” in the sense that

U =Px) = =.

xeE

COROLLARY 2.2. Let Z/E be separable, and suppose T = ZP(s) for some
s € Z. Then Z/E is not vealizable.

Proof. Clearly T = ZP(s) implies that either [Z: ZP]=p or = = ZP, In either

case there are no intermediate fields; therefore UX €T ZP(x) = = for any subfield
F of =, unless F < ZP, Since Z/E is separable, if E < ZP, then Z = ZP(E) = =P;
therefore 2 is perfect, hence has no inseparable extensions. Thus, either by the
theorem or the alternative that T is perfect, Z/E cannot be the separable part of an
exceptional extension P/E.

COROLLARY 2.3. Let E be a field such-that E = EP(x) for some x € E. Then
there is no exceptional extension of E.

Proof. If E = EP the statement clearly follows. Otherwise, it is obvious that
>~ = ZP(x) whenever Z/E is separable, and we may apply Corollary 2.2,

THEOREM 2.4. Let K be a field of characteristic p, and x an indeterminate.
Then K(x) is vealizable (in other wovrds, is the separable pavt of an exceptional ex-
tension P/E) if and only if K is not perfect.

Proof. If K is perfect, then K(x)P = K(xP), so that K(x) = [K(x)P](x), and by
Corollary 2.2, K(x) is not realizable. Suppose now that K is not perfect, and choose
a € K sothat a ¢ KP. Put

2 _
P = K(x), E = K(y), where y = x¥ (%P + a) 1

It suffices to show that P/E is exceptional, since then Z(P/E) = K(xP) and is there-
fore isomorphic to K(x).

By [2, Theorem 7, p. 158] we see that [P: E] = pz, and APZ - yAP - ya is the ir-
reducible polynomial for x over E. Now suppose P/E is not exceptional. Then
there exists b € P such that b ¢ E and bP € E, and [E(b): E] = p, hence E(b) # P
and [P: E(b)] = p. By Liiroth’s Theorem, we may write E(b) = K(t) for some t, and
if

t=r@xsx! (rk), skx) € K[x]),
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then p = deg t = max(deg r(x), deg s(x)). Without loss of generality, we may assume
that deg r(x) = p and write

P p
r(x) = 2o a, xi (aP #0), s = 2Jb;xt.
i=0 i=0

Now tP has degree p2 and belongs to E, since K(t)P = E(b)P < E. Hence, by [2,
Theorem 7, p. 158] again, [P: K(tP)] = p?; this, with K(tP) < E, implies that

E = K(tP). As above, this gives the irreducible polynomial r(A)P - tPs(A)P for x
over E, Since t is an indeterminate over K and ap# 0, it is clear that

ag - tpbg # 0. Thus we may divide r(A)? - tPs(A)P by this element of E to obtain
the irreducible monic polynomial for x over E; that is,

2
(CR tpbg)'l[r(A)P -tPs()P] = AP - yAP - ya.

Equating coefficients of AP, we obtain the equation

2
(al - tPbP) "} af - tPb) = -y = -xP (xP+a) .

Solving for a, we deduce that a € PPN K = KP, a contradiction. Thus, P/E contains
no purely inseparable elements, and since x is clearly inseparable over E, P/E is
exceptional.

COROLLARY 2.5. If K is not perfect, then K(x) (X an indetevminate) admits
exceplional extensions.

COROLLARY 2.6. Let K be a perfect field, and let E/K(x) be separable. Then
E has no exceptional extensions.

Proof. It is clear that if P/E were exceptional, then P/K(x) would also be
exceptional.

3. SOME FURTHER REMARKS

Let P/E be an arbitrary finite-dimensional extension. Put = = Z(P/E), and de-
note by L the subfield of P consisting of all elements purely inseparable over E,
If P/L is separable, then [2, p. 50] P = Z @ L. On the other hand, it is clear that
if P/L is not separable, then it is an exceptional extension, and in this case
Z(P/L) = Z @ L. Thus our observation amounts to saying that arbitrary extensions
P/E that do not split into the tensor product of separable part and purely inseparable
part always give rise to exceptional extensions P/L, with Z(P/L) = Z(P/E) ®g L.
The following proposition combines this remark with a converse to it.

PROPOSITION 3.1. Let P/E be an avbitvary finite-dimensional extension, and
let L be the subfield of purely inseparvable elements. Then either P = Z(P/E) Qg L,
or P/L is exceptional, with Z(P/L) = Z(P/E) ®g L.

On the other hand, let P/L be an exceptional extension of the field L.. Then, for
any E < L such that [L: E] <~ and L/E is purely inseparable,

»(P/L) = %(P/E)®g L
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and L is the subfield of P consisting of all elements purely inseparable over E.

Proof. Only the second statement remains to be verified. If P/L is exceptional
and L/E is purely inseparable, it is clear that L is the set of elements of P purely
inseparable over E, Moreover, the hypothesis that Z(P/L) is separable over L
and L/E is purely inseparable implies that

Z(P/L) = Z(Z(P/L)/E) Qg L

(see [2, p. 50]). Finally, =(P/E) < Z(Z(P/L)/E), since Z(P/E) < Z(P/L). On the
other hand, any element of Z(P/L) that is separable over E clearly lies in Z(P/E),
so that Z(P/E) = Z(2(P/L)/K). Hence Z(P/L) = Z(Z(P/L)/E Qg L = Z(P/E)Rg L,
as required.

The proposition above may be interpreted to say that exceptional extensions are
perhaps not very rare, since if P/E is not normal, it is to be expected that the split-
ting P = Z Qg L of the first part of Proposition 3.1 does not occur. Normal exten-
sions P/E of course do split [2, p. 52]. One might ask, however, to what extent an
extension P/E is representable as a tensor product of its subfield L of purely in-
separable elements and another subfield, perhaps larger than Z(P/E). Our next
result discusses this question in a special setting. It is convenient to define the
exponent of an extension P/E (of characteristic p # 0) to be the exponent of P over
Z(P/E). We recall that a field P is said to be a composite of two of its subfields F
and K provided P is generated by F and K. If P/E is finite-dimensional, and F
and K are subfields of P containing E, then (see [2, p. 84]) the field generated by F
and K is

m
(F,K)= EfikilfiGF,kiEK

i=1

THEOREM 3.2. Let P/E be an extension of exponent 1, let = = Z(P/E), and let
L be the subfield of P consisting of elements purely inseparable over E. If M is
any subfield of P maximal with vespectto = <M and M N L =E, then P = (M, L).

Proof. I M = P, the theorem is trivial; therefore we assume that M # P, or
equivalently, that L # E. Then, for each x € P with x ¢ M, we can assert that
xP € M, and by maximality of M, there exist m; € M and a € L. (a ¢ E) such that

p-1
(*) 2 mx!=a,
i=0
since M(x) N L # E and [M(x): M] = p. Hence x satisfies the equation
p-1
E mi?\l -a=20
i=0

over (M, L). If x ¢ (M, L), then its minimal polynomial over (M, L) is AP - xP,
and the fact that (*) is of degree less than p implies m; = 0 for i > 0. Now
mg=2a € MN L = E, contrary to the relation a ¢ E. Thus x € (M, L); hence,

P = (M, L), as required.
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We note that if Z(P/E) is already maximal in the sense of Theorem 3.2, then
P = ZQg L, since [2, pp. 84-85] any composite of £ and L is a homomorphic image
of Z®g L, and since the hypothesis that Z/E is separable and L/E is purely in-
separable implies that Z® ¢ L is a field [2, p. 52]. We also remark that if M #Z,
then M/E is exceptional, and in this case Mg L has a unique maximal ideal J,
the set of nonunits, with (M, L) £ (MQ®g L)/J [2, p. 197].

COROLLARY 3.3. E admits no exceptional extension if and only if every exten-
sion P of exponent 1 splits: P =Z(P/E)Qy L.

Proof. If P/E is of exponent 1 and does not split, then by the remarks above we
can choose the subfield M in Theorem 3.2 distinct from Z. Then M/E is excep-
tional. Conversely, if every extension P/E of exponent 1 splits and K/E is excep-
tional, then K/Z(K/E) is purely inseparable, hence contains subfields of exponent 1
over Z(K/E). Such subfields are exceptional over E, hence cannot split, contrary to
the hypothesis.

COROLLARY 3.4. Let K be perfect, and let E = K(X) (x an indeterminate).
Then every extension of E of exponent 1 splits.

Proof. Corollaries 2.6 and 3.3.

Our final remark concerns the lattice of subfields of an exceptional extension
P/E. We call an intermediate field L/E of P/E distinguished provided L/E is ex-
ceptional and P/L is either separable or exceptional. These conditions are equiva-
lent to

L £ Z(P/E) and PPNL=LP.

Put = = Z(P/E), and let {Z;| i=1, -+, s} be the collection of subfields of Z that
contain E and have the property that P/%; is not exceptional. For i =1, ***, s, put

L(z;) = {x e P| xP" € Z; for some m}.

For each distinguished subfield L/E of P/E, we have the separable part
Z(L/E) = L n Z. The following is now easily established.

PROPOSITION 3.5. Let P/E be exceptional, let Z = Z(P/E), and let
{Zi | i=1, -, s} be the collection of subfields of Z/E over which P is not ex-
ceptional, Then Z; — L(Z;) and L — L N T ave inverse, inclusion-preserving
mappings between the set {Zi | i=1, -, s} and the set of distinguished subfields
of P/E. In particular, if E is maximal in Z(P/E) with vespect to the requirvement
that P/E be exceptional, then theve is a one-to-one inclusion-presevving covve-
spondence between distinguished subfields of P/E and subfields of Z/E.
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